

Innovative Energy Conservation Measures at Wastewater Treatment Facilities

Presented by the US EPA May 17th, 2012

Moderator

James Horne, US EPA Office of Wastewater Management

Speakers

Phil Zahreddine, Senior Technical Advisor, US EPA Office of Wastewater Management

Dale Doerr, Wastewater Superintendent, Sheboygan Regional WWTP

Questions & Answers

	File View Help
∞⇒>	- Audio
	Audio Mode: OUse Telephone
	<u> </u>
	Audio Setup
	Questions
	Questions Log
	[Enter a question for staff]
	Send
	Webinar Now Webinar ID: 429-384-699
	GoTo Webinar™

- GoToWebinar Technical Support: 1-800-263-6317
- You can submit questions/comments any time during the presentation
- Just use the question and answer pane that is located on your screen
- The speakers will address as many questions as possible

Maximize Your Screen

	File View Help	
\rightarrow	 Audio 	
	OUse Telephone OUse Mic & Speakers	
	▲ MUTED ◀ 00000000	
	Audio Setup	
	Questions	
	Questions Log	
	[Enter a question for staff]	
	~	
	Send	
	Webinar Now Webinar ID: 429-384-699	
Lami A	GoTo Webinar™	the second

- For a full screen view hit F5 or full screen icon on your console
- To return to the regular view, hit F5 again or regular screen icon
 - You need to be in
 "regular" view to submit text questions
- Hitting Control + H will also give you a larger view

Poll Question

- Polls will be launched throughout the presentation
- Please be sure to respond to the polls
- You will not be able to view the presenter's screen until the poll is closed by a webinar organizer

Quick Poll

Today's Agenda

- Background on energy use and management at water utilities
- Energy Conservation and Self Sufficiency Presentation
 - Phil Zahreddine, Senior Technical Advisor, US EPA Office of Wastewater Management
- Case Study of Energy Conservation Measures at the Sheboygan Regional Wastewater Treatment Plant
 - Dale Doerr, Wastewater Superintendent, Sheboygan Regional WWTP
- Q&A Time

Energy Use and Water Utilities

- Water and Wastewater treatment represents about 3% of the nation's energy consumption
 - About \$4 billion is spent annually for energy costs to run drinking water and wastewater utilities
 - Equivalent to approximately 56 billion kilowatt hours (kWh)
 - Equates to adding approximately 45 million tons of greenhouse gas to the atmosphere
 - Electric use for moving and treating water often represents 25-30% of O&M costs
- Energy consumption and costs will continue to rise
- Energy represents the largest controllable cost of providing water and wastewater services to the public

Managing to Maximize Energy Efficiency

Designed to help utilities:

- Systematically assess current energy costs and practices
- Set measurable performance improvement goals
- Monitor and measure progress over time

Uses a management system approach for energy conservation, based on the successful Plan-Do-Check- Act process

JANUARY 2008

[based on Environmental Management Systems (EMS)

http://water.epa.gov/infrastructure/sustain/cut_energy.cfm

Ensuring a Sustainable Future: An Energy Management Guidebook for Wastewater and Water Utilities

The Plan-Do-Check-Act Approach

- Allows utilities to systematically assess and manage energy opportunities and take action
- NOT a project—a system to manage for the long haul

Innovative Energy Conservation Measures at Wastewater Treatment Facilities

Phil Zahreddine, Senior Technical Advisor, US EPA Office of Wastewater Management

- MS Env Eng. University of Maryland at College Park
- BSCE, Lawrence Tech University, Southfield, MI
- 26 years experience in wastewater treatment operations and energy management at municipal facilities.

US EPA Energy Management Webcast Series for Water and Wastewater Utilities

Innovative Energy Conservation Measures at Wastewater Treatment Facilities

Phil Zahreddine, MS EnvEng Senior Technical Advisor U.S. EPA, Office of Wastewater Management

US EPA – Office of Water Office of Wastewater Management

Presentation Outline

- Significance
- Energy Self Sufficiency
- Document Scope
- Technical Data
- Case Studies

Significance

- Electric use for moving and treating water and wastewater in the US
 - 25-30% of total plant O&M Cost
 - Consumption and costs expected to continue to rise
- Current use of energy for wastewater treatment results in significant GHG emissions.
- Several plants are becoming/approaching energy self sufficiency (net zero energy use)
 - Many plants in the US (Sheboygan, WI; East Bay MUD, CA, several others)
 - Internationally (Many plants WERF Study: Strass WWTP, Austria)

Energy Used in Wastewater Treatment*

United States Environmental Protection Agency

Electricity Requirements for Activated Sludge Wastewater

Derived from data from the Water Environment Energy Conservation Task Force Energy Conservation in Wastewater Treatment

SEPA Elements of Energy Self-Sufficiency

United States Environmental Protection Agency

- Management motivation to implement energy initiatives
- Tolerance for process risk
- Audit & energy management
 plan
- Process optimization & operator education
- High level of automation and process analysis tools
- Flexible and efficient designs

- Anaerobic digestion &:
 - Combined Heat & Power
 - pre-treatment
 - Co-digestion
- Enhanced primary sedimentation
- Nutrient recovery and side stream flow equalization or treatment
- Thermal biosolids processes
- Solar
- Wind

• ECMs

Where to Start

1. Create energy team and assess energy consumption

- Examine and analyze bills
- Plot energy consumption and demand for each process (recommend meters for each unit process)
- Develop consumption baselines and compare to similar facilities
- 2. Assess energy savings opportunities
 - Evaluate process energy consumption and operational procedures
 - Evaluate operation of each significant piece of equipment
 - Can it be turned off or run efficiently at lower capacity?
 - Are new pieces of equipment much more efficient?
- **3. Develop** and implement energy conservation plan starting with "low hanging fruit" projects
- 4. Contract specifications for energy efficient equipment

Energy Conservation Measures at Wastewater Facilities

- Main audience: Utility managers and POTW owners and operators.
- Targeted performance, cost, and savings/benefits information .
- Focus on innovative energy efficient equipment replacements and operational modification projects that result in energy savings with reasonable ay back periods.
- Nine detailed case studies.
- References info.

Acknowledgements - Utility Representatives

- Michael Kersten, Operations Manager
 DePere Wastewater Treatment
 Plant, DePere, WI
- Dale Doerr, Wastewater
 Superintendent Sheboygan Regional
 Wastewater Treatment Plant,
 Sheboygan, WI
- Thomas G. Bridges, Wastewater Treatment Plant Manager - Big Gulch Wastewater Treatment Facility, Mukilteo, WA
- Larry A. Gamblin, Division Manager -City of Bartlett Wastewater Treatment Plant #1, Bartlett, TN
- Mark Moise, Operation Manager -Oxnard WWTP, Oxnard, CA

- Brent Herring, Superintendent Bucklin Point WWTF / United Water, East Providence, RI
- Rob Taylor, Energy Manager -Washington Suburban Sanitary Commission, Laurel, MD
- Dale Ihrke, Plant Manager / Bhavani Yerrapotu, Division Manager, San Jose/Santa Clara WPCP, San Jose, CA
- Mike Jupe, Program Administrator / Plant Superintendent - Waco Metropolitan Area Regional Sewer System, Waco, TX

Acknowledgements

• Technical Expert Panel:

- Steven Bolles, P.E. Process Energy Services, LLC
- Jess Burgess Consortium for Energy Efficiency
- Joseph Cantwell, P.E. Science Applications International Corporation (SAIC)
- Kathleen O'Connor, P.E. New York State Energy Research and Development Authority (NYSERDA)
- Andre Schmidt, P.E. Los Angeles County Sanitation Districts
- Michael Wilson, P.E. CH2M Hill, Inc.

• Expert Peer Reviewers:

- George Crawford, P. Eng. CH2M Hill, Inc.
- Julia Gass, P.E. Black & Veatch
- Thomas Jenkins, P.E. JenTech, Inc.
- George Lawrence, CEM Efficiency Vermont
- Project Mgt. Team: EPA HQ, Cadmus, HDR

ECM Category	ECM Description
Mechanical	Adjustable submergence impeller mechanical aerator
Aeration	Dual impeller mechanical aerator
Aeration Control	Integrated DO and air flow aeration control
Systems	Automated SRT/DO Control
	High speed turbo blowers
Blower and Diffuser Technology	Single-stage centrifugal blowers with inlet guide vanes and variable diffuser vanes
	Ultra-fine bubble diffusers
	Vertical linear motion mixer
Solids Processing	Multiple hearth furnace upgrade incorporating combustion air pre-heating and waste heat recovery
	Solar drying
	Low-pressure, high intensity lamps for UV disinfection
	Automated channel routing for UV disinfection
ECMs for Selected	Membrane air scour for MBRs
Processes	Hyperbolic mixers
	Pulsed air mixing of anoxic and anaerobic zones
	BNR process automation

High Speed Turbo Blowers

- Gearless, operate at high speeds.
- Air bearing or magnetic bearing.
- Higher capital costs but nominal efficiency is higher.
- Lower air flow capacity ranges.
- Small footprint, quiet, low vibration.
- See Case Studies: De Pere WWTP, WI and Big Gultch WWTP, WA.

High-Speed Turbo Blower with Air Bearings Reproduced courtesy of HS, Inc.

High-Speed Turbo Blower with Magnetic Bearings Reproduced courtesy of Atlas Copco

Integrated DO & Air Flow Control

United States Environmental Protection Agency

Source: Reproduced courtesy of Dresser, Inc.

- Uses air flow control instead of pressure control.
- Eliminates cyclic oscillation (hunting) at blower and aeration tanks, particularly in small systems.
- Reduces wasted blower power and pressure drop across tank valves. Air valve in zone with highest oxygen demand is fully open.
- See Case Study: Bucklin Point WWTF, RI.

Vertical Linear Motion Mixer

- Thin steel disk to mix digester contents.
- Effective mixing compared to conventional methods.
- Significant energy savings reported.
- Testing at Tucson, AZ in 2007 showed effective mixing at 11% of energy required by impeller draft tube mixers.

Pulsed Air Mixing of Anoxic and Anaerobic Zones - BioMix

- Efficient mixing in anaerobic and anoxic zones with no significant oxygen transfer.
- Intermittent release of bursts of compressed air at the bottom of the water column zones.
- Testing at F. Wayne Hill Water Resource Center in Buford, GA to compare effectiveness, compatibility with anaerobic and anoxic environments, and power requirements vs. a conventional submersible propeller mixer.
- Effective, fully compatible, simpler maintenance, with substantial power savings.

Compressed Air Feed

ECM Project Case Studies

Green Bay (WI) Metropolitan Sewerage District De Pere Wastewater Treatment Facility

Plant Description:

- 14.2 mgd design8.0 mgd avg. daily flow
- 2-stage AS w/biological
 P removal and tertiary
 filtration

ECM Project Description:

Replaced five 450 HP multi-stage centrifugal blowers with six 330 HP magnetic bearing turbo blowers (operate 2-3 turbo blowers vs. 2-3 multi-stage centrifugal blowers).

Green Bay (WI) Metropolitan Sewerage District De Pere Wastewater Treatment Facility

Energy Savings

ECM Project Costs	\$850,000
Energy Savings Results	2,143,975 kWh/yr (2005) (50% reduction) \$63,758 (2005) At \$0.0487/kWh
Payback	13.3 years

Ancillary Benefits

- ✓ New blowers less maintenance intensive.
- ✓ Aeration system automation reduces operators' surveillance of aeration process.
- ✓ Blower cooling air exhaust "recovered" for building heat.

Mukilteo (WA) Water and Wastewater District Big Gulch Wastewater Treatment Plant

Plant Description:

2.6 mgd design1.45 mgd avg. daily flow

> Two parallel oxidation ditches (A & B - 40/60 flow split) with rotor aerators.

ECM Project Description:

- Replaced rotor aerators with air bearing turbo blowers and fine bubble diffusers.
- Automated aeration system with implementation of DO probes and PLC control of blowers.
- o Implemented ORP based denitrification control.

Mukilteo (WA) Water and Wastewater District Big Gulch Wastewater Treatment Plant

Energy Savings

ECM Project Costs	\$1,446,304
Energy Savings Results	148,900 kWh/yr * (11% reduction)
(based on energy cost savings of \$0.037 per pound of CBOD removed)	\$43,756/yr (2010 estimated)
Payback	33 years

* While removing approximately 34% additional CBOD compared to base (pre-ECM) period

Ancillary Benefits

✓ Blower maintenance reduced compared to rotor aerators.

✓ Automating aeration system improved setting, reduced chemical control of filamentous bacteria.

City of Bartlett (TN) Wastewater Treatment Plant No. 1

Plant Description:

2.2 mgd design1.0 mgd avg. daily flow

 \succ Two parallel oxidation ditches with rotor aerators.

ECM Project Description:

 Installed optical DO instrumentation coupled with VFD control of aeration rotor speed.

City of Bartlett (TN) Wastewater Treatment Plant No. 1

Energy Savings

ECM Project Costs	\$13,500
Energy Savings Results	71,905 kWh/yr (13% reduction)
	\$9,176/yr
Payback	1.5 years

> Ancillary Benefits

✓ Optical DO instrumentation low maintenance requirement.

✓ Automation reduces operators' surveillance of aeration process.

City of Oxnard (CA) Wastewater Treatment Plant No. 32

Plant Description:

31.7 mgd design22.4 mgd avg. daily flow

Trickling filter followed by activated sludge (using five 350 HP Turblex blowers).

ECM Project Description:

 Implemented proprietary algorithms (Ekster Associates) for control of SRT (SRTmaster[™]), replacing blower manufacturer's pressure based control software (DOmaster[™]) and for SRT and DO set point optimization (OPTImaster[™]).

City of Oxnard (CA) Wastewater Treatment Plant No. 32

Energy Savings

ECM Project Costs	\$135,000
Energy Savings Results	306,600 kWh/yr (20% reduction)
	\$26,980/yr
Payback	5 years

Ancillary Benefits

Process stability, reduced SVI (20% to 50%), and previous foaming problems have not returned.
 Effluent quality consistently within NPDES permit limits.

Narragansett Bay Commission (RI) Bucklin Point Wastewater Treatment Facility

Plant Description:

46 mgd design23.7 mgd avg. daily flow

Four train MLE, activated sludge process.

ECM Project Description:

• Implemented proprietary blower control system (ESCOR/Dresser Roots) employing integrated air flow control (replacing blower manufacturer's proprietary pressure based control algorithm with direct air flow control using PID control).

Narragansett Bay Commission (RI) Bucklin Point Wastewater Treatment Facility

> Energy Savings

ECM Project Costs	\$200,000
Energy Savings Results	1,247,033 kWh/yr (20% reduction - average first 3 years operation)
	\$135,788/yr (average first 3 years operation)
Payback	1.5 years

> Ancillary Benefits

✓ Reliable blower control eliminated manual DO monitoring and control.

✓ Stabilized operation reduced alkalinity control chemical usage.

Washington Suburban Sanitary Commission -Western Branch Wastewater Treatment Plant (Upper Marlboro, MD)

Plant Description:

30 mgd design21.6 mgd avg. daily flow

Denitrification activated sludge (DNAS) process with sludge incineration.

ECM Project Description:

 Implemented solids processing (multiple hearth furnace) modifications (waste heat recovery, flue gas recirculation and combustion air injection system).

Washington Suburban Sanitary Commission -Western Branch Wastewater Treatment Plant (Upper Marlboro, MD)

Energy Savings

ECM Project Costs	\$4,500,000
Energy Savings Results	320,00 therms/yr (76% reduction in natural gas consumption) \$400,000/yr
Payback	11.3 years

Ancillary Benefits

- ✓ Increased MHF capacity from 12 dtpd to 17-19
- ✓ Delayed construction of additional incineration capacity.

City of San Jose (CA) San Jose/Santa Clara Water Pollution Control Plant

Plant Description:

167 mgd design107 mgd avg. daily flow

Single stage Biological Nutrient Removal using two parallel activated sludge processes.

ECM Project Description:

 Implemented proprietary algorithms (Ekster Associates) to effect energy savings through pumping systems optimization, pulsed air mixing in the BNR process anoxic/anaerobic zones and DAF pressurization pump control/process optimization.

City of San Jose (CA) San Jose/Santa Clara Water Pollution Control Plant

> Energy Savings

ECM Project Costs	\$269,569
Energy Savings Results	\$1,178,811/yr (natural gas and electricity)
 Pumping systems optimization 	1.83 kW/10 ⁶ gal (20% reduction)
 Pulsed air mixing 	1.2 X 10 ¹¹ BTU/yr (38% reduction)
	4.8 X 10 ⁶ kWh/yr (23% reduction
 DAF pump/process optimization 	1,603,030 kWh/yr (64% reduction)
Payback	3 months

39

City of Sheboygan (WI) Sheboygan Regional Wastewater Treatment Plant

Plant Description:

18.4 mgd design11.8 mgd avg. daily flow

2-stage AS w/biological nutrient removal.
 Anaerobic digestion w/

microturbines.

ECM Project Description:

- Replaced four 250 HP positive displacement blowers with two 350 HP single-stage centrifugal blowers (with inlet guide vanes and variable outlet vanes).
- Air control valves on headers to aeration basins.
- Upgrades SCADA system, replaced blower controls/programming.

City of Sheboygan (WI) Sheboygan Regional Wastewater Treatment Plant

Energy Savings

ECM Project Costs	\$901,000
Energy Savings Results	817,000 kWh/yr (15% reduction)
	\$63,889/yr
Payback	14 years

> Ancillary Benefits

 New blowers less maintenance intensive.
 Automation reduces operators' surveillance and eliminates manual adjustment of aeration process.
 Air piping system hammering eliminated along with related system maintenance.

Waco (TX) Metropolitan Area Regional Sewer System Wastewater Treatment Plant

Plant Description:

37.8 mgd design22.8 mgd avg. daily flow

Activated sludge, singlestage nitrification

ECM Project Description:

- Supplemented existing fine bubble diffuser system with additional diffusers.
- Implemented DO probes in each of the aeration basins' three aeration zones.
- Implemented blower and aeration drop leg valve control (based on aeration basin DO readings.

Waco (TX) Metropolitan Area Regional Sewer System Wastewater Treatment Plant

Energy Savings

ECM Project Costs	\$397,708
Energy Savings Results	6,642,741 kWh/yr (33% reduction in first 2 years of operation)
	\$331,272 (in first two years of operation)
Payback	2.4 years

Ancillary Benefits

 \checkmark Automation reduced operators' surveillance and eliminated manual adjustment of aeration process.

✓ With nitrification process stabilized, effluent chlorination dosage has been reduced and stabilized

Project Report

Evaluation of Energy Conservation Measures for Municipal Wastewater Treatment Facilities – EPA 832-R-10-005 – September 2010.

Available for free download at: <u>http://water.epa.gov/scitech/wastetech/publications.cfm</u>

> Phil Zahreddine Senior Technical Advisor USEPA OWM <u>zahreddine.phil@epa.gov</u> (202) 564-0587

Case Study of Energy Conservation Measures at the Sheboygan Regional Wastewater Treatment Plant

Dale Doerr, Wastewater Superintendent, Sheboygan Regional WWTP

- MBA University of Phoenix, Milwaukee, WI
- BBA Letourneau University, Longview, TX
- Certified Water and Wastewater Operator in Wisconsin and Texas
- 31 years of water and wastewater experience

Sheboygan Regional WWTP's Journey to Net Zero

Dale Doerr, MBA Sheboygan Regional Wastewater Treatment Plant

> USEPA Webinar: Energy Conservation Measures in WWTP's May 17, 2012

Agenda

Sheboygan Regional WWTP Energy Related Projects

- Influent Pump Station
- Aeration Blower Replacement
- Aeration Air Flow Control Valves
- Sludge Boiler Replacement
- Cogeneration Projects
- Optimizing Biogas Production
- Summary of Energy Savings

Questions

Where is Sheboygan, WI.?

Sheboygan Regional WWTP

- Built 1982
- 18.4 MGD Permitted Flow
- 11.0 MGD Average Flow
- Serves 68,000 People
 - City of Sheboygan
 - City of Sheboygan Falls
 - Village of Kohler
 - Town of Lima
 - Town of Sheboygan
 - Town of Sheboygan Falls
 - Town of Wilson
- 2011 Actual
 - Operating Budget \$ 3.780 M
 - Debt Service \$602 K
 - Capital Outlay \$600 K
 - Energy Costs \$340 K
 - Tipping Fee Revenue \$1.013M

3333 Lakeshore Drive

Sheboygan Regional WWTP

Preliminary/Primary Treatment

- Screening
- **Grit Removal**
- Primary Clarifiers
 Two Treatment Trains
- **Biological Nutrient Removal**
- **Aeration Basins**
 - **Fine Bubble Membrane Diffusers**
 - High Efficiency Turblex[®] Blower
- **Final Clarifiers**
- **Chlorine Disinfection**
- Dechlorination
- **Anaerobic Digestion**
 - Methane Gas Recovery for Building Heat and Micro-turbine Co-Generation Facility
- **Gravity Belt Thickening**
- Bio-solids Storage 6 MG
- **Bio-solids are Land Applied**

Monitoring Energy Usage

Power meters monitor energy use in each building and the microturbine output

WWTP Energy Reduction Projects

- Influent Pump Station
- Aeration Blower Replacement
- Aeration Air Flow Control Valves
- Sludge Boiler Replacement
- Cogeneration Project

Influent Pump Station Project Fall 2005

CAT Engine, 200 HP Premium Efficiency Motor, 3 - 250 HP Motor with Eddy-current Drives

Influent Pump Station Project

Project Cost \$170,000

- 2 Premium Efficiency Motors
- 2 VFDs, 2 Soft Start Motor Starters
- Energy Component Cost ~\$87,000
- Focus On Energy Grant
 - \$3,861
- Annual Savings
 - 20% reduction in KWH usage for influent pumping
- Savings 2006 2011
 - **\$80,892**

< 7 Year Simple Payback</p>

Aeration Blower Replacement Late Summer 2005

Removed 2 - Gardner Denver[®] PD Blowers with 250 HP motors

Installed 2 Turblex[®] High Efficiency Centrifugal Blowers with 350 HP motors

Aeration Blower Replacement

Project Cost \$790,000

- 2 Turblex[®] Blowers with 350 HP Motors
- Turblex[®] Blower and Motor Cost ~\$454,000
- Soft Start Motor Starter Cost ~\$50,000

Focus On Energy Grant

- **\$17,000**
- Annual Savings
 - 6.2% reduction in KWH usage
- Savings 2006 2011
 - **\$160868**
- < 15 Year Simple Payback</p>

Aeration Blower Replacement Late Summer 2008

Aeration Air Flow Control Valves

Project Cost \$128,000

- 6 Butterfly valves with Auma[®] Electric Actuators
- Air piping modifications
- SCADA System Modifications

Focus On Energy Grant

- None
- Annual Savings
 - 8.0% reduction in KWH usage
- Savings 2009 2011
 - **\$110,526**

< 4 year Simple Payback</p>

Sludge Boiler Replacement Fall 2005

Removed 3 – 2.3 MBTU Ray fire-tube Boilers

Installed 2 - 3.8 MBTU Hurst Fire-tube Boilers

Sludge Boiler Replacement

We tied the digester heat loop piping to the building heat loop piping and installed, two hot water recirculation pumps to push heat into the building heat loop.

Sludge Boiler Replacement

Project Cost \$350,000

2 - 3.8 MMBTU Hurst Fire Tube Boilers

Focus On Energy Grant

None

Annual Savings

90% reduction in Natural Gas usage for Building Heat

Savings 2006 - 2011

- \$293,721
- < 8 year Simple Payback</p>

30 kW Capstone [®] Micro-turbine Project Startup February 2006

200 kW Capstone Micro-turbine Project Started up December 2010

Gas Conditioning

Heat Recovery

Cain Heat Exchangers

Heat Recovery Recirc Pumps

30 kW Micro-turbine Electrical Connection

🕲 ViewX - Plant:Sheboygan WWTP.SCADA.Displays.MT100 MICROTURBINES			
🗱 File Edit View Tools Insert Arrange Window Help			×
BEST SYSTEMS 200kW MICROTUR	RBINES CS-1	Main Standby CS-2	LOG IN: Guest 4/19/2012 8:04 AM
MICROTURBINES	TURBINE ALARMS	WARNINGS	CHILLER DATA
	PRESSURE LOW LOW ALARM	4 / 18 / 2012 11:21	GLYCOL RETURN TEMP 43.2 °F
196.7 kW 197.6 kW	PRESSURE LOW LOW ALARM	4 / 18 / 2012 9:41	GLYCOL FLOW 13.6 GPM
T1 Run Status	PRESSURE LOW LOW ALARM	4 / 18 / 2012 4:16	DISCHARGE PRESSURE 225.9 PSI
	VALVE CLOSED POSITION WARNING	4 / 15 / 2012 8:55	SUCTION PRESSURE 67.8 PSI
8 8	VALVE CLOSED POSITION WARNING	4 / 15 / 2012 8:41	SUCTION TEMP -69.0 °F
	PRESSURE LOW LOW ALARM	4 / 15 / 2012 7:41	DISCHARGE TEMP 125.0 °F
	PRESSURE TIME OUT ALARM	4 / 15 / 2012 5:39	OUTDOOR AIR TEMP 52.0 °F
	PRESSURE LOW LOW ALARM	4 / 14 / 2012 18:59	TOTAL KW 26 KW
	TEMPERATURE HIGH WARNING	3 / 12 / 2012 13:03	COMPRESSOR RUNNING
RUN OK INLET PRESSURE 9.284 "	DEVICE OUT OF RANGE HIGH WARNING	3 / 12 / 2012 12:57	CONDENSOR FAN STOPPED
Turbine Run Staturs Codes: 1 = Not Connected			POWER MONITORS

Sheboygan WWTP.I-O Points.Alarms.Annunciator 3.Alarms Final.E_SCREEN_Hi_Float Fir

Microturbine Project Costs

30 kW System

- Project Cost ~\$1,200,000
- City's Cost \$205,000
 - 10 30 kW Capstone MT
 - 2 Cain Heat Exchangers
 - Gas Conditioning System
 - Gas Compression
 - Moisture Removal
 - Siloxane Removal

Focus On Energy Grants

- Electrical None (\$45,000)
- Heat Recovery \$20,000
- < 2 years Simple Payback</p>

200 kW System

- Project Cost \$1,500,000
 - 2 200 kW Capstone MT
 - 2 Cain Heat Exchangers
 - Gas Conditioning System
 - Gas Compression
 - Moisture Removal
 - Siloxane Removal
- Focus On Energy Grant
 - Electrical –\$205,960
 - Heat Recovery None
- < 7 years Simple Payback</p>

Benefits from CHP from 30 kW Microturbine Installation

	2006	2007	2008	2009 ¹	2010 ¹	2011 ¹
Renewable Energy Credits (RECs)	924	2.076	1.619			
\$ Per REC	\$3.15	\$3.15	\$3.15			
Revenue from RECs	\$2,911	\$6,539	\$5,100	\$0	\$0	\$0
Revenue from Alliant Energy	\$23,372	\$27,118	\$25,730	\$27,230	\$26,383	\$27,077
Therms Recovered Cost PerTherm	60,449 \$0.9039	66,369 \$0.8347	65,602 \$0.8666	60,247 \$0.7352	61,888 \$0.6316	62,000 \$0.5421
Natural Gas Savings (Avoided Costs)	\$54,640	\$55,398	\$56,851	\$44,294	\$39,088	\$33,610
Wisconsin Focus On Energy Grant	\$20,000					
Total Revenue and Avoided Costs	\$100,922	\$89,056	\$87,681	\$71,524	\$65,472	\$60,687

2006 – 2011 Total Revenues and Avoided Costs from 10 - 30 kW Microturbines

\$475,341

Value of Energy Produced by Microturbines 2006 - 2011

	2006	2007	2008	2009	2010 ¹	2011 ¹⁻²
Days System Down (All Day)	45	23	3	18	9	NA
Annual Therms	60,449	66,369	65,602	60,247	61,888	134,000
Average Daily BTUs	18,890,313	19,406,140	18,072,176	17,362,248	17,384,270	36,712,329
Value of Heat Produced	\$54,640	\$55,398	\$56,851	\$44,294	\$39,088	\$72,641
Cost Per Therm	\$0.9039	\$0.8347	\$0.8666	\$0.7352	\$0.6316	\$0.5421
Annual kWH	1,590,800	1,768,600	1,666,200	1,620,600	1,622,800	3,177,800
Average Daily kWH	4,971	5,171	4,603	4,670	4,558	8,706
Value of Electricity Produced	\$103,879	\$122,918	\$122,966	\$120,897	\$127,552	\$278,375
Cost Per kWH	\$0.0653	\$0.0695	\$0.0738	\$0.0746	\$0.0786	\$0.0876
Total Value of Energy Produced	\$158,519	\$178,316	\$179,816	\$165,190	\$166,641	\$351,017

¹ Digester Rehab project underway at WWTP, 1 of 3 digesters out of service
² 2011 includes the energy produced by both microturbine installations, due to technical issue the C200 microturbines did not operate at full capcity for most of the year

Total value of Energy Produced all Micrturbines = \$1,199,499

My Start Page

When the Red — Line is below the Black — Line, we are pushing electricity out to the Grid.

700 kWs of Generating Capacity using Capstone® Micro-turbines

Unplugged

Sheboygan Regional Wastewater Treatment Plant

Alliant Energy Edgewater Coal Fired Power Plant

Summary of WWTP Project Energy Savings

Sheboygan Regional Wastewater Treatment Plant

				Annu		ayy J	aviirys	Juili	illai y I		りている			
Projects	20	106	20	07	20	08	20	09	20	10	201	1 ¹	201	2 ²
Energy Reduced	kWH	Therms	kWH	Therms	kWH	Therms	kWH	Therms	kWH	Therms	kWH	Therms	kWH	Therms
Influent Pump VFDs	180,000		180,000		180,000		180,000		180,000		180,000		180,000	
Aeration Blower Replacement	358,560		358,560		358,560		358,560		358,560		358,560		358,560	
Sludge Boiler Replacement		67,757		61,837		75,057		67,959		66,318		63,206		63,206
Aeration Valves Installation							459,000		459,000		459,000		459,000	
Subtotal Energy Reduction	538,560	67,757	538,560	61,837	538,560	75,057	997,560	67,959	997,560	66,318	997,560	63,206	997,560	63,206
Energy Produced onsite														
CR 30 kW Micro-turbines Installation		60,449		66,369		65,602		60,247		61,888		65,000	1,400,000	65,000
C 200 kW Micro-turbine Installation											1,600,000	69,000	2,800,000	138,000
Subtotal Energy Produced	0	60,449	0	66,369	0	65,602	0	60,247	0	61,888	1,600,000	134,000	4,200,000	203,000
Total Energy Reduction	538,560	128,206	538,560	128,206	538,560	140,659	997,560	128,206	997,560	128,206	2,597,560	197,206	5,197,560	266,206
Energy Rate	\$0.0653	\$0.9039	\$0.0695	\$0.8347	\$0.0738	\$0.8666	\$0.0746	\$0.7352	\$0.0786	\$0.6316	\$0.0876	\$0.5421	\$0.0926	\$0.5061
Total \$ Savings	\$35,168	\$115,885	\$37,430	\$107,014	\$39,746	\$121,895	\$74,418	\$94,257	\$78,408	\$80,975	\$227,546	\$106,905	\$481,294	\$134,727
Total Combined Energy Savings	\$151	1,053	\$144	,443	\$161	,641	\$168	8,675	\$159	,383	\$334	,452	\$616	,021

Annual Enorgy Savinge Summary All Projects

Total Energy Savings 2006 - 2012

\$1,735,668

Total Project Costs

Influent Aeration Sludge Aeration

En CR 30 k C 200 k

Energy

\$2,874,000

Simple Pay Back 8 1/2 Years

- 1 Due to technical issues the C200 Capstone Micro-turbines did not operate at full capcity for most of 2011
- 2 Estimated based on operating 90 percent of the year and icludes the purchase of the 10 - C30 kW Micro-turbines from Alliant Energy in March 2012

Biogas Optimization

Co-digestion of High Strength Wastes

High Soluble Organic Wastes

- High Biochemical Oxygen Demand (BOD) > 25,000 mg/l
- Low Total Suspended Solids (TSS) < 10,000 mg/l
- Can have high dissolved solids, up to 50 percent TDS (mostly sugars)
- Easy to work with, pump, etc...
- Usually see an increase in Methane Gas Production within 60 minutes

Handling HSWs

- Usually has a low pH 5.0 s.u. pH or less
- Delivery temperature usually around 120 ° F
- Stay away from wastes high in chloride > 4,000 mg/L
- Use all stainless steel pumps , glass lined pipe or CPVC
- Use 6" diameter or larger pipe

Co-digestion of High Strength Wastes

- Currently using the following Food Processing Waste
 - Whey Processing
 - Mother Liquor, ~120,000 BOD
 - Permeate, ~100,000 BOD
 - Other Whey Processing Wastes, ~60,000 BOD
 - Food Processing
 - Flavorings for Dairy Products, ~25,000 BOD
 - Cheese processing Wastes ~ 40,000 BOD
 - Soda Processing Waste ~ 35,000 BOD
 - Off Spec Soda 80,000 BOD
 - Off Spec Beer 75,000 BOD
 - Ethanol Production Waste
 - Thin Stillage ~ 170,000 BOD
 - Corn Syrup ~ 200,000 BOD

Unloading into HSW Holding Tank

High Strength Waste (HSW) Feed

Methane Gas Used (Metered)

Sustainability

- By metering-in the High strength wastes into our Anaerobic Digesters we have increased our methane gas production by more than 200 percent.
- Optimizing biogas production has resulted in a reduction in the purchase of energy from outside sources. (electric and natural gas).
- By burning methane gas in the micro-turbines we have significantly reduced our green house gas emissions (Methane and Carbon Dioxide)
- The installation of energy efficient motors and VFDs has reduced our energy consumption by 5,600 MWH through 2011 and reduced our green house gas emissions by 8,400,000 pounds, equivalent to planting 4,200 trees. (1 tree will remove 1 ton of CO2 over 40 years, Source EcoSwitch.com)
- The Capstone[®] Micro-turbines produced 11,446 MWH of Electrical Energy and 448,555 Therms of heat since startup in February 2006.
- The electricity produce by the Micro-turbines reduced our carbon dioxide emissions by more than 15,000,000 pounds, the equivalent of planting 7,500 trees.

Take Home

Dealing with Decision Makers

- Do Your Homework
- Make Your Case
- Let Them Decide
- Keys to Success
 - We Did Not Try To Do Everything At Once
 - Tapped Resources
- Challenges
 - High Strength Waste
 - Moisture in the Biogas
- Unexpected
 - Notoriety

PRESS RELEASE:

City of Sheboygan Wins Sustainability Best Practices Award at Wastewater Treatment...

* Reuters is not responsible for the content in this press release.

Thu Jul 7, 2011 8:31am EDT

City of Sheboygan Wins Sustainability Best Practices Award at Wastewater Treatment Plant

CHATSWORTH, Calif., July 7, 2011 (GLOBE NEWSWIRE) -- Capstone Turbine Corporation (www.capstoneturbine.com) (Nasdaq:CPST), the world's leading clean technology manufacturer of microturbine energy systems, today announced that the City of Sheboygan, Wisconsin received a prestigious award from the Great Lakes and St. Lawrence Cities Initiative (GLSLCI) for nearing self-sufficiency at its wastewater treatment plant using Capstone microturbines.

The city of Sheboygan was the only GLSLCI member city in the U.S. and Canada to receive the Wege Small Cities Sustainability Best Practices Award, which recognizes GLSLCI member cities working to protect the Great Lakes and St. Lawrence River, restore them, and improve the quality of the water resources for future generations. GLSLCI is a bi-national coalition of mayors and other local officials that work actively with federal, state, and provincial governments.

Rather than flare excess methane gas -- the byproduct from sewage treatment processes that has a greenhouse gas impact on the atmosphere 21 times greater than carbon dioxide -- the Sheboygan plant uses the methane to fuel 10 Capstone C30 and two C200 microturbines in a combined heat and power (CHP) application. Using waste methane as fuel, the microturbines fulfill 90 percent of the plant's annual energy needs and nearly eliminate the need to purchase natural gas for heating.

Questions ????

Contact Info Dale L. Doerr City of Sheboygan WWTP 920-459-3464 dale.doerr@sheboyganwwtp.com

Website www.sheboyganwwtp.com

Questions & Answers

	File View Help
∞⇒>	- Audio
	Audio Mode: OUse Telephone
-	▲ MUTED ◀ 00000000
	Audio Setup
	Questions
	Questions Log
	✓
	[Enter a question for staff]
	Send
	Webinar Now Webinar ID: 429-384-699
	GoTo Webinar™

- You can submit questions/comments
- Just use the question and answer pane that is located on your screen
 - The speakers will address as many questions as possible

Contact Information

- Jim Horne, EPA Office of Wastewater Management
 - horne.james@epa.gov (202) 564-0571
- Phil Zahreddine, EPA Office of Wastewater Management
 - <u>zahreddine.phil@epa.gov</u> (202) 564-0587
- Dale Doerr, Sheboygan Regional WWTP
 - dale.doerr@sheboyganwwtp.com (920) 459-3464