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[1] Motivated by the recent increasing availability of global remote sensing data for
estimating precipitation and describing land surface characteristics, this note reports an
approximate assessment of quasi-global runoff computed by incorporating satellite
rainfall data and other remote sensing products in a relatively simple rainfall-runoff
simulation approach: the Natural Resources Conservation Service (NRCS) runoff curve
number (CN) method. Using an antecedent precipitation index (API) as a proxy of
antecedent moisture conditions, this note estimates time-varying NRCS-CN values
determined by the 5-day normalized API. Driven by a multiyear (1998–2006) Tropical
Rainfall Measuring Mission Multi-satellite Precipitation Analysis, quasi-global runoff was
retrospectively simulated with the NRCS-CN method and compared to Global Runoff
Data Centre data at global and catchment scales. Results demonstrated the potential for
using this simple method when diagnosing runoff values from satellite rainfall for
the globe and for medium to large river basins. This work was done with the simple
NRCS-CN method as a first-cut approach to understanding the challenges that lie ahead in
advancing the satellite-based inference of global runoff. We expect that the successes and
limitations revealed in this study will lay the basis for applying more advanced
methods to capture the dynamic variability of the global hydrologic process for global
runoff monitoring in real time. The essential ingredient in this work is the use of
global satellite-based rainfall estimation.
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1. Introduction

[2] Many hydrological models have been introduced in
the hydrological literature to predict runoff [Singh, 1995],
but few of these have become common planning or deci-
sion-making tools [Choi et al., 2002], either because the
data requirements are substantial or because the modeling
processes are too complicated for operational application.
On the other hand, progress in regional or global rainfall-
runoff simulation has been constrained by the difficulty of
measuring spatiotemporal variability of the primary causa-
tive factor, i.e., rainfall fluxes, continuously over space and
time. Building on progress in remote sensing technology,
researchers have improved the accuracy, coverage, and
resolution of rainfall estimates by combining imagery from
infrared, passive microwave, and space-borne radar sensors

[Adler et al., 2003]. Today remote sensing imagery acquired
and processed in real time can provide near-real-time
rainfall at hydrologically relevant spatiotemporal scales
(tens of kilometers and subdaily [Hong et al., 2005;
Huffman et al., 2007; Joyce et al., 2004; Sorooshian et
al., 2000; Turk and Miller, 2005]). Over much of the globe,
remote sensing precipitation estimates are the only available
source of rainfall information, particularly in real time.
Correspondingly, remote sensing has increasingly become
a viable data source to augment the conventional hydrological
rainfall-runoff simulation, especially for inaccessible
regions or complex terrains, because remotely sensed
imageries are able to monitor precipitation and identify land
surface characteristics such as topography, stream network,
land cover, vegetation, etc. Artan et al. [2007] demonstrated
the improved performance of remotely sensed precipitation
data in hydrologic modeling when the hydrologic model
was recalibrated with satellite data rather than gauge rainfall
over four subbasins of the Nile and Mekong rivers.
[3] Motivated by the recent increasing availability of

global remote sensing data for estimating precipitation and
describing land surface characteristics, this note attempts to
obtain a ballpark assessment of global runoff by incorpo-
rating satellite rainfall data and other remote sensing products
through a relatively simple rainfall-runoff simulation
approach: the United States Natural Resources Conserva-
tion Service (NRCS) runoff curve number (CN) method
[Natural Resources Conservation Service (NRCS), 1986;
Burges et al., 1998]. Its simplicity is especially critical for
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the vast ungauged regions and geopolitically transboundary
basins of the world. Our effort is a first approach to
understanding a challenging problem that lies ahead in
advancing satellite-based global runoff monitoring. Thus
the use of NRCS-CN should not be construed as a call for
replacement of other more advanced methods for rainfall-
runoff simulation. We expect that the successes and limi-
tations revealed in this study will lay the basis for applying
more advanced methods to capture the dynamic variability
of the hydrologic process for global runoff monitoring in
real time. The essential ingredient in this work is the use of
global satellite-based rainfall estimation.
[4] Although Ponce and Hawkins [1996] indicated that

the NRCS-CN method is widely used in the United States
and other countries, they also criticized it as a simplistic
methodology to simulate the sophisticated hydrological
system. As an example this method is imprecise for the
monsoon-type climate in Ethiopia [Mohammed et al.,
2004]. Taylor et al. [2006] also show that the annual runoff
in the Volta River basin is a linear function of cumulative
rainfall during the wet season when more than approxi-
mately 700 mm of rain has fallen. In a literature review,
Choi et al. [2002] concluded that NRCS-CN has useful skill
because it responds to major runoff-generating properties
including soil type, land use/treatment, and soil moisture
conditions. They point out that it has been successfully
applied to situations that include simple runoff calculation
[Heaney et al., 2001], assessment of long-term hydrological
impact on land use change [Harbor, 1994] for tens of years,
streamflow estimation for watersheds with no streamflow
records [Bhaduri et al., 2000], and comprehensive hydro-
logic/water quality simulation [Srinivasan and Arnold,
1994; Engel, 1997; Burges et al., 1998; Rietz and Hawkins,
2000]. Recently, Curtis et al. [2007] used satellite remote
sensing rainfall and gauged runoff data to estimate the
CN for basins in eastern North Carolina. A. Harris and
F. Hossain (Investigating the optimal configuration of
conceptual hydrologic models for satellite rainfall-based
flood prediction in the upper Cumberland River, submitted
to Journal of Hydrometeorology, 2007) found simpler
approaches such as the NRCS-CN method to be more
robust than more complicated schemes for the levels
of uncertainty that exist in current satellite rainfall data
products. On the other hand, we note the risks of
implementing this or any other method without fully
understanding its associated ‘‘uncertainty.’’ As such, we
adopt the NRCS-CN method to estimate a first-cut global
runoff by taking advantage of the first 9 years of rainfall
estimates from the Tropical Rainfall Measuring Mission
(TRMM) Multi-satellite Precipitation Analysis (TMPA)
[Huffman et al., 2007].
[5] In this note we first develop spatially distributed and

time-variant CN maps for the global land surface. Driven by
multiyear remote sensing rainfall, the NRCS-CN method is
then used to compute the surface runoff for each grid
independently and to subsequently route the surface runoff
to the watershed outlet through downstream cells [U.S.
Army Corps of Engineers, 2000]. Finally, simulated quasi-
global runoff is evaluated with Global Runoff Data Center
(GRDC) observed runoff (B. M. Fekete et al., Global
Composite Runoff Data Set (v1.0), Complex System
Research Center, University of New Hampshire, Durham,

2000, available at http://www.grdc.unh.edu, hereinafter
referred to as Fekete et al., Global Composite Runoff Data
Set (v1.0), 2000) and water balance model–simulated
runoff [Thornthwaite and Mather, 1955; Steenhuis and
Van der Molen, 1986; Vorosmarty et al., 1998].

2. Mapping NRCS-CN

2.1. Data

[6] The data sets (i.e., precipitation, soil information, and
land cover) required by the NRCS-CN runoff generation
scheme are all available globally with a well-established
record in Earth system analysis (Fekete et al., Global
Composite Runoff Data Set (v1.0), 2000). Information on
soil properties is obtained from the Food and Agriculture
Organization [2003] (see http://www.fao.org/AG/agl/agll/
dsmw.htm). The Moderate Resolution Imaging Spectroradio-
meter (MODIS) land classification map is used as a surrogate
for land use/cover, with 17 classes of land cover according
to the International Geosphere-Biosphere Programme clas-
sification [Friedl et al., 2002]. Routing information is
taken from the HYDRO1k (available at http://edc.usgs.
gov/products/elevation/gtopo30/gtopo30.html), which
provides global coverage of topography such as elevation,
slope, and flow direction, etc. These georeferenced data sets
are of value for users who need to run hydrologic models
on both regional and global scales. The rainfall data used in
this study are from the NASA TMPA [Huffman et al.,
2007] (http://trmm.gsfc.nasa.gov), and the runoff data are
from GRDC/University of New Hemisphere (http://
www.grdc.sr.unh.edu/).

2.2. Mapping NRCS-CN

[7] The NRCS-CN estimates surface runoff as a function
of precipitation, soil type, land cover, and antecedent
moisture conditions. The latter three factors are usually
approximated by one parameter, the CN [NRCS, 1986]. In
this case the set of equations (1) and (2) is used to partition
rainfall into runoff and infiltration.

Q ¼ P" IAð Þ2

P" IAþ PRð Þ ð1Þ

PR ¼ 25; 400

CN
" 254; ð2Þ

where P is rainfall accumulation (mm/d); IA is initial
abstraction; Q is runoff generated by P; PR is potential
retention; CN is the runoff curve number, with a higher CN
associated with higher runoff potential; and IA is approxi-
mated by 0.2PR.
[8] CN values are approximated from the area’s hydro-

logic soil group (HSG), land use/cover, and hydrologic
condition, the two former factors being of greatest impor-
tance in determining its value [NRCS, 1986]. First, follow-
ing the Natural Resources Conservation Service (NRCS)
[1997], a global HSG map is derived from the digital soil
classification which includes 13 textural classes, an impor-
tant indicator for infiltration rate (Table 1). Given ‘‘fair’’
moisture condition (defined below), the MODIS land cover
classification and the HSG map are used to estimate the CN
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by indexing in the standard lookup tables of the NRCS
[1986, 1997]. Figure 1 shows the estimated climatological
global CNmap for fair moisture conditions, with higher value
associated with larger runoff potential. Thus, for a watershed
on a coarse grid a composite CN can be calculated as

CNcom ¼
P

AiCNiP
Ai

; ð3Þ

in which CNcom is the composite CN used for runoff
volume computations; i is the index of subgrids or
watershed subdivisions; and Ai is the drainage area of area
i. The composite CN values for several watersheds are listed
in Table 2.

3. Time-Variant NRCS-CN and Runoff
Simulation

3.1. Time-Variant NRCS-CN

[9] Note that the CN values displayed in Figure 1 are for
the ‘‘fair’’ hydrologic condition from standard lookup
tables, which are used primarily for design applications.
However, for the same rainfall amount, there will be more
runoff under wet conditions than under dry. In practice,

lower and upper enveloping curves can be computed to
determine the range of the CN according to the antecedent
moisture conditions (AMC):

CNI
i ¼

CNII
i

2:281" 0:01281CNII
i

ð4Þ

CNIII
i ¼ CNII

i

0:427þ 0:00573CNII
i

; ð5Þ

where superscripts indicate the AMC, I being dry, II being
normal (average), and III being wet [Hawkins, 1993]. The
change of AMC is closely related to antecedent precipita-
tion [NRCS, 1997]. We apply the concept of an antecedent
precipitation index (API) to provide guidance on how to
estimate the variation of CN values under dry or wet
antecedent precipitation conditions. Kohler and Linsley
[1951] define API as

API ¼
X"T

t¼"1

Ptk
"t; ð6Þ

Figure 1. Global NRCS runoff curve number map derived from U.S. Department of Agriculture
hydrological soil groups and land cover classification for fair hydrological conditions.

Table 1. Hydrological Soil Group Derived From Soil Propertya

HSG

USDA SOIL
TEXTURE
CLASS SOIL CONTENTS

EARTH’S
SURFACE, % PROPERTY

A 1, 2, 3 sand, loamy sand or
sandy loam types
of soils

4.69 low runoff potential and high infiltration rates
even when thoroughly wetted and consists
chiefly of deep, well to excessively drained
sands or gravels

B 4, 5, 6 silt loam, loam, or silt 8.41 moderate infiltration rate and consists chiefly
of soils with moderately fine to moderately
coarse textures

C 7 sandy clay loam 3.98 low infiltration rates when thoroughly wetted
and consists chiefly of soils with moderately
fine to fine structure

D 8, 9, 10, 11, 12 clay loam, silty clay
loam, sandy clay,
silty clay or clay

5.78 highest runoff potential, very low infiltration
rates when thoroughly wetted and consists
chiefly of clay soils

0 0 water bodies 65.55 NA
"1 13 permanent ice/snow 11.59 NA

aAbbreviations are HSG, hydrological soil group; USDA, U.S. Department of Agriculture; and NA, not applicable.
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where T is the number of antecedent days, k is the decay
constant, and P is the precipitation during day t. The model
is also known as ‘‘retained rainfall’’ [Singh, 1989]. Decay
constant k is the antilog of the slope on a semilog plot of soil
moisture and time [Heggen, 2001]. API practice suggests
that k is generally between 0.80 and 0.98 [Viessman and
Lewis, 1996]. Here we use decay constant k as 0.85 for
demonstration purposes. API generally includes moisture
conditions for the previous 5 days (or pentad) [NRCS,
1997]. In order to obtain a time-variant CN the site-
specified API is first normalized as

NAPI ¼

P"T

t¼"1

Ptk
"t

P
P"T

t¼"1

k"t

; ð7Þ

where T = 5 for pentads, the numerator is API, and the
denominator is a normalizing operator with two compo-
nents: average daily precipitation P and the

P
k"t series.

The ‘‘dry’’ condition is defined as normalized antecedent
precipitation index (NAPI) < 0.33, the ‘‘wet’’ condition is
defined as NAPI > 3, and the intermediate range 0.33 & 3 is
the ‘‘fair’’ hydrological condition. By definition, the surface
moisture conditions are delineated as dry (or wet) if any
pentad API is less than one third of (or larger than 3 times)
the climatologically averaged pentad API, and fair condi-
tions are designated for all others. Summarizing, the CN
can be converted to dry, fair, or wet condition using
equations (4)–(7) according to the moisture conditions
approximated by the pentad NAPI.
[10] Using the multiyear (1998–2006) satellite-based

precipitation data set from NASA TRMM, the 9-year
climatological pentad API is shown in Figure 2a. Thus,
given any date, the pentad NAPI can be determined, and
thus the CN can be updated with equations (4)–(7). For
example, on 25 August 2005 the pentad rainfall accumula-
tion, pentad NAPI, resulting hydrological conditions (dry,
fair, or wet), and the updated CN on the same date are
shown in Figures 2b, 2c, 2d, and 2e, respectively.

3.2. Runoff Simulation

[11] Using the concept of NAPI and the NRCS-CN
method [NRCS, 1997], the TRMM-simulated runoff
(TRMM-CN) can be calculated and compared with three
sets of GRDC annual climatological runoff fields: observed
(OBS), water balance model (WBM)-simulated, and com-
posite (CMP) from the OBS and WBM (Fekete et al.,
Global Composite Runoff Data Set (v1.0), 2000). The
WBM used the water balance model of Thornthwaite and
Mather [1955] with a modified potential evaporation

scheme from Vorosmarty et al. [1998], driven by input
monthly air temperature and precipitation from Legates and
Willmott [1990a, 1990b]. Note that the three GRDC runoff
climatologies span a period of incomplete data records
(1950–1979), while the TRMM-CN runoff is simulated
for 9 years (1998–2006) of satellite rainfall with complete
spatiotemporal coverage. One assumption here is that the
change of rainfall between the two time periods is small
enough so that the resulting runoff climatology is spatially
consistent. Table 3 shows that the TRMM-CN runoff
corresponds more closely with the WBM, having a rela-
tively high correlation and low error. An intercomparison
with the GRDC runoff observation demonstrates that the
WBM has a moderate advantage over the TRMM-CN
runoff: The correlation and root-mean-square difference
(RMSD) between the GRDC OBS and WBM are 0.81
and 159.7 mm/yr (or 0.44 mm/d), respectively, which is
slightly better than for the TRMM-CN case (Table 3).
[12] Figure 3a shows the annual mean runoff (mm/yr)

driven by TRMM daily precipitation for the same 9-year
period in comparison with the GRDC-observed runoff
climatology (Figure 3b). Note that the gray areas indicate
no data or water surface in Figures 3a and 3b. By averaging
areas covered by both TRMM-CN and GRDC runoff data,
Figure 3c shows the TRMM-CN runoff zonal mean profile
against the OBS, WBM, and CMP. In general, the TRMM-
CN zonal mean runoff follows more closely the three
GRDC runoff profiles in the Northern Hemisphere than in
the Southern Hemisphere. We believe that this difference is
the result of having many more samples in the Northern
Hemisphere as well as more accurate GRDC data. Consider-
ing the TRMM-CN runoff difference as a function of basin
area shows the TRMM-CN performance deviates more for
basins smaller than 10,000 km2, with significantly better
agreement for larger basins (Figure 4).

4. Summary and Discussion

[13] Given the increasing availability of global geospatial
data describing land surface characteristics, this note
estimated a global CN map primarily based on soil property
and land use/cover information under the ‘‘fair’’ moisture
condition. Then, using API as a proxy of AMC, this note
further estimated time-variant CN values bounded by dry
and wet AMC approximated by pentad-normalized API.
Finally, driven by satellite-based TMPA precipitation
estimates, quasi-global runoff was simulated with the
NRCS-CN method and was compared with GRDC runoff
measurements for climatology and at the basin scale.
[14] Although we were able to demonstrate the potential

for using the NRCS-CN runoff model when predicting

Table 2. Composite CN for Several Watersheds for ‘‘Fair’’ Hydrological Conditionsa

Watershed

Amazon Mississippi Yangtze Colorado Mekong Uruguay Sacramento Albany

Composite CN 75.484 73.165 81.787 78.621 62.355 83.7 77.425 54.702
Basin length, km 4,327 4,184 4,734 1,807 3,977 1,424 926 951
Area, km2 5,853,804 3,202,958 1,794,242 807,573 773,737 355,505 192,563 132,799

aGlobal surface-averaged CN is 72.803.
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Figure 2. (a) Climatological pentad antecedent precipitation index (API) averaged over 9 years (1998–
2006). (b) Pentad antecedent rainfall accumulation (mm) ending on 25 August 2005. (c) Pentad-
normalized API (NAPI) on 25 August 2005. (d) Hydrological condition, with "1, 0, 1, and 2
corresponding to no data, dry, fair, and wet conditions, respectively, determined by NAPI as of 25 August
2005. (e) Updated CN on 25 August 2005.
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approximate runoff values from satellite rainfall for the
globe and medium to large river basins, there remain several
unanswered questions. First, among many methods to

estimate CN values, Hawkins [1993] recognized that remote
sensing data may not be adequate to define the ‘‘true’’ value
of a CN. Thus field surveys of basin characteristics should
be conducted where feasible in order to obtain ‘‘true’’ soil
and land cover data. Second, while this study recognized the
uncertainty of the estimates of actual CN values and
assumed that they likely fall within the enveloping wet
(upper) and dry (lower) conditions approximated by the
5-day-normalized API, it may be possible to adjust the CN
more precisely to account for local or regional information.
Finally, one major unaddressed hydrological concern for
rainfall-runoff applications of remotely sensed precipitation
is the thorough evaluation of satellite-based rainfall estima-
tion error and its nonlinear influence on rainfall-runoff
modeling uncertainty in varying landscapes and climate

Table 3. TRMM-CN Runoff Climatology in the Latitude Band
50!S–50!N Compared to GRDC Observed, Water Balance Model,
and the Later Two Composite Runoffa

Statistics

GRDC Runoff Climatology

OBS WBM CMP

Correlation Coefficient 0.75 0.80 0.79
Bias ratio 1.28 1.12 1.12
RMSD, mm/d 0.56 0.48 0.51

aAbbreviations are OBS, observed; WBM; water balance model; CMP,
composite; and RMSD, root-mean-square difference.

Figure 3. (a) Annual mean runoff (mm/yr) simulated using NRCS-CN methods from TRMM estimates
for the period 1998–2006. (b) GRDC-observed runoff (mm/yr). (c) Runoff zonal mean profiles
comparing TRMM precipitation (green) and simulated runoff (red) to GRDC runoff (blue) from the (left)
observed, (middle) WBGS, and (right) composite data sets. Note the gray areas in Figures 3a and 3b
indicate no data or water surface.
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regimes [Hong et al., 2006; Hossain and Anagnostou, 2006;
Villarini and Krajewski, 2007]. Thus, while we conclude
that this simple approach seems to provide a reliable
tool when using coarse-resolution satellite precipitation
data, we also urge similar studies using more sophisticated
hydrological models, particularly seeking to serve the vast
ungauged regions and geopolitically transboundary basins
of the world [Hossain et al., 2007].
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