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Abstract 

The National Agricultural Statistics Service (NASS) uses the delete-a-group 

(DAG) jackknife to estimate variances and mean squared errors in many of its 

surveys.  The DAG jackknife provides nearly unbiased estimates under a host of 

complex designs and processes.  It involves breaking the sample of unit 

respondents into T (T= 15 or 30) groups and then sequentially deleting each group 

from the sample, leaving T replicate groups.  Then T sets of replicate weights are 

created, and T replicate estimates are calculated using these weights.  The DAG 

jackknife estimator is the sum of the squared differences between the T replicate 

estimates and the original estimate (entire sample) multiplied by (T-1)/T.   

Although the DAG jackknife currently accounts for unit nonresponse, item 

imputations are treated as real reported values.   Through a small simulation 

study, we explore using the principles of DAG jackknife to account for the 

additional variance in an estimated mean or total due to the imputation process by 

creating replicate imputations. 
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1. Introduction 

 

Missing data exists.   Although significant improvements in survey instruments 

and data collection have been made, surveys are returned without full responses.  

Likewise, experiments can be well planned, yet attrition and mechanical failure 

lead to incomplete data.  Despite the difficulty in obtaining complete observations 

from sampled units, the need remains to perform effective statistical analysis with 

the data. Without adaptation to the processing and analysis of the data set from 

traditional methods, the missing values leave room for bias in the estimates.  To 

mitigate this, many statisticians intelligently create values to fill in the “holes” in 

the data set (imputation).  Imputation is widely accepted and practiced.   While 

this may reduce bias in the target estimate, inferences drawn from the data will 

not be valid if the imputed values are treated as real values.  Classical methods to 

calculate the variance of an estimator which treat imputed values as real are 

insufficient. 

 

NASS is increasingly using the DAG jackknife to estimate variances and mean 

squared errors, since it provides nearly unbiased estimates under a host of 



complex designs and processes.  It is a natural extension to examine the use of the 

DAG jackknife as a tool to calculate the variance of an estimator.  Rao and Shao 

(1992) originated an approach based on adjusted replication. Further 

developments have been made by Shao, Chen and Chen (1998) and more.  Cohen 

(2002) outlined a simpler implementation of these methods.   

 

We extend the DAG Jackknife when estimtating a total using imputed values 

derived on a linear model.   Section 2 gives an overview of the DAG jackknife; 

Section 3 provides the adjusted imputation method.  Section 4  lays out the 

framework for a small simulation study, the results of which are in Section 5.  A 

short conclusion is offered in Section 6. 

 

2. Overview of DAG Jackknife 

 

 

Observation Variable Sampling 

Weight 

1  x 6 

2 x 12 

3 . 18 

4 x 6 

5 x 12 

6 . 24 

7 x 18 

8 x 12 

9 x 36 

10 . 36 

11 x 12 

12 x 24 

13 x 18 

14 . 6 

 

Figure 1:  The table on the left represents the sample of unit respondents with 

non-overlapping groups represented by colors (e.g. blue = group 1, peach = group 

2, red = group 3, etc.).  The table on the right represents the 3
rd

 replicate (sample 

of unit respondents with the red = group 3 dropped).  The sampling weight has 

been adjusted (replicate weight) for the absence of the group 3 observations. 

 

The DAG jackknife is one of a host of replication methods that are used to 

calculate variances of estimators, particularly under complex sampling designs or 

when estimating a nonlinear target.  Replication methods are implemented by “re-

sampling” from the sample.  In the case of the DAG Jackknife, this is done by 

creating T non-overlapping groups of the unit respondents and sequentially 

dropping each group from the sample.   What remains of the sample after 

dropping the t
th

 group (t = 1, 2, ... , T) is called the t
th

 replicate.  Sample weights 

are adjusted to form replicate weights, which account for the loss of observations.  

Observation Variable Replicate 

Weight 

1 x 7 

2 x 14 

4 x 7 

6 . 14 

7 x 21 

8 x 14 

9 x 42 

10 . 42 

11 x 14 

12 x 42 

13 x 21 

14 . 7 



Figure 1 above provides a small scale representation of the process, although 

there are generally more groups formed (to retain degrees of freedom) and more 

observations in each group. 

 

An estimate of a total,  , is calculated using the sampling weights.  The estimated 

variance of  is based on the difference between the estimate  using sampling 

weights and estimate  using replicate weights for each replicate. 

 

More formally, the set of unit respondents from a sample, S, is divided into T 

groups, S1, …,ST .  The t
th

 replicate is defined to be S(t) = S – St .  The total of item 

Y can be computed by summing over values for Y in the population, U.   

 

        (1) 

 

An estimate of a total,  , is computed from S using the sampling weights {wk; k 

S}  

 

           (2) 

 

Similarly, an estimate of a total,  , using the t
th

 replicate can be computed from 

S(t) using the t
th

 set of replicate weights {wk(t); k  S(t)}. 

 

      (3) 

 

 

And,  has its variance estimated by: 

 

 

Var                    (4) 

 

 

3. Adjusted Jackknife Imputation  

 

If imputed values are naively treated as real values, the variance of the estimate 

will be biased, regardless of the variance estimator used.  This includes the 

jackknife variance estimator.  Using replication methods, such as the jackknife, to 

account for imputation by adjusting imputations was introduced by Rao and Shao 

(1992).  Essentially, they proposed to re-impute each replicate and apply formula 

(4) with the  computed based on the t
th

 adjusted replicate. 

 

For mean imputation and random hot deck imputation, Rao and Shao’s 

adjustment for a unit respondent with a missing value for   is 

 

,      (5) 

 



 

 

where  is the imputed value for   using all sample respondents,   is the 

imputed value for  using the respondents in the t
th

 replicate, and  is estimated 

expectation of yk under the  imputation model.   

 

Rao and Shao’s adjusted jackknife produces asymptotically unbiased and 

consistent jackknife variance estimators for means and totals for imputation 

methods such as mean imputation, random hot deck imputation, ratio or 

regression imputation, but produces serious overestimation in the case of nearest 

neighbor imputation.  

 

With the typical delete-1 jackknife, this implementation would be 

computationally intensive, even with a simple imputation scheme such as mean 

imputation.  Di Zio et al. (2008) suggested the use of the DAGjackknife and the 

extended-delete-a-group jackknife (EDAGjackknife) with the Rao & Shao 

adjustment for hot deck imputation to reduce computation.  The EDAGjackknife 

is a small modification to the reweighting step when using DAGjackknife 

proposed by Kott (2001) to handle the bias introduced by the DAGjackknife when 

the number of primary sampling units in a strata is small.  Simulations where 

some strata have a small number of primary sampling units by Di Zio et al. 

showed the EDAGjackknife with Rao & Shao adjustment for hot deck imputation 

to perform well in terms of precision and computational feasibility. 

 

We propose re-imputing replicates with the DAGjackknife where a prediction 

model has been used for imputation.  That is, when imputing with 

 

 ,    (7) 

 

re-impute each replicate with 

 

  ,                (8) 

 

 

where  is calculated using the data and replicate weights for the t
th

 replicate, 

and the  remain the same across replicates. 

 

4. Simulation Study Framework 

 

We simulated 100 samples (n = 1200) of farm operations from Illinois using the 

2007 Census of Agriculture.  We drew a stratified sample with a simple random 

sample within strata (see Table 1). 

 

 

 

 



Farm 
Type/Total 
Value of 
Production 

Small Medium Large 

Crop Strata 1 Strata 2 Strata 3 

Livestock Strata 4 Strata 5 Strata 6 

Table 1: Sampling design strata.  Farm Type is pooled to be defined as either 

Crop or Livestock.  Total Value of Production defines the size of the farm based 

on the value of its production and is pooled into three groups (small, medium, and 

large). 

 

Our target is Total Corn Acres Harvested for Illinois,  =  , where  are 

individual values of Total Corn Acres Harvested in Illinois.  The sampled values 

of Total Acres Harvested,  , and Total Corn Acres Harvested,   were kept: 

 .  We imposed missingness completely at random (MCAR) for 25% of 

the  .   

 

From the sample, S, we formed T= 20 non-overlapping groups, S1, …,S20.  The t
th

 

replicate is S(t) = S – St .   

 

Three imputation models were considered in this study. Separate simple linear 

models were assumed for  Crop and Livestock operations. In our notation, R is the 

set of observations with non-missing values for  after we imposed missingness.   

 

 

4.1 Imputation Method 1 

   

     ,     (9) 

 

 

where   .                (10)        

 

 

We re-impute replicate with 

 

  ,   (11) 

 

 

where  .        (12) 

 

 



4.2 Imputation Method 2 

 

 

         ,     (13) 

 

 

where  is calculated using (10),  ) , is the weighted sample 

variance among respondents for r  =   -  , and the  are truncated so that 

 to eliminate the possibility of negative imputations. 

 

 

We re-impute replicate with 

 

    ,        (14) 

 

where  is calculated using (12),  is described above 

 

 

4.3 Imputation Method  3 

 

            ,                       (15) 

 

 

where  is a random draw from the set   with  probability of 

selection proportional to  for reasons explained in a Kott and Folsom (2010).   

Note that this effectively sets the    term in equation (13) equal 

to .   

 

 

We re-impute replicate with 

 

          ,   (16) 

 

which is asymptotically identical to but always nonnegative.  

 

5. Simulation Study Results 

 

Remember, our target,  = , is Total Corn Acres Harvested for Illinois.   

 



Initially, we looked at the empirical relative bias (EmpRBIAS) of each imputation 

model as well as the sample.  Let a = 1, ... 100 be a sample simulation. 

 

 

   ,    (17) 

 

where * = {Sample, Model 1, Model 2, Model 3},   =  is the true total 

corn acres harvested for Illinois and  is the estimate for total corn acres 

harvested for Illinios using sampling weights.  EmpRBIAS is summarized in 

Table 2. 

 

 

Metric Sample Model 1 Model 2 Model 3 

EmpRBIAS <0.001 <0.001 0.055 -0.038 

Table 2: Empirical relative bias for the sample simulation, Model 1, Model 2, 

Model 3. 

 

The DAGjackknife estimates the combined sample and prediction model mean 

squared error.  So, we will compare and empirical relative root mean square error 

(EmpRRMSE) to an average DAGjackknife variance converted to a relative root 

mean square error for both the naive DAG jackknife with imputed values treated 

as real values (NaiveJackRRMSE) and DAG jackknife with replicates re-imputed 

(JackRRMSE).   

 

Since we have T=20 groups, the DAGjackknife variance estimate was calculated 

using 

 

   ,        (18) 

 

where * = {Sample, Model 1, Model 2, Model 3},   is the estimate for total 

corn acres harvested for Illinois, and  is the estimate for total corn acres 

harvested for Illinois for the t
th

 replicate using the corresponding replicate 

weights.  

 

The EmpRRMSE is 

 

     ,         (19) 

 

where * = {Sample, Model 1, Model 2, Model 3},   is the estimate for total 

corn acres harvested for Illinois, and  = is total corn acres harvested for 

Illinois.   

 



 

Our NaiveJackRRMSE (imputations treated as real values) and JackRRMSE 

(replicates re-imputed) are found using 

 

 or JackRRMSE  =   ,(20)  

 

 

where * = {Sample, Model 1, Model 2, Model 3},   is the 

DAGjacknife variance estimate for sample a, and  = is total corn acres 

harvested for Illinois.   

 

Results of the simulation study are in Table 3 and summarized below. 

 

Metric Sample Model 1 Model 2 Model 3 

EmpRBIAS <0.001 <0.001 0.055 -0.038 

EmpRRMSE 0.057 0.059 0.074 0.057 

NaiveJackRRMSE 0.054 0.052 0.06 0.055 

JackRRMSE 0.054 0.056 0.063 0.059 

 

Overall, we see evidence that JackRRMSE performs fairly well, and better than 

the NaiveJackRRMSE, which always underestimates.    We should not, however, 

be too bold in conclusions drawn from only 100 simulated samples.  

 

 

6. Conclusion 

 

Building on the work of Rao & Shao (1992) and others through a small simulation 

study, we see evidence that the DAGjackknife can be used to account for 

imputation when using a prediction model by re-imputing replicates.  Future work 

includes investigating other response mechanisms, group numbers, other targets 

beyond totals, domain estimation, and the role of weights. 
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