
        Creating Synthetic Agricultural Data Sets Using Copula Techniques :

I.  Introduction and Background 

How often does it happen that one sets out to develop computational techniques,
intent on addressing the question of ‘How to ?’, and subsequently realizes that the
question. ‘What ?’, - the basic concepts and definitions of the subject -, were not
adequately addressed ? This has been our experience with the problem of
generating multivariate random variables ; an experience that has been an 
intellectual adventure worth sharing.

The basic results on generating values from a univariate distribution are well
known. If X is a real random variable with distribution function F,  i.e.  F( x ) = 
P( X # x ) , then  U = F( X ) has the uniform distribution on the interval ( 0 , 1 ). 
This result implies that if U is uniform on ( 0, 1 ) , then X =  F  ( U )  has-1

distribution function F.  So, given one has the capability to generate  uniform
variates, one has a general method for  generating continuous random variables 
with a specified distribution.  ( See Gentle ( 2003 ) for a discussion of  standard
techniques for generating values from a uniform distribution. ) The idea of a
copula can be viewed as generalizing these basic results to higher dimensions.

         Definition.

         Let   I = [ 0, 1 ] and let   I  =  [ 0, 1 ] × þ×  [ 0, 1 ]  in  ú  .  A copula is m m

         a distribution function C   on  I   with uniform marginals.m

The seminal result of the subject is :

            Theorem ( Sklar 1959 )  

             If   F   is a distribution function on ú  with one dimensional marginalsm

1 m             F  ,  þ , F  , then there is a copula C so that :

1 m 1 1 m m              F ( x  ,  þ , x  ) = C (  F  (  x  )  ,  þ , F  ( x  ) ).  

             If F is continuous, then the copula C is unique, and is given by :

              

   



Note that this result of Sklar is more than a means to the end of generating
multivariate random variables : for continuous distribution functions with
specified marginals, the copula C characterizes the distribution.  In particular, the
copula completely  characterizes the dependence structure of the distribution.   As
the etymology of the word, ‘copula’ suggests, one may view a copula as the glue
that determines how the marginals are joined together. This characterization is
complete, but not necessarily convenient : one may hope that the dependence
structure of the distribution might be adequately specified by a finite number of
real values, corresponding to some measure of concordance. What ‘adequate’
means is obviously a matter of the intended application, and is not easy to
rigorously define.  

II.  Copulas : Some Examples and Basic Results

Many, but not all, of the basic results and examples in two dimensions generalize
to an arbitrary number of dimensions.   For the sake of a concise exposition, the
easy generalizations are left to the reader.

            Examples.  

        1.  The product   copula    A( u , v ) =  uv .
        2.   M( u , v ) = min ( u , v ) .
        3.   W( u , v ) = max ( u + v - 1, 0 ) .

              The last two examples are extremal,  in the following sense  :

Theorem ( Frechet - Hoeffding bounds ) 

            If   C( u, v ) is any copula on   I , then for all ( u, v ) in I ,2 2 

                         W( u, v )  # C( u, v ) # M ( u , v ) 

There are various ways to derive new copulas from old ; for example, it is easy to
see that a convex combination of copulas is a copula.  One method of constructing
entire families of copulas is based on the following result.

          Theorem.  Let  N be a function from ( 0, 1 ] onto the nonnegative reals that  
          is decreasing   and   convex, then C( u , v ) =  N  (  N( u ) +   N( v ) ) is a-1

           copula. 

Such a copula is  called Archimedean ; the function N  is called the  generator of
the copula.



          Examples.

          4.   Taking N( t )   =  - ln ( t ) produces the product copula.

          5.   , gives the Clayton copula :

               

An extensive list of Archimedean copulas and their  corresponding generators is 
given on pp. 94-97 of  Nelson ( 1995 ).

An algorithm for generating random vectors from a continuous distribution with 
specified marginals and a specified copula C is conceptually straightforward.
( More about the breezy phrase ‘conceptually straightforward’ shortly. ) 
The bivariate case indicates the general idea :

Given a pair of random variables ( X, Y ) with specified marginal distributions G
and H, respectively, and a specified copula C( u, v ), one generates observation 
( x , y ) via the following three step procedure :

( 1 )   Generate S, T,  independent random variables, uniform on ( 0 , 1 ) .

            ( 2 )   The conditional distribution function of V given U = u is 
                   
                  

                   - ( Easy exercise to verify this ... )

          Given a pair ( s , t ) from ( 1 ) , take          

                    

             ( 3 )   Take     x = G ( s ) , y = H ( w ) .-1 -1

Some measures of concordance can be given in terms of the copula.
 Most notably :



Theorem : The Pearson correlation coefficient,  D , for a pair ( X , Y ) of    
            continuous random variables may be expressed in terms of the copula :

      

             Theorem : The Kendall’s tau,  J ,  for a pair ( X , Y ) of continuous 
              random variables may be expressed in terms of the copula :

      

                                

Results of this type are useful when one seeks to relate measures of association  to
the parameters defining the copula. To illustrate :

             Example.

The function    C( u, v ) = uv +   2uv( 1 - u )( 1 - v ) defines a copula for values of 
the parameter 2 in the interval   [ -1, 1].  ( This is the Farley-Gumbel-Morgenstern
( FGM ) copula. )  Use the result  quoted one finds  D = 2/3.

III.  Measures of Association, Parameter Matching, and Choosing  a Copula 

 Although the dependence structure of a distribution is completely characterized by
the copula, one may not find this to be the most  convenient  characterization. One
might prefer to think in terms of a finite set of parameters corresponding to some
set of measures of association. ( e.g. the correlation matrix ).  When creating a
synthetic data set one plays a ‘parameter matching game’ in which one chooses the
parameters defining the copula so that the measures of association for the synthetic
data set match the corresponding values for the data set one wishes to copy.  One
hopes that matching these measures of association produces a synthetic copy
adequate to the purposes for which it is intended. 

 
 What some experience, - and experimentation -, reveals is that while the
generalization from the bivariate case to the case of an arbitrary number of
dimensions may be conceptually straightforward, the mass of algebra   required is
formidable.  To some extent these difficulties may be addressed with the
appropriate use of modern software for symbolic manipulation, such as
Mathematica.   However, the issue goes beyond algebraic complexity : the



parameter matching previously described may actually be impossible to achieve,
when, for instance, the number of parameters defining the copula is smaller than
the specified number of  measures of association. As another example of the
potential difficulties in the playing the parameter matching game, note that for
FGM copula, defined above, -1/3  # D # 1/3.

       The Gaussian copula, discussed in the next section, is readily implemented in 
any number of dimensions, and is naturally parameterized  in terms of the
correlation matrix of distribution.   These features are the motivation for starting
our investigation of methods of creating synthetic copies of agricultural data sets
with the Gaussian copula.  Before discussing the Gaussian copula in particular, it is
worthwhile to discuss the general issue of the relationship between measures of
association and the choice of a copula.

    Thinking about the matter on an intuitive level, a pair of random variables may 
exhibit a variety of dependence structures.  High values of one random variable
may be associated with high values of another random variable ( right tail
dependence ) ; or low values of one random variable may be associated with low
values of another random variable ( left tail dependence ).   For some copulas there
is an inherent symmetry, in the sense that right and left tail dependence are
equivalent : e.g.,  the Gaussian and Frank copulas. For other copulas the tail
dependence is asymmetric ; for instance, the Clayton copula exhibits strong left tail
dependence, but weak left tail dependence.  Or perhaps the dependence 
structure is symmetric, but varies in strength ; e.g. tail dependence in which
extreme values of one variable correspond with extreme values of the other
variable. The Gaussian copula, for example, displays stronger tail dependence than
the Frank copula.  Ideally, one should choose a copula which is suited to capture
the particular dependence structures one feels are most vital to preserve.  

          
 Similar remarks hold for a choice for a measure of association.  This is too broad a
subject to go into here. The reader is directed to the discussion based on the notion
of concordance given in Nelsen (  2002. ) A  particular measure of association, 
Kendall’s tau, is discussed there at length, and also in Trivedi ( 2005 ).   However,
some properties of Kendall’s tau are of sufficient interest to justify a ....

        .... Digression.  

      Consider the set of distributions of continuous random variables on   ú  .   An2

equivalence relation may be defined  on this set by defining an equivalence class to
be the set of all distributions having a specified pair of marginal distributions. 
( The Frechet - Hoeffding class. ) It is easy to show that each equivalence class of
distributions has  the cardinality of  ú.   Hence one is led to ask whether there is a
real-valued  measure of association which indexes the set of copulas in some



meaningful way.  A partial answer in the affirmative is provided by  
Kendall’s tau.   Given the natural partial ordering of the set of bivariate copulas

1  2 1  2 1  2defined   by  C  # C    if    C ( u , v )  # C  ( u, v ) for all ( u, v ), then  C  # C  

1  2implies  J  # J  . ( Trivedi ( 2005 ). ) Moreover,   -1  # J   # 1 , and all values in
this interval are achieved ; in particular,  J( W ) = -1 ,  J( M ) = 1 , and J(  A ) = 0. 
Trivedi argues that a desirable feature of a family copulas is that the corresponding
values of Kendall’s tau cover [-1 , 1 ].

IV. The Gaussian Copula 

Definition.

G         Let   N    be the distribution function of a random variable which is N( 0, G ),
where G is the correlation matrix. Let  N be the distribution function for a standard 
normal random variable.  The Gaussian copula is :

         

Note that the Gaussian copula is naturally ‘parameterized’ in terms of the
correlation matrix.   In the particular case m = 2,  for which the family of Gaussian

Dcopulas are parameterized by the correlation D,  the Gaussian copula, C  ,  is the
Frechet - Hoeffding lower bound, W( u, v ) , when D =  -1 ; the Frechet - Hoeffding
upper bound, M( u, v ),  when D =  1 , and the product copula when  D = 0
 Joe ( 1993 ) . 

The Gaussian copula is undoubtedly the most popular choice in current
applications. Note that extensive algebra is not necessary, and one does need to
deal with the copula in explicit form, there is no dimensional restriction, and the
correlation structure is directly set in the copula definition.  This last point is a
weakness as well as a strength -

A  general distribution on  ú  is not uniquely determined by its correlation matrix m

and the m one-dimensional marginals ( See the figure that follows for a graphical 
illustration of this fact. ) That having been said, faced with the problem of 
generating random variates for an arbitrary distribution,  matching the marginals
and correlation structure may often prove to be good enough. Or perhaps not ...A
discussion of the dangers inherent in focusing exclusively on correlation as a
measure of concordance, and an introduction to  alternative, - possibly more
suitable measures -,  is presented in Ebmrechts, et al, ( 1999 ).





The procedure for generating random vectors using a Gaussian copula
 is easily implemented in SAS/IML, and is also easily described :
given a specified correlation matrix  G  and a specified set of marginals ,  

1 m F  ,  þ , F   , the algorithm for generating random variates using a 
 Gaussian copula consists of three steps  :

1 m( 1 )   Generate ( v  ,  þ , v  ) according to a  N( 0, G ) distribution.

1 m i   i( 2 )   Compute  ( u  ,  þ , u  ) , where u =  N ( v  ) ,   1  # i   # m .-1

1 m i   i i( 3 )   Compute  ( x  ,  þ , x  ) , where x = F ( u  ) ,   1  # i   # m -1

( In the application to creating a synthetic copy of a data set, one should
perhaps list a step ( 0 ) : Compute estimates of the marginal distribution and 
the correlation matrix. ) 

Whatever the shortcomings of the Gaussian copula, the ease with which 
it is implemented and its ubiquity in current applications, offer a compelling 
argument for starting a study of copula methods for creating synthetic data sets
with an investigation of the Gaussian copula.

V.  Modeling the Marginal Distributions 

An essential part of any application of copula techniques  to creating synthetic data
sets is modeling the marginal distributions, hence we pause in the general flow of 
the discussion to consider this issue.

One should always be ambitious in ones goals, but still reasonable in those
ambitions: one wishes to have a method of creating synthetic data sets which is
relatively automatic and relatively general - A method that is computationally
feasible only for generating a few dozen  bivariate observations  is clearly
inadequate, but asking for a method to generate millions of records in 
five hundred variables is probably expecting too much.

In many instances the variables observed in agricultural data sets are non-negative, 
and the values tightly packed enough so that it is reasonable to consider the
observations as realizations of a distribution with no atoms, except, possibly, a
positive probability mass at zero. The present investigation will be limited to such
cases.

Parametric modeling of the marginals can be time consuming, and requires expert
knowledge and judgement beyond what is inherent in the data itself.  A  more
automatic and more ‘data-driven’ approach to modeling the marginal distributions
is based on simply interpolating  the sample distribution of the data set one wishes
to copy.



The interpolation method used in the test application described below used cubic 
splines to interpolate the sample distribution function for each variable. 
 A brief outline giving providing some background on cubic splines and its 
use in the present application follows :

The Interpolation Problem : Cubic Splines 

0 1 nGiven a function F  on [ a, b ] with values y  , y  ,   þ , y   at

0 1 n  a =  x  < x  <  þ <  x    = b, respectively,  an approximating  function S  for  F 

i ion [ a , b ] so that  S ( x ) =  y  ,  0 # i   # n , is said to interpolate F.

 In our application the value a corresponds to the minimum observed value of the 
  variable in question ; the value b corresponds to the maximum observed value ;
the function F corresponds to the sample cdf for the variable.

There are an infinity of different schemes for finding an interpolating function, 
and the interpolation problem represents an entire area of applied mathematics.
 A good basic reference on numerical method is Kress ( 1998 ). Chapter 8  
gives an introduction to the interpolation problem. 

Definition 

 A cubic spline   S( x ) is an interpolating function so that on each interval

j j+1[ x  , x  ] ,   0  # j  # n - 1 , 

; 

subject to the conditions : 
                         

i i                             S( x  ) =  y                     ,   0  # j  # n 

j+1                             S(  xj )    =  S (  x  )   ,   1  # j  # n - 2 

j+1                             SN(  xj )    =  SN(  x  )   ,  1  # j  # n - 2 
          

j+1                             SO(  xj )    =  SO(  x  )  ,  1  # j  # n - 2
 

 These conditions presented determine 4n - 2 linear equations in the 4n parameters

j j j jA  , B  , C   , D  .   Additional constraints in the form of end conditions give two
more linear equations, thus giving a unique cubic spline in terms of the solution of 
4n linear equations in the 4n parameters. For example, specifying values for the
first derivative of S( x ) at the endpoints, a and b , gives the clamped spline ;
specifying that the second derivative vanish at the endpoints gives the natural
spline.



j+1 jThe case for which each subinterval has fixed length     x   - x    = h = ( b - a )/n 
the system of 4n defining equations  in the 4n parameters is easy to set up.
However, one must be careful in choosing the number of intervals to be large
enough to achieve a good approximation, but not so large that some intervals
contain no data points.  The increased effort to set up the defining system of
equations aside, it would probably be better to choose the intervals so that each
corresponded to a given value of the sample cumulative distribution function. This  
might also greatly  increase the execution time of corresponding code.

In the application to creating a synthetic copy of  a data set using a Gaussian
copula, the computation of an approximation to F  ( r ) ,   0 <   r < 1,  for a given-1

marginal F, via   S  ( r ) , comes down to :-1

j j+1( 1 )   Finding the index j so that   r is contained in [ y  , y  ] .

j j j+1                         ( 2 )   Solving   S  ( x )   =  r   , for x in  [ x  , x  ] , 
                                  e.g using Newton-Raphson iteration.

As noted before, there is some judgment to be exercised in choosing the number of
intervals for each variable, but the required computations, as implemented using
SAS/IML code, are generally  executed quickly and with few problems.

VI.   The Test Data Set 

For our ‘test’ data set, we drew random samples from a subset of the Illinois farm
operations reporting positive crop land acres  on the 2007 US Census of
Agriculture. Four variables were included in the analysis :

            

            crop land acres. ( x1 ) 
            soybean acres harvested ( x2 )
            corn acres harvested ( x3 )
            winter wheat acres harvested ( x4 )

There were 41,186 records with positive crop land acres ( x1 > 0 ) ; of these,
32,391 were positive for at least one of   x2, x3, and x4.  From this latter set, a
random sample of records was selected as the data set to be ‘copied’.  Of these
32,391 records, 29,416 were positive for x2 ; 26,846 were positive for x3, and
32,075 were positive for at least one of x2 and x3; 7,623 records were positive for
x4.



There are some special constraints associated with this set of variables.  In Illinois,  
soybeans ( but not corn ) are sometimes double cropped after winter wheat. Hence 
if x4 = 0, one must have x2 + x3  #  x1.     If   x4 + x2 + x3  $  x1 then one must
have x4 > 0 and x2 > 0.   Let   y1, y2, y3, y4 denote the respective variable values
for a record in the synthetic data set.  If y4 was zero, and   y2 + y3  $ y1, then y1
was reset to y2 + y3.If y4 was positive, and  y2 + y3  $ y1, but y2 was zero, then y2
was reset to y4, and y1 was reset to y2 + y3 +  y4.  This editing of the synthetic
data set, turned out to be largely a matter of ‘tidying up’: in a synthetic data set of
2000 records, usually only a few dozen failed to meet  these constraints.  

What were the  most successful results, were arguably the least  interesting results
to come out the test.  Briefly : for a sample of size N = 1600-2000, the SAS/IML
code implementing  the computations previously described ran quickly ; the
marginal distributions were faithfully reproduced, as expected, and the sample
correlations in the synthetic data set were not generally significantly different from
the population correlations, - ( although there seemed to be a slight downward bias
for pairs for which one variable had a significant probability mass at zero ( x4 ) ).

The less successful results, are more interesting.  Simple graphical analyses
revealed that some  key features the distribution were not being captured.  ( A
couple of bivariate plots to illustrate this  follow. The second set of graphs gives 
a ‘zoomed in’ view of the real and synthetic data sets near the origin. ) 

Even with these shortcomings, this methodology would certainly produce 
synthetic data sets adequate to many purposes.   Moreover, the range 
of possibilities in terms of the choice of copula and measures of concordance , – 
these possibilities  more and more frequently realized in software packages - , 
encourages one to further explore the application of copula based methodology to 
creating synthetic agricultural data sets.
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