
A Stochastic Search Approach to Solving the Cell
Suppression Problem in 3-Dimensional Hierarchical

Tables

Matt Fetter
 United States Department of Agriculture, National Agricultural Statistics Service,

1400 Independence Avenue, SW, Washington, D.C., 20250

Abstract
Cell suppression is one method that is commonly used to reduce disclosure risk
when data are published in hierarchical tables. A form of optimality is achieved
for 2-dimensional tables by formulating the cell suppression problem as a
minimum cost flow problem. There are issues with this approach in general, and
for its application to 3-dimensional tables in particular. First, cell suppression is
fundamentally an integer programming problem with a non-smooth cost function.
Secondly, the minimum cost flow approach is not directly applicable to 3-
dimensional tables. A stochastic search approach is presented that is guaranteed
to generate closed paths in 3-dimensional tables. Although no claim of optimality
can be made, this method is capable of finding good solutions with respect to the
non-smooth cost function associated with the cell suppression problem.

Key Words: stochastic search, statistical disclosure control, cell suppression.

Introduction

Cell suppression is a statistical disclosure control methodology commonly
employed when data are published in tabular format. In theory, these tables can
be of any dimension >=1. The focus of this paper is on tables containing
magnitude data that are of three dimensions. These tables have three marginal
totals- the row sums, the column sums and the level sums. Only simple tables
with no sub-totals in any of the margins are considered; tables with sub-totals in
one of the margins can be thought of as a linked simple sub-table of the original
table and treated accordingly. Further development will be necessary to handle
these more complicated tables- although the core algorithm should still be directly
applicable without modification. The algorithm will be referred to as Row
Column Level EXchanger or “R-CLEX”.

Each dimension of the table is defined by a set of specific characteristics called
explanatory variables. The axis of each explanatory variable is divided up into
intervals that demarcate different ranges of values for that particular variable.
Table cells are then formed by the intersection of these intervals. The location of
each cell in the table can be identified by a unique 3-tuple, corresponding to the
interval index for each of the 3 dimensions.

Typically, some survey weight is applied to the respondent data in the cell and
summed to give some estimate of the population total for the portion of the target
population that would comprise that particular cell. Marginal totals are obtained
by holding two of the three dimensions fixed and then summing the individual
cell totals across the third.

 Due to the distribution of the respondent data within a cell, it is sometimes
possible for a person analyzing the data to determine a narrow range of possible
values for a particular respondent in the cell. If this range is too narrow, the
creator of the table will deem this as a sensitive cell and will require the contents
of the cell to be suppressed. Instead of the aggregated total, the published table
will simply have a suppression indicator, i.e., a ‘D’ in the sensitive cell. However,
it is generally not sufficient to suppress only the sensitive cell. This is because
table rows, columns, and levels will sum to marginal totals that are also published.

As an example, consider a 1-dimensional table where the marginal total for a
characteristic defining the single dimension of the table is T. The individual cell
totals defined by specific values for this characteristic, say t1, t2, and t3 will sum
to T. Algebraically this is written as T= t1+t2+t3. If t2 is a sensitive cell, it must
be suppressed. We replace t2 with a ‘D’ and write T=t1+D+t3. Clearly, D=T-t1-
t3, so the value in t2 can still be exactly determined. No protection is afforded the
sensitive cell by simply suppressing the sensitive cell. It is therefore necessary to
select an additional cell to suppress. This suppressed cell is referred to as a
“complimentary” suppression. Determining which cells to choose as
complimentary suppressions while maintaining a constrained optimality condition
constitutes the cell suppression problem (CSP).

There are different methods that can be used to solve CSPs. The approach used
depends on how one chooses to model the CSP and the characteristics of the
tables involved. For 2-dimensional tables, a Linear Programming (LP) approach
is often taken. More sophisticated methods model the CSP as an Integer
Programming problem (IP). Some methods can handle 2-dimensional but not 3-
dimensional tables while other methods can handle tables containing relatively
few cells but not large tables with tens of thousands of cells.

A detailed explanation of the theory of how solving the CSP can be used to
reduce the risk of disclosure for tabular data is well known and will not be
described in this paper. Rather, this paper describes a new approach to finding
good solutions for 3-dimensional CSPs using a stochastic search method. The
CSP itself can be understood and appreciated outside the context of statistical
disclosure control without any knowledge of how solving it protects sensitive
cells. It is simply an optimization problem with a discrete cost function and a set
of constraints.

The Model

The 3-dimensional CSP model under discussion will be expressed mathematically
as:

Where:

[] (6) weights)oftor column vec (a
21

T
crlcrlcrl N

wwww ,,=

[] (7) costs)penalty cell-per oftor column vec (a
21

T
crlcrlcrl N

aaaa ,,=

Equation (1) gives the cost function. It is the weighted sum of the suppressed cell
values, plus an arbitrary base per-cell penalty cost. In the most basic set up, the
weights in (6) are set to 1 and the penalty costs in (7) are set to zero for all cells in
the table. The vector of indicator variables,θ , ((2) and again in (8)), defines the
decision vector. Each component of this vector is linked to a unique cell in the
table (5). If the cell in a table needs to be suppressed, its corresponding
component in the decision vector is set to one, otherwise it is set to zero. If there
are N cells in the table, the decision vector contains N components. There are 2N

() () (1) aXwL T += θθmin

distinct possible configurations of this decision vector. Fortunately, most of them

[]

otherwise 0

d)(suppressepath in the included is cell if 1
 level row

column in located cellfor indicator n suppressio
in table cells ofnumber

level
row
column

(8))indicatorsn suppressio oftor column vec (a
21

=

=

=
=
=
=
=

=

nq
lr

cnq
N
l
r
c

qqq

n

n

N

crl

crl

T
crlcrlcrl

,

,

,.......,,θ

(4) constant positive specified a and

(3) 2 2 2
: then1 if

(2) sizepath specified the

,

,,

:..

dx

qqq
q

ts

ncrl

r l
crlcrl

c
crl

crl

T

≥

===

=
=

∑ ∑∑

θθ

[]
()lrcnx

xxxX

n

N

crl

T
crlcrlcrl

,,

,,

at located cell of value

(5) .,
21

=

=

are of no interest because they are not feasible. They are not feasible because
they violate side constraints associated with the CSP.

For 2-dimensional tables, the smallest feasible solution would require suppressing
the sensitive cell and three complimentary cells. This eliminates all configurations
of the decision vector that have fewer than four components set to one. For 3-
dimensional tables, seven complimentary cells are required to protect a sensitive
cell thus requiring a total of eight suppressed cells. Furthermore, feasible
solutions are limited to specific numbers of cells. In three dimensions, feasible
solutions must have a minimum of eight suppressed cells. Larger solutions must
contain an even number of cells, excluding 10 (this might be an interesting
geometric or number theory problem). Feasible solutions that involve a large
number of cells are likely to be of little or no interest.

The constraints placed upon the solution to the CSP are concerned with either the
number of suppressed cells in the feasible solutions allowed (2), or their relative
positions in the table (3). Equations in (3) define a “closed path” and are the key
to assuring that the exact value of the sensitive cell can’t be obtained by applying
a series of subtraction operations using the marginal totals. The positive constant,
d, in (4) relates to the amount of protection required for the sensitive cell. It
assures that the range of possible values that can be determined for the sensitive
cell is sufficiently wide.

All solutions obtained by R-CLEX will be closed paths because it considers the
constraints given in (3) to be mandatory. This set of constraints is the single most
critical aspect concerning protection of sensitive cells. R-CLEX is not forced to
adhere to the protection constraint given in (4), but solutions that violate this
constraint are heavily penalized in terms of cost. This makes it unlikely that R-
CLEX will produce such solutions.

The CSP in the expression given in (1) represents an integer programming
problem. This problem is considered a strongly NP-hard problem, meaning that it
is unlikely that any algorithm could be developed that would be able to find the
optimum solution in any reasonable amount of time in all cases. This implies that
solutions obtained by R-CLEX will most likely not be optimal except for tables
containing sufficiently few cells. Given this fact, the idea is to find good (i.e.,
reasonably inexpensive), feasible solutions using a method that protects against
the possibilities of getting really expensive or infeasible solutions.

R-CLEX is a stochastic search method. Stochastic searches are non-deterministic
because they utilize a random component to how the search is conducted.
Depending on the problem at hand, different runs of the algorithm can produce
different solutions. One of the strengths of stochastic methods is that they can
often find good solutions to problems that are very difficult or impossible for
deterministic analytical methods to solve. In particular, optimization problems

that involve discrete cost functions such as the CSP described in (1) fall in this
category.

The CSP problem as stated above considers only a single sensitive cell. In
practice, a given table is likely to have many sensitive cells. Simply finding the
optimal solution for each sensitive cell separately does not generally result in
minimizing the total cost across all suppressions in the table. It would be ideal to
optimize for all sensitive cells in the table simultaneously. This is a much more
difficult problem for R-CLEX (and many other methods as well).

R-CLEX does employ a heuristic to help it to find a good simultaneous solution
across all sensitive cells. R-CLEX deals with a table one sensitive cell at a time.
A queue is formed based on each sensitive cell’s required protection. The cells
with the largest required protection are handled first; cells with the least required
protection are handled last. After a solution is determined for the first cell,
solutions for all subsequent cells are conditional on the set of cells that are already
suppressed. This technique increases the likelihood that many of the suppressed
cells will be used to help protect multiple sensitive cells simultaneously. This can
result in reducing the overall cost at the table level.

R-CLEX searches for good solutions by exploiting the geometric requirements of
any closed path in three dimensions. Figure 1 shows what a typical 8-cell closed
path in three dimensions might look like.

Level 1

Level 2

Level 3

 Figure 1.

This table has 4 rows, 4 columns and 3 levels. The orange cell represents the
sensitive cell. The blue cells represent the complementary cells. The shaded cells
taken together represent the closed path. Note how the constraints expressed in
(3) would be satisfied by this path.

Figure 2 shows a 12-cell closed path.

 Level 1

 Level 2

 Level 3

 Figure 2.

Again, the constraints in (3) would be satisfied.

The paths can get quite complicated as shown in Figure 3, depicting a 24-cell
closed path in 3 dimensions.

 Level 1

 Level 2

 Level 3

 Figure 3.

Beginning at any suppressed cell, holding any two of the coordinates fixed and
counting across the third will result in exactly two suppressed cells in all cases.
This defines a closed path.

In the author’s limited experience, the 8-cell path is the most important. It tends
to be cheaper simply because it contains fewer cells thus returning lower costs.
However, typically, a table will have many sensitive cells. It is sometimes the
case that sensitive cells can help protect each other if they are included in the
same path. In these situations, the larger more complicated paths can sometimes
be an advantage in helping to reduce the over-all cost of the suppressions across
all sensitive cells.

It is interesting to note that the total number of 3-dimensional 8-cell closed paths
in a 3-dimensional table is relatively small for a single sensitive cell. The number
of such paths given by the following formula:

P3D-8

= (R-1)*(C-1)*(L-1) < N,

where N represents the number of cells in the table, and C, R, and L represents the
number of table columns, rows, and levels, respectively.

This relation implies that a systematic exhaustive search of all possible 8-cell
paths can be manageable until the table gets fairly large. (R-CLEX does not
currently do a systematic search.) A 10 x 20 x 100 table has only about 17,000
such paths for a given sensitive cell, probably within the capabilities of a desktop
computer for dealing with a few sensitive cells. However, the number of closed
3-dimensional paths containing as few as 12 cells explodes and exhaustive
systematic search becomes much more complicated and prohibitively time
consuming. The number of such paths for a 10x20x100 cell table would be over
40 million. The following formula gives the number of 12-cell 3-dimensional
paths in a table for a given sensitive cell.

P3D-12
 (C-1)*(C-2)*(L-1)*(L-2)*(R-1).

= (R-1)*(R-2)*(C-1)*(C-2)*(L-1) + (R-1)*(R-2)*(L-1)*(L-2)*(C-1) +
1

Detail Concerning Closed Path Geometry

The kernel of a path denotes the number of distinct values of the three coordinates
that occur in the path. All 8-cell 3-dimensional closed paths have the kernel
K(2,2,2). This means that each of the coordinates have two distinct values. All
12-cell paths have the kernel K(3,3,2). This means that all 12-cell paths have two
coordinates with 3 distinct values and one coordinate with two distinct values.
The kernel does not imply order i.e., K(3,3,2)≡K(2,3,3). Larger paths can have
multiple kernels for a path of a given size. Paths containing 16 cells can be of one
of two kernels, K(4,4,2) or K(4,3,2).

1 This formula assumes R>=3, C>=3, L>=3.

The configuration of a path gives the ordered distinct values for the coordinates
in the path. All 8-cell paths have a configuration of C(2,2,2). However, 12-cell
paths can have one of three configurations; C(2,3,3), C(3,2,3), or C(3,3,2). The
12-cell path shown below in Figure 4 has a configuration of C(3,3,2) since there
are three distinct columns in the path, three distinct rows, and two distinct levels.

 Level 1

 Level2

 Level 3

 Figure 4.

A 12-cell path with C(2,3,3) is shown below in Figure 5.:

 Level 1

 Level 2

 Level 3

 Figure 5.

The concepts of kernel and configuration have important theoretical and
algorithmic implications for how R-CLEX operates. The key to how R-CLEX
works is that any 3-dimensional closed path of any kernel or configuration is
comprised of a set of distinct components. These components are the columns,
rows, and levels that are involved with the candidate solution path. In Figure 5,
columns 3 and 4 are involved with this path. Likewise, rows 2, 3, and 4 as well as
levels 1, 2, and 3 are involved with the path.

Every iteration of R-CLEX produces a candidate solution. The user specifies the
number of iterations that R-CLEX is to execute. Once the budget of iterations is
exhausted, the least expensive candidate solution is taken as the operational
solution for protecting the sensitive cell being serviced. At each iteration, R-
CLEX will try to improve upon the current solution by first randomly choosing to
make either a row, column or level exchange. This decision is made with equal
probability given to each of the three possible choices. Components that are
involved with the current candidate solution will be referred to as active. All other
rows, columns or levels in the table will be referred to as inactive

If R-CLEX chooses to do a row exchange, for example, then R-CLEX will
evaluate each active row’s contribution to the total cost. Each row’s cost is
computed by holding the row fixed and summing the cell values across all
suppressed cells possessing that row coordinate. The row containing the sensitive
cell is not eligible for selection. The idea is to select with a high probability (but
less than certainty) the active row with the highest cost and release it from the
current solution path. An active row that contains suppressed cell(s) with a value
less than the protection requirement, d, is given a very high cost. Such a row, if it
exists, is very likely to be chosen for release. In a similar manner, R-CLEX will
select (also with a high probability but less than certainty) the cheapest inactive
row as a replacement. Inactive rows that contain cells with values less than d that
are in the necessary positions are given a very high cost and are much less likely
to be chosen as the replacement row. In short, R-CLEX attempts to shed
expensive components and replace them with cheaper components as it iterates.

These exchanges are done in a way that insures that the new candidate solution
adheres to the closed path constraint and also has a high probability of meeting
the protection constraint. A closed path is maintained for a row exchange by
simply changing the row coordinate of each cell in the selected row of the current
path to the row coordinate of the replacement row, keeping the other two
coordinates fixed. Column and level exchanges are accomplished in a similar
manner, fixing the row and level coordinates, or the row and column coordinates,
respectively.

The next figures show a row exchange, releasing row 3 in Figure 6a, and
replacing it with row 1 in Figure 6b.

Iteration r

Iteration r+1

 Figure 6a. Figure 6b.

It is important that R-CLEX has the potential to explore the entire space of
feasible solutions of a given path size. Row, column, and level exchanges are
sufficient to explore the entire space of 8-cell solutions because all such solutions
have the same kernel and configuration. However, solutions with larger path sizes
can be found in more than one configuration. Row, column and level exchanges
alone will never allow solutions to move across configurations. Configuration
changes require coordinate scrambling. This is easily accomplished and can best
be explained by an example.

 (2,2,1) (3,2,1) Level 1

 (2,3,1) (3,3,1)

 (2,2,2) (3,2,2) Level 2

 (2,4,2) (3,4,2)

 Level 3

 (2,3,3) (3,3,3)
 (2,4,3) (3,4,3)
 Figure 7.

The path shown above in Figure 7 is a C(2,3,3) 12-cell path. This path can be
translated to a C(3,2,3) 12-cell path by switching the row and column coordinates
for each cell in the path, resulting in a solution that looks like this:

 (2,2,1) (3,2,1) Level 1

 (2,3,1) (3,3,1)

 (2,2,2) (4,2,2) Level 2

 (2,3,2) (4,3,2)

 (3,2,3) (4,2,3) Level 3

 (3,3,3) (4,3,3)

 Figure 8.

The resulting solution is C(3,2,3) as desired.

Many solution paths that are larger than 12-cells, i.e., 16-cell paths, have multiple
kernels as well as multiple configurations for each kernel. Coordinate scrambling
will not translate a 16-cell path of K(4,4,2) to one of K(4,3,2). If a user wants to
consider all 16-cell paths, R-CLEX must be initialized with a 16-cell path of each
kernel.

Currently, R-CLEX is initialized with two arbitrary closed paths of user specified
lengths and kernels. The lengths of these paths can be the same or different,
depending on what the user desires. These initial paths are supplied by a
permanent library of closed paths with path lengths ranging from 8 to as many as
38 cells, with multiple kernels available for each path length. The library is
produced by a different algorithm that generates 3-dimensional closed paths on
the fly. Once the library is created, it can be stored on disk and accessed as
needed.

Experience has shown that initial paths of 8 and 12 cells seem to be good choices
for finding good solutions. R-CLEX produces two candidate solutions at every
iteration, one for each path size/kernel specified. If the two initial path lengths are
the same, two candidate solutions are still produced, both the same length. In
either case, the path that is cheaper is retained as the iteration’s representative
candidate solution and the more expensive solution is discarded. In this way, R-
CLEX can explore paths of different lengths simultaneously when searching for
solutions.

A Few Simulation Results

An artificial 121 x 25 x 10 table was populated with zeroes and positive integer
values. Approximately 15% of the cells contained a zero value. Fifty cells were
chosen to represent sensitive cells. These were scattered around the table.
Assigned protection requirements ranged from d =2 to d= 3,000 units. Recall the
constraint given by (4) requires that the cell values in the path must at least equal
d. In general, this causes paths protecting cells that require greater protection to
be more expensive. The cost function used in the evaluations is given in (1) with
weights, w, set to 1 and the per-cell penalty, a, set to zero for all cells.

The performance of R-CLEX is compared to a constrained, blind random search
(CBRS). The CBRS is performed by R-CLEX, but with the R-CLEX
“optimizing” strategy disabled. This means that CBRS is still a fairly
sophisticated and possibly useful method to solve the CSP. It will always produce
closed path solutions. By disabling the “optimizer”, CBRS takes less time per
iteration. This is because CBRS omits the cost analysis step that is required by the
R-CLEX “optimizer”. CBRS makes all search decisions randomly with equal
probability. It makes no special effort to release the most expensive component
from the current candidate solution, and makes no special effort to find the least
expensive, inactive component to use as a replacement. This comparison gives
some insight into the effectiveness of the optimization strategy used by R-CLEX.
One would expect CBRS to take more iterations than R-CLEX to obtain
comparable solutions. The main interest is to determine if R-CLEX is
significantly faster than CBRS in terms of wall clock run time.

0

20000

40000

60000

80000

100000

120000

140000

160000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

opt n=100

random n=200

random n=6000

Solution Cost for Each of 50 Sensitive Cells
Opt: n=100 CBRS: n=200 n=6,000

Sensitive Cell # 1 - 25

8 Cell Solutions

Table Cell Count= 30,250COST

 Graph 1a.

Solution Cost for Each of 50 Sensitive Cells
Opt: n=100 CBRS: n=200, 6,000

Sensitive Cell # 25 - 50

Total Cost

8 Cell Solutions

0

1000

2000

3000

4000

5000

6000

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

opt n=100

random n=200

random n=6000

App. Run Time: Opt n=100 : 85 minutes

CBRS n=6,000 : 245 minutes

 Graph 1b.

By examining Graph 1a and Graph 1b above, one can see that in general, R-
CLEX (Opt) requires just a small fraction of the iterations, and about one-third the
time CBRS (random) uses to obtain comparable solutions for this set of problems.
The relative performance of R-CLEX to CBRS will vary depending on the
particular problem being investigated as will be seen in the next test problem.

In the next test, the qualities of the solutions that are produced by R-CLEX are
examined. A 121 x 25 x 10 table was set up and then populated with zero cells.
A very small number (less than 20) of these zero cells were changed to positive
values in such a way as to define a sensitive cell and a few 12-cell closed paths
that could be used to sufficiently protect it. This is a “find the needle in the
haystack” type of problem. R-CLEX had no trouble solving this problem
consistently giving full protection using only 100 iterations. CBRS was never
successful at finding a path that did not contain some zero cells (meaning the path
failed to provide sufficient protection to the sensitive cell), even after 100,000
iterations. In some ways, this is not surprising given that there are millions of 12-
cell paths in this table and only the tiniest fraction of them are any good.

In another test, a 10 x 10 x 4 table was created and populated with positive integer
values. One cell was designated as the sensitive cell requiring an arbitrary (but
sensible) amount of protection. Some limited testing of the quality of R-CLEX
solutions is obtained by examining the distribution of solutions obtained by 200
independent 200 iteration runs and comparing this distribution to the known
optimal solution of 5,742. This can be compared to results obtained by CBRS
using 200 independent 4,000 iteration runs.

Optimal: n=200 CBRS: n=4,000

Single Sensitive Cell: 12 cell Minimum Cost: 5,742

BEST SOLUTION DISTRIBUTION- Single Sensitive Cell
Mean Cost: 6,864 Mean Cost: 7,82712 Cell Solutions

Graph 2.

Graph 2 gives the cost (horizontal axis) frequency distribution with R-CLEX on
the left and CBRS on the right. Even the most expensive solutions displayed in
Graph 2 are very inexpensive compared to the cost of the large majority of other
paths that could be found in the table.

Concluding Remarks

Today, there are many alternatives to using cell suppression for the management
of disclosure risk in tabular data. Controlled tabular adjustment (CTA), various
perturbation methods, and synthetic data are some examples. However, cell
suppression is still a standard method for limiting disclosure risk for tabular data.

There are numerous other strategies available for solving CSPs in three or more
dimensions such as one developed by Fischetti and Salazar-Gonzalez (2001). This
powerful and mathematically sophisticated method is implemented in the
software package, tau-ARGUS.

R-CLEX provides an interesting example of how stochastic search can be applied
successfully to the CSP. It is the only stochastic search method known to the
author that can find CSP solutions of any feasible path length. The method is
simple and straight forward. It lends itself to parallel processing for increasing
speed and enhancing performance. A mathematical formulation of the geometric
qualities of a closed path is incorporated into the constraints of the model for

which R-CLEX obtains solutions. The general geometric properties of 3-
dimensional closed paths are developed and are at the heart of the algorithm.

R-CLEX does not create closed paths on the fly (this seems to be a pretty tricky-
and relatively inefficient approach) but is initialized with a closed path obtained
from a static library of closed paths with desired size and kernel. This library is
produced by a one-time run of an accompanying heuristic-based generator
algorithm that creates closed paths from scratch. Paths containing 8, 12, and 14
cells have only one kernel, and initial paths with these lengths can easily be
created “by hand”. Larger paths will probably have multiple kernels. The
generator program is recommended to create the larger paths for initializing R-
CLEX.

R-CLEX and the generator algorithm are written in SAS®

 using the IML
procedure and can run on a desktop computer. It is not yet, however, a finished
product. Only simple hierarchical tables without row sub-totals can currently be
handled by R-CLEX, although this is a limitation of the infrastructure surrounding
the R-CLEX core algorithm and not the algorithm itself. Further development for
handling more complicated 3-dimensional tables is ongoing.

References

Cox, L.H. (1995). Protecting confidentiality in business surveys. In Business
Survey Methods Edited by: Cox, B.G., Binder, D.A., Chinnappa, B.N.,
Christianson, A., Colledge, M.J., Kott, P.S. (pp.443-473). New York, NY: John
Wiley and Sons, Inc.

Fischetti, M. and Salazar-Gonzalez, J. J. (2001). Models and algorithms for
optimizing cell suppression in tabular data with constraints. Management Science,
47(7), 1008-1027.

Massell, P. B. (2002). Optimization models and programs for cell suppression in
statistical tables. Joint Statistical Meetings.

Spall, J.C. (2003). Introduction to stochastic search and optimization:-
estimation, simulation, and control. Hoboken, NJ: John Wiley and Sons, Inc.

