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Abstract 
Cell suppression is one method that is commonly used to reduce disclosure risk 
when data are published in hierarchical tables. A form of optimality is achieved 
for 2-dimensional tables by formulating the cell suppression problem as a 
minimum cost flow problem.  There are issues with this approach in general, and 
for its application to 3-dimensional tables in particular. First, cell suppression is 
fundamentally an integer programming problem with a non-smooth cost function.   
Secondly, the minimum cost flow approach is not directly applicable to 3-
dimensional tables.  A stochastic search approach is presented that is guaranteed 
to generate closed paths in 3-dimensional tables.  Although no claim of optimality 
can be made, this method is capable of finding good solutions with respect to the 
non-smooth cost function associated with the cell suppression problem. 
 
Key Words: stochastic search, statistical disclosure control, cell suppression. 
 

Introduction 
 
Cell suppression is a statistical disclosure control methodology commonly 
employed when data are published in tabular format.  In theory, these tables can 
be of any dimension >=1.  The focus of this paper is on tables containing 
magnitude data that are of three dimensions. These tables have three marginal 
totals- the row sums, the column sums and the level sums.  Only simple tables 
with no sub-totals in any of the margins are considered; tables with sub-totals in 
one of the margins can be thought of as a linked simple sub-table of the original 
table and treated accordingly.  Further development will be necessary to handle 
these more complicated tables- although the core algorithm should still be directly 
applicable without modification.  The algorithm will be referred to as Row 
Column Level EXchanger or “R-CLEX”. 
 
Each dimension of the table is defined by a set of specific characteristics called 
explanatory variables.  The axis of each explanatory variable is divided up into 
intervals that demarcate different ranges of values for that particular variable.  
Table cells are then formed by the intersection of these intervals.  The location of 
each cell in the table can be identified by a unique 3-tuple, corresponding to the 
interval index for each of the 3 dimensions. 
 



Typically, some survey weight is applied to the respondent data in the cell and 
summed to give some estimate of the population total for the portion of the target 
population that would comprise that particular cell.  Marginal totals are obtained 
by holding two of the three dimensions fixed and then summing the individual 
cell totals across the third. 
  
 Due to the distribution of the respondent data within a cell, it is sometimes 
possible for a person analyzing the data to determine a narrow range of possible 
values for a particular respondent in the cell. If this range is too narrow, the 
creator of the table will deem this as a sensitive cell and will require the contents 
of the cell to be suppressed.  Instead of the aggregated total, the published table 
will simply have a suppression indicator, i.e., a ‘D’ in the sensitive cell. However, 
it is generally not sufficient to suppress only the sensitive cell. This is because 
table rows, columns, and levels will sum to marginal totals that are also published.  
 
As an example, consider a 1-dimensional table where the marginal total for a 
characteristic defining the single dimension of the table is T.  The individual  cell 
totals defined by specific values for this characteristic, say t1, t2, and t3 will sum 
to T. Algebraically this is written as T= t1+t2+t3.  If t2 is a sensitive cell, it must 
be suppressed.  We replace t2 with a ‘D’ and write T=t1+D+t3.  Clearly, D=T-t1-
t3, so the value in t2 can still be exactly determined. No protection is afforded the 
sensitive cell by simply suppressing the sensitive cell.  It is therefore necessary to 
select an additional cell to suppress. This suppressed cell is referred to as a 
“complimentary” suppression. Determining which cells to choose as 
complimentary suppressions while maintaining a constrained optimality condition 
constitutes the cell suppression problem (CSP).   
 
There are different methods that can be used to solve CSPs.   The approach used 
depends on how one chooses to model the CSP and the characteristics of the 
tables involved.  For 2-dimensional tables, a Linear Programming (LP) approach 
is often taken.  More sophisticated methods model the CSP as an Integer 
Programming problem (IP).  Some methods can handle 2-dimensional but not 3-
dimensional tables while other methods can handle tables containing relatively 
few cells but not large tables with tens of thousands of cells.   
 
A detailed explanation of the theory of how solving the CSP can be used to 
reduce the risk of disclosure for tabular data is well known and will not be 
described in this paper. Rather, this paper describes a new approach to finding 
good solutions for 3-dimensional CSPs using a stochastic search method.  The 
CSP itself can be understood and appreciated outside the context of statistical 
disclosure control without any knowledge of how solving it protects sensitive 
cells.  It is simply an optimization problem with a discrete cost function and a set 
of constraints.  
 

 
 



The Model 
 
The 3-dimensional CSP model under discussion will be expressed mathematically 
as: 
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Equation (1) gives the cost function. It is the weighted sum of the suppressed cell 
values, plus an arbitrary base per-cell penalty cost.  In the most basic set up, the 
weights in (6) are set to 1 and the penalty costs in (7) are set to zero for all cells in 
the table. The vector of indicator variables,θ , ((2) and again in (8)), defines the 
decision vector.  Each component of this vector is linked to a unique cell in the 
table (5).  If the cell in a table needs to be suppressed, its corresponding 
component in the decision vector is set to one, otherwise it is set to zero.  If there 
are N cells in the table, the decision vector contains N components.  There are 2N
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distinct possible configurations of this decision vector.   Fortunately, most of them 
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are of no interest because they are not feasible.  They are not feasible because 
they violate side constraints associated with the CSP.  
 
For 2-dimensional tables, the smallest feasible solution would require suppressing 
the sensitive cell and three complimentary cells. This eliminates all configurations 
of the decision vector that have fewer than four components set to one.  For 3-
dimensional tables, seven complimentary cells are required to protect a sensitive 
cell thus requiring a total of eight suppressed cells. Furthermore, feasible 
solutions are limited to specific numbers of cells.  In three dimensions, feasible 
solutions must have a minimum of eight suppressed cells. Larger solutions must 
contain an even number of cells, excluding 10 (this might be an interesting 
geometric or number theory problem).  Feasible solutions that involve a large 
number of cells are likely to be of little or no interest. 
 

The constraints placed upon the solution to the CSP are concerned with either the 
number of suppressed cells in the feasible solutions allowed (2), or their relative 
positions in the table (3).  Equations in (3) define a “closed path” and are the key 
to assuring that the exact value of the sensitive cell can’t be obtained by applying 
a series of subtraction operations using the marginal totals.  The positive constant, 
d, in (4) relates to the amount of protection required for the sensitive cell. It 
assures that the range of possible values that can be determined for the sensitive 
cell is sufficiently wide.  

All solutions obtained by R-CLEX will be closed paths because it considers the 
constraints given in (3) to be mandatory. This set of constraints is the single most 
critical aspect concerning protection of sensitive cells. R-CLEX is not forced to 
adhere to the protection constraint given in (4), but solutions that violate this 
constraint are heavily penalized in terms of cost.  This makes it unlikely that R-
CLEX will produce such solutions. 

The CSP in the expression given in (1) represents an integer programming 
problem. This problem is considered a strongly NP-hard problem, meaning that it 
is unlikely that any algorithm could be developed that would be able to find the 
optimum solution in any reasonable amount of time in all cases.  This implies that 
solutions obtained by R-CLEX will most likely not be optimal except for tables 
containing sufficiently few cells. Given this fact, the idea is to find good (i.e., 
reasonably inexpensive), feasible solutions using a method that protects against 
the possibilities of getting really expensive or infeasible solutions. 
 
R-CLEX is a stochastic search method.  Stochastic searches are non-deterministic 
because they utilize a random component to how the search is conducted. 
Depending on the problem at hand, different runs of the algorithm can produce 
different solutions. One of the strengths of stochastic methods is that they can 
often find good solutions to problems that are very difficult or impossible for 
deterministic analytical methods to solve. In particular, optimization problems 



that involve discrete cost functions such as the CSP described in (1) fall in this 
category. 
 
The CSP problem as stated above considers only a single sensitive cell.  In 
practice, a given table is likely to have many sensitive cells. Simply finding the 
optimal solution for each sensitive cell separately does not generally result in 
minimizing the total cost across all suppressions in the table.  It would be ideal to 
optimize for all sensitive cells in the table simultaneously.  This is a much more 
difficult problem for R-CLEX (and many other methods as well).   

R-CLEX does employ a heuristic to help it to find a good simultaneous solution 
across all sensitive cells. R-CLEX deals with a table one sensitive cell at a time.   
A queue is formed based on each sensitive cell’s required protection. The cells 
with the largest required protection are handled first; cells with the least required 
protection are handled last.  After a solution is determined for the first cell, 
solutions for all subsequent cells are conditional on the set of cells that are already 
suppressed.  This technique increases the likelihood that many of the suppressed 
cells will be used to help protect multiple sensitive cells simultaneously.  This can 
result in reducing the overall cost at the table level. 
 
R-CLEX searches for good solutions by exploiting the geometric requirements of 
any closed path in three dimensions. Figure 1 shows what a typical 8-cell closed 
path in three dimensions might look like. 
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                              Figure 1. 

 
This table has 4 rows, 4 columns and 3 levels.  The orange cell represents the 
sensitive cell.  The blue cells represent the complementary cells.  The shaded cells 
taken together represent the closed path.  Note how the constraints expressed in 
(3) would be satisfied by this path.   



 
Figure 2 shows a 12-cell closed path.  
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                          Figure 2. 

 
Again, the constraints in (3) would be satisfied.  
 
The paths can get quite complicated as shown in Figure 3, depicting a 24-cell 
closed path in 3 dimensions. 
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Beginning at any suppressed cell, holding any two of the coordinates fixed and 
counting across the third will result in exactly two suppressed cells in all cases.  
This defines a closed path. 
 
In the author’s limited experience, the 8-cell path is the most important.  It tends 
to be cheaper simply because it contains fewer cells thus returning lower costs.  
However, typically, a table will have many sensitive cells.  It is sometimes the 
case that sensitive cells can help protect each other if they are included in the 
same path.  In these situations, the larger more complicated paths can sometimes 
be an advantage in helping to reduce the over-all cost of the suppressions across 
all sensitive cells.  
 
It is interesting to note that the total number of 3-dimensional 8-cell closed paths 
in a 3-dimensional table is relatively small for a single sensitive cell.  The number 
of such paths given by the following formula: 
 
P3D-8
 

= (R-1)*(C-1)*(L-1) < N,  

where N represents the number of cells in the table, and C, R, and L represents the 
number of table columns, rows, and levels, respectively.  
 
This relation implies that a systematic exhaustive search of all possible 8-cell 
paths can be manageable until the table gets fairly large. (R-CLEX does not 
currently do a systematic search.)  A 10 x 20 x 100 table has only about 17,000 
such paths for a given sensitive cell, probably within the capabilities of a desktop 
computer for dealing with a few sensitive cells.  However, the number of closed 
3-dimensional paths containing as few as 12 cells explodes and exhaustive 
systematic search becomes much more complicated and prohibitively time 
consuming. The number of such paths for a 10x20x100 cell table would be over 
40 million.  The following formula gives the number of 12-cell 3-dimensional 
paths in a table for a given sensitive cell.  
 
P3D-12
            (C-1)*(C-2)*(L-1)*(L-2)*(R-1).

= (R-1)*(R-2)*(C-1)*(C-2)*(L-1) + (R-1)*(R-2)*(L-1)*(L-2)*(C-1) + 
1

 
 

Detail Concerning Closed Path Geometry 
 
The kernel of a path denotes the number of distinct values of the three coordinates 
that occur in the path.  All 8-cell 3-dimensional closed paths have the kernel 
K(2,2,2).  This means that each of the coordinates have two distinct values. All 
12-cell paths have the kernel K(3,3,2). This means that all 12-cell paths have two 
coordinates with 3 distinct values and one coordinate with two distinct values. 
The kernel does not imply order i.e., K(3,3,2)≡K(2,3,3).  Larger paths can have 
multiple kernels for a path of a given size. Paths containing 16 cells can be of one 
of two kernels, K(4,4,2) or K(4,3,2).   
                                                 
1 This formula assumes R>=3, C>=3, L>=3. 



 
The configuration of a path gives the ordered distinct values for the coordinates 
in the path.  All 8-cell paths have a configuration of C(2,2,2).   However, 12-cell 
paths can have one of three configurations; C(2,3,3), C(3,2,3), or C(3,3,2).  The 
12-cell path shown below in Figure 4 has a configuration of C(3,3,2) since there 
are three distinct columns in the path, three distinct rows, and two distinct levels.  
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A 12-cell path with C(2,3,3) is shown below in Figure 5.: 
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The concepts of kernel and configuration have important theoretical and 
algorithmic implications for how R-CLEX operates. The key to how R-CLEX 
works is that any 3-dimensional closed path of any kernel or configuration is 
comprised of a set of distinct components. These components are the columns, 
rows, and levels that are involved with the candidate solution path.  In Figure 5, 
columns 3 and 4 are involved with this path.  Likewise, rows 2, 3, and 4 as well as 
levels 1, 2, and 3 are involved with the path.  
 
Every iteration of R-CLEX produces a candidate solution.  The user specifies the 
number of iterations that R-CLEX is to execute. Once the budget of iterations is 
exhausted, the least expensive candidate solution is taken as the operational 
solution for protecting the sensitive cell being serviced.  At each iteration, R-
CLEX will try to improve upon the current solution by first randomly choosing to 
make either a row, column or level exchange. This decision is made with equal 
probability given to each of the three possible choices. Components that are 
involved with the current candidate solution will be referred to as active. All other 
rows, columns or levels in the table will be referred to as inactive 
 
If R-CLEX chooses to do a row exchange, for example, then R-CLEX will 
evaluate each active row’s contribution to the total cost.  Each row’s cost is 
computed by holding the row fixed and summing the cell values across all 
suppressed cells possessing that row coordinate. The row containing the sensitive 
cell is not eligible for selection.  The idea is to select with a high probability (but 
less than certainty) the active row with the highest cost and release it from the 
current solution path. An active row that contains suppressed cell(s) with a value 
less than the protection requirement, d, is given a very high cost. Such a row, if it 
exists, is very likely to be chosen for release.  In a similar manner, R-CLEX will 
select (also with a high probability but less than certainty) the cheapest inactive 
row as a replacement.  Inactive rows that contain cells with values less than d that 
are in the necessary positions are given a very high cost and are much less likely 
to be chosen as the replacement row.  In short, R-CLEX attempts to shed 
expensive components and replace them with cheaper components as it iterates.  
 
These exchanges are done in a way that insures that the new candidate solution 
adheres to the closed path constraint and also has a high probability of meeting 
the protection constraint. A closed path is maintained for a row exchange by 
simply changing the row coordinate of each cell in the selected row of the current 
path to the row coordinate of the replacement row, keeping the other two 
coordinates fixed. Column and level exchanges are accomplished in a similar 
manner, fixing the row and level coordinates, or the row and column coordinates, 
respectively. 
 
The next figures show a row exchange, releasing row 3 in Figure 6a, and 
replacing it with row 1 in Figure 6b.  
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        Figure 6a.                                                 Figure 6b. 
 
It is important that R-CLEX has the potential to explore the entire space of 
feasible solutions of a given path size. Row, column, and level exchanges are 
sufficient to explore the entire space of 8-cell solutions because all such solutions 
have the same kernel and configuration. However, solutions with larger path sizes 
can be found in more than one configuration. Row, column and level exchanges 
alone will never allow solutions to move across configurations.  Configuration 
changes require coordinate scrambling.  This is easily accomplished and can best 
be explained by an example.         
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The path shown above in Figure 7 is a C(2,3,3) 12-cell path. This path can be 
translated to a C(3,2,3) 12-cell path by switching the row and column coordinates 
for each cell in the path, resulting in a solution that looks like this: 
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                          Figure 8. 

 
The resulting solution is C(3,2,3) as desired. 
 
Many solution paths that are larger than 12-cells, i.e., 16-cell paths, have multiple 
kernels as well as multiple configurations for each kernel. Coordinate scrambling 
will not translate a 16-cell path of K(4,4,2) to one of K(4,3,2). If a user wants to 
consider all 16-cell paths, R-CLEX must be initialized with a 16-cell path of each 
kernel.  
 
Currently, R-CLEX is initialized with two arbitrary closed paths of user specified 
lengths and kernels.  The lengths of these paths can be the same or different, 
depending on what the user desires. These initial paths are supplied by a 
permanent library of closed paths with path lengths ranging from 8 to as many as 
38 cells, with multiple kernels available for each path length. The library is 
produced by a different algorithm that generates 3-dimensional closed paths on 
the fly. Once the library is created, it can be stored on disk and accessed as 
needed. 
  
Experience has shown that initial paths of 8 and 12 cells seem to be good choices 
for finding good solutions. R-CLEX produces two candidate solutions at every 
iteration, one for each path size/kernel specified. If the two initial path lengths are 
the same, two candidate solutions are still produced, both the same length.  In 
either case, the path that is cheaper is retained as the iteration’s representative 
candidate solution and the more expensive solution is discarded. In this way, R-
CLEX can explore paths of different lengths simultaneously when searching for 
solutions. 



A Few Simulation Results 
 
An artificial 121 x 25 x 10 table was populated with zeroes and positive integer 
values. Approximately 15% of the cells contained a zero value.  Fifty cells were 
chosen to represent sensitive cells. These were scattered around the table. 
Assigned protection requirements ranged from d =2 to d= 3,000 units.  Recall the 
constraint given by (4) requires that the cell values in the path must at least equal 
d.  In general, this causes paths protecting cells that require greater protection to 
be more expensive.  The cost function used in the evaluations is given in (1) with 
weights, w, set to 1 and the per-cell penalty, a, set to zero for all cells.   
 
The performance of R-CLEX is compared to a constrained, blind random search 
(CBRS).  The CBRS is performed by R-CLEX, but with the R-CLEX 
“optimizing” strategy disabled. This means that CBRS is still a fairly 
sophisticated and possibly useful method to solve the CSP. It will always produce 
closed path solutions. By disabling the “optimizer”, CBRS takes less time per 
iteration. This is because CBRS omits the cost analysis step that is required by the 
R-CLEX “optimizer”. CBRS makes all search decisions randomly with equal 
probability. It makes no special effort to release the most expensive component 
from the current candidate solution, and makes no special effort to find the least 
expensive, inactive component to use as a replacement. This comparison gives 
some insight into the effectiveness of the optimization strategy used by R-CLEX. 
One would expect CBRS to take more iterations than R-CLEX to obtain 
comparable solutions. The main interest is to determine if R-CLEX is 
significantly faster than CBRS in terms of wall clock run time.
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           Graph 1b. 
 
By examining Graph 1a and Graph 1b above, one can see that in general, R-
CLEX (Opt) requires just a small fraction of the iterations, and about one-third the 
time CBRS (random) uses to obtain comparable solutions for this set of problems. 
The relative performance of R-CLEX to CBRS will vary depending on the 
particular problem being investigated as will be seen in the next test problem. 
 
In the next test, the qualities of the solutions that are produced by R-CLEX are 
examined.  A 121 x 25 x 10 table was set up and then populated with zero cells.  
A very small number (less than 20) of these zero cells were changed to positive 
values in such a way as to define a sensitive cell and a few 12-cell closed paths 
that could be used to sufficiently protect it.  This is a “find the needle in the 
haystack” type of problem. R-CLEX had no trouble solving this problem 
consistently giving full protection using only 100 iterations.  CBRS was never 
successful at finding a path that did not contain some zero cells (meaning the path 
failed to provide sufficient protection to the sensitive cell), even after 100,000 
iterations. In some ways, this is not surprising given that there are millions of 12-
cell paths in this table and only the tiniest fraction of them are any good.   
 
In another test, a 10 x 10 x 4 table was created and populated with positive integer 
values. One cell was designated as the sensitive cell requiring an arbitrary (but 
sensible) amount of protection. Some limited testing of the quality of R-CLEX 
solutions is obtained by examining the distribution of solutions obtained by 200 
independent 200 iteration runs and comparing this distribution to the known 
optimal solution of 5,742. This can be compared to results obtained by CBRS 
using 200 independent 4,000 iteration runs. 
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Graph 2. 
 
Graph 2 gives the cost (horizontal axis) frequency distribution with R-CLEX on 
the left and CBRS on the right.  Even the most expensive solutions displayed in 
Graph 2 are very inexpensive compared to the cost of the large majority of other 
paths that could be found in the table.  
 

Concluding Remarks 
 
Today, there are many alternatives to using cell suppression for the management 
of disclosure risk in tabular data.  Controlled tabular adjustment (CTA), various 
perturbation methods, and synthetic data are some examples.  However, cell 
suppression is still a standard method for limiting disclosure risk for tabular data.  
 
There are numerous other strategies available for solving CSPs in three or more 
dimensions such as one developed by Fischetti and Salazar-Gonzalez (2001). This 
powerful and mathematically sophisticated method is implemented in the 
software package, tau-ARGUS.    
 
R-CLEX provides an interesting example of how stochastic search can be applied 
successfully to the CSP.  It is the only stochastic search method known to the 
author that can find CSP solutions of any feasible path length.  The method is 
simple and straight forward.  It lends itself to parallel processing for increasing 
speed and enhancing performance. A mathematical formulation of the geometric 
qualities of a closed path is incorporated into the constraints of the model for 



which R-CLEX obtains solutions.  The general geometric properties of 3-
dimensional closed paths are developed and are at the heart of the algorithm.   
 
R-CLEX does not create closed paths on the fly (this seems to be a pretty tricky- 
and relatively inefficient approach) but is initialized with a closed path obtained 
from a static library of closed paths with desired size and kernel.  This library is 
produced by a one-time run of an accompanying heuristic-based generator 
algorithm that creates closed paths from scratch.  Paths containing 8, 12, and 14 
cells have only one kernel, and initial paths with these lengths can easily be 
created “by hand”.  Larger paths will probably have multiple kernels.  The 
generator program is recommended to create the larger paths for initializing R-
CLEX.  
 
R-CLEX and the generator algorithm are written in SAS®

 

 using the IML 
procedure and can run on a desktop computer.  It is not yet, however, a finished 
product.  Only simple hierarchical tables without row sub-totals can currently be 
handled by R-CLEX, although this is a limitation of the infrastructure surrounding 
the R-CLEX core algorithm and not the algorithm itself.  Further development for 
handling more complicated 3-dimensional tables is ongoing.  
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