Summary of DOE's Monitoring, Mitigation, and Verification Program and Modeling Program

Monitoring, Mitigation, and Verification

Modeling

Dawn Marie Deel Project Manager Carbon Sequestration Program

09/26/2007

National Energy Technology Laboratory

Monitoring, Mitigation & Verification (MM&V)

Monitoring and Verification

- Ability to measure the amount of CO₂ stored at a particular site
- Monitor the site for leaks
- Track the location of underground CO₂ plume
- Verify that the CO₂ is stored in a way that is permanent and not harmful to the host ecosystem

Mitigation

 Near-term ability to respond to risks such as CO₂ leakage or ecological damage in the unlikely event that it should occur

Modeling

Modeling

- Simulating the underground conditions that influence the behavior of CO₂ injected into geologic formations
- Characterizing any resulting geomechanical changes to the reservoir

Critical in ensuring the long-term viability of carbon capture and storage (CCS) systems

Satisfying both technical and regulatory requirements

Goals

MM&V goals focus on ensuring permanence, which support the overarching Program goal of achieving 90% carbon capture with 99% storage permanence

Monitoring, Mitigation, and Verification

Geologic Formations

- CO2 fate and transport models – simulating underground conditions that influence behavior of CO2
- Plume tracking map injected CO₂ and track its movement
- CO2 leak detection critical measurements of whether CO2 is escaping from storage reservoir
- Mitigation- steps to be taken to arrest the flow of CO₂ and mitigate the impacts

Terrestrial Ecosystems

- Organic matter
 measurement reducing
 cost for measuring carbon
 in terrestrial ecosystems
 and analyzing soil samples
- Soil carbon measurement automated technologies for measuring soil carbon
- Modeling extrapolating results of carbon uptake activities from random samples to entire plots for estimating net increase in carbon

Modeling

- Enables researchers to predict how CO₂ plumes will flow and become hydrodynamically trapped in the short term and to understand the effects of chemical reactions (and other mechanisms) that will immobilize CO₂ over the longer term
- Helps operators reduce the risks associated with inducing fractures in caprock and reactivating faults during injection
- Engenders confidence that injected CO₂ will remain securely stored before injection commences
- Examines potential pathways that fugitive CO₂ may follow

Geologic Model of Coal Seam Developed by NETL

Plume Tracking

- Ability to "map" the injected CO₂ and track its movement and fate through a reservoir
- Assures storage permanence

- Key technologies for plume tracking:
 - Seismic surveys (e.g., 4-D seismic, time-lapse vertical seismic profiling)
 - Sampling from wells (borehole logging)

Plume Detection at Vertical Injection Site

ZERT EW PREINJECTION

 Resistivity surveys

 East/West surveys (performed for 2 hours)

Montana State
 University,
 Bozeman, MT –
 ZERT Project
 Site

Leak Detection

- Backstop for modeling and plume tracking
- Provides critical measures of whether CO₂ is escaping from the storage reservoir

 Challenge - the need to cover large areas costeffectively at the required resolution

CO₂ plume from an injection of one million tons of CO₂ per year in a deep saline formation for 20 years could be spread over a horizontal area of 15 square miles or more

Soil Carbon Measurement Sampling

- Depth profile of soil-gas down to 1 meter
- CO₂ and light hydrocarbon concentrations
- CO_2 stable isotope ratio ($\delta^{13}C$)

Mitigation

- In the unlikely event that CO₂ leakage occurs, steps can be taken to arrest the flow of CO₂ and mitigate the impacts:
 - lowering the pressure within the CO₂ storage reservoir by stopping injection
 - forming a "pressure barrier" by increasing the pressure in the reservoir into which CO₂ is leaking or by intercepting the CO₂ leakage paths
 - plugging the region where leakage is occurring with low permeability materials

Terrestrial MMV

- Organic matter measurement: automated technologies that provide detailed information at a sequestration site
- Soil carbon measurement: automated technologies for measuring soil carbon
- Modeling: detailed models are used to extrapolate the results of carbon uptake activities from random samples to an entire plot and to estimate the net increase in carbon storage relative to a case without enhanced carbon uptake.
- Economic Models: show accumulations of emissions credits and revenues versus an initial investment

Summary

- MM&V research is aimed at providing an accurate accounting of stored CO₂ and a high level of confidence that the CO₂ will remain sequestered permanently
- Successful efforts will allow project developers to obtain permits for sequestration projects while ensuring human health and safety and preventing potential damage to the host ecosystem.
- Sets the stage for emissions reduction credits that approach 100% of inject CO₂
- Provides improved information and feedback to sequestration practitioners, thus accelerating technology progress

Additional Information

Questions?

