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FEASIBILITY STUDY OF THE CONJUGATE GRADIENT METHOD 

FOR SOLVING LARGE SPARSE EQUATION SETS 

Lothar Griindig1 
National Geodetic Survey 

National Ocean Survey, NOAA 
Rockville, Md . 20852 

ABSTRACT. A feasibility study was performed to 
determine the effectiveness of various conjugate 
gradient methods for solving large sparse equation 
sets. Equations of this magnitude will be involved 
in the future new adjustment of the North American 
Datum . The conjugate gradient method provides a 
suitable algorithm for this purpose. Some typical 
nets associated with the new adjustment were used and 
compared with a direct solution algorithm. Results 
indicate that this method is well suited for 
constrained adjustments of triangulation networks, 
but not for free adjustments . No benefits were 
derived from preconditioning, which only increased 
the solution time. 

INTRODUCTION 

Since its development by Hestines and Stiefel (1952) , many reports have 

been published on the method of conjugate gradients. Initially, the method 

was touted as a possibly superior means for solving nonsparse systems of 

linear equations, but these claims were later discredited by an abundance of 

contrary evidence. When applied to sparse systems of equations, however, the 

results appear more promising . In fact, recent literature on numerical 

analysis (Barker 1977) refers to it as a useful method for problems involving 

partial differential equations . 

Hilger (1966) , Schwarz (1970) , Dufour (1974) , Saxena (1972) , Griindig and 

Linkwitz (1975) , and others have used various versions of the conjugate 

IThis study was performeq at the National Oceanic and Atmospheric Adminis­
tration, Rockville, Md., in 1977, while the author was on sabbatical leave 
from the University of Stuttgart. Permanent address: Institute for 
Application of Geodesy to Construction, University of Stuttgart, 
7000 Stuttgart 1, Federal Republic of Germany. 
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gradient algorithm to solve geodetic normal equations. The number of itera­

tions varied with the complexity of the problem . Hilger and Saxena needed 

more than "n" iterations with n unknowns for certain problems , while Grundig 

and Linkwitz used far fewer iterations to achieve a desired accuracy . Schek 

et al. (1976) compared the conjugate gradient method with a direct sparse 

matrix algorithm and found the direct algorithm superior for special geodetic 

networks requiring n/2 iterations for solution by the conjugate gradient 

method . 

To be competitive with highly developed direct solution algorithms, the 

conjugate gradient method must converge more rapidly and the number of iter­

ations must not increase significantly with the number of unknowns. These 

qualities were exhibited during the adjustment of geodetic trilateration and 

leveling networks and those networks established by interconnected transfor­

mation. The solution of 6,000 equations, to a given accuracy, can be 

obtained in only 60 iterations (Grundig and Linkwitz 1975) . Other examples 

showed a similar pattern of convergence . 

The following questions arise: I s  it possible to obtain fast convergence 

for more general types of geodetic networks? If not , what mathematical 

technique could be used to improve convergence for a given type of network? 

In applying the conjugate gradient method to the adjustment of different 

data samples taken from the u. S. horizontal control network , the method's 

applicability was tested for solving the extremely large equation sets 

associated with the new adjustment of the North American Datum (NAD). 

The method is first described using a geometric interpretation. The 

processes of scaling and preconditioning to improve convergence are explained 

and a practical implementation is given for adjusting large geodetic networks . 

Some experimental test results follow. Finally, the possibility of applying 

this method to extremely large networks is considered. 
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CONJUGATE GRADIENT METHOD 

Every system of linear equations can be regarded as an extremum of a quad­

ratic function . The first derivative of the function that forms the equation 

system must be zero . If the function is convex, the solution vector cor­

responds to the minimum of the function. 

The following formula applies with matrix N and the vectors x, r, p: 

f (x) = xt Nx - 2 xt r + const. (1) 

af 
= Nx - r = o. (2) 

dX 

Equation (1) can be regarded as a family of concentric ellipsoids. If we 

assume the solution x to be the center of the ellipsoids, the function is 

f (x) t t t - 1 
= x Nx - 2x r + r N r .  (3) 

The conjugate gradient method minimizes (3) in a stepwise manner . I t  

searches for the center of the ellipsoid by following conjugate directions of 

the ellipsoid. The following formulas result: 

x. = xi-1 + a. p. 
� � � 

ri+1 
= r. - a.N p. 

� � � 
(4) 

Pi+1 
= ri+1 + �. p .. 

� � 

I n  each step, function (3) is minimized along one conjugate direction. 

Each local minimum is also a new approximation of the global minimum of the 

function because (3) represents a convex quadratic form. The conjugate 

directions of descent are constructed from the gradient at each new minimum 

reached in the descent sequence. Because each n-dimensional ellipsoid has 

only n different sets of conjugate directions, the solution will theoretically 

be achieved in n steps. 
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The minimum condition min f (a. ) 
1 

T -1 
= min (ri+1 N ri+1) leads to 

By 
t r. 
J 

Ci. = 
1 

t r. r. 
1 1 
t 

p. Np. 
1 1 

(5) 

t using the attribute of conjugacy, p. Np. = 0, for i f j, and the relation, 
1 J 

p. = 0, for j > i, then �. can be obtained from (4) and (5) as: 
1 1 

Q. = 1-'. 1 

t r i+1 ri +1 
t r. r. 

1 1 

(6) 

t The third attribute, orthogonality of the residuals r.r. = 0, for i t j, 
1 J 

follows. 

The quadratic function (3) decreases monotonically with each step, while 

the solution vector increases monotonically . Therefore, the solution is 

possible in less than n steps. The number of iterations that are theoreti­

cally necessary equals the number of distinct nonzero eigenvalues of N in the 

absence of rounding errors. 

If we substitute A for N in the preceding formulas, where A is a matrix of 

observation equations, a conjugate gradient algorithm is derived that avoids 

explicit formulation of the normal matrix, N = AtA. 

With nonpositive definite matrices N, the algorithm may not converge to the 

solution because (3) is not strictly convex. If rank (N) < n in a least­

squares problem, the method leads to the Moore-Penrose inverse solution, 
t x = A r, if r belongs to the same subspace as A (Bjorck 1976) . 

The greatest amount of work required to apply the conjugate gradient method 

is one multiplication of the matrix N with a vector p. per iteration, or 
1 

twice the multiplication of A (or At) with a vector. The additional scalar 

products and scalar-times-vector products are less time-consuming. The 

matrix remains unchanged during the solution process, making this method 

especially suited for sparse systems of equations . 



Several versions of the conjugate gradient method and some methods of 

conjugate directions choose different functions to minimize, for example, 
t t r Nr, r r, etc. However, for these alternatives each iteration usually 
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involves more work . The experiences of Reid (1971) and Elfving (1975) with 

alternate methods show no significant improvement in the rate of convergence, 

in spite of the additional work required. The algorithm consisting of eqs . 

(4) , (5) , and (6) is more direct than all the other methods considered . 

SCALING AND PRECONDITIONING 

A basic prerequisite for rapid convergence of the conjugate gradient method 

is a well-conditioned matrix. In an ill-conditioned system, the ellipsoid 

described by the quadratic function becomes compressed and the minimum point 

is not well-defined. The normals along the surface of the ellipsoid are 

nearly coplanar, causing slow convergence and limiting the method1s practical 

value. Because the number of digits available is limited, rounding errors 

occur with each numerical operation. Digits are lost when large numbers are 

added to small numbers, especially when calculating scalar products. This 

may be caused by large differences in the scale of unknowns . 

One way to reduce the effect of roundoff errors is to perform the calcu­

lations with double precision. This remedy, however, is still limited by the 

maximum precision available on a given computer. A better approach would be 

to try and change the shape of the quadratic function. 

If the axes of the ellipsoid are nearly coincident with the coordinate 

axes, the desired improvement could be achieved by scaling them to equal 

size, as shown in figure 1, for two dimensions . 

Figure 1 . --A more desirable quadratic function is achieved by scaling 
the axes of the ellipsoid to equal size. 
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The system of equations is changed in such a way that all new diagonal 

elements are equal to 1. The scaling is done by pre- and postmultiplication 

of the normal matrix with a diagonal matrix that contains scaling factors. 

Scaling matrices are used in the following manner. I nstead of 

the system 

is solved with D . .  = 1/� 
11 11 · 

Nx = r, 

DNDx = Dr (x = D� ) (7) 

Scaling has a very positive effect on the convergence of gradient methods 

if the "flatness" of the quadratic function is caused by different magnitudes 

of the unknowns. When different kinds of observations are adjusted in a 

network, scaling may reduce the number of iterations by a factor of 30 

(Grundig 1976) . 

By solving the observation equations directly, scaling can be performed by 

changing all columns of the coefficient matrix A to equal Euclidean norm. 

t t The scaled scalar product, r D Dr, is a better measure of convergence than 

rtr, which may be disturbed by some extremely large coefficients. With some 

test adjustments, rtr failed to converge while rtDtDr showed a decrease. 

If the quadratic function represents a compressed ellipsoid inclined toward 

the coordinate axes, scaling with diagonal matrices will not be effective in 

improving the shape of the ellipsoid. In this case, scaling will only reduce 

the ellipsoid within an n-dimensional cube. The condition number may still 

be too large. To improve convergence, we require a matrix with the smallest 

possible condition number. 

Preconditioning methods that use triangular matrices instead of diagonal 

matrices could be chosen. The best effect can be achieved by selecting the 
1 t -1 t -1 t- - 1 Cholesky factor L- of N = LL . The system L (LL ) (L ) x = L r describes 

the minimum of a spherical function. This minimum can be achieved in one 

iteration, but this system is not practical for very large sets of linear 

equations. 



Evans (1973) and Axelsson (1974) proposed another way to reduce the condi­

tion number . They expressed the normal matrix as 

N = I - L - Lt and 
- 1 D = (I - w L) . 

The application of this matrix leads to an easily solved system with the 

condition of the resultant system being less than its original value. In­

stead of Nx = r, the system 

with x = 

7 

which has a positive definite coefficient matrix, is solved. The D matrix is 

lower triangular. The factor w has an optimal value between ° and 2. The 

modified normal matrix is not explicity formed. 

The application of preconditioning to solve N = r by the method of x 0 
conjugate gradients is shown in the following algorithm: 

-1 r = D r PI 0 0' 

(L = 
1 

t. = 
1 

I ti 
= 

�. = 
1 

i = i+l x. = 
1 

r. = 
1 

O. = 
1 

c. = 
1 

Yi+l 

I ti 
= 

Pi+l 
= 

(D-l)t� , = 
0 

t p.Np. 
1 1 

Np. 
1 

D-1ti\ 
y./a. 

1 1 

xi-1 

ri-1 
- t-r. r. 

1 1 

o. / y. 
1 1 

= o. 
1 

+ � . p. 
1 1 

- �.t. 
1 1 

(D- l)t�i l 
t. + c.p. 

1 1 1 

- t-
Yl 

= r r x = 0, i = 0 
0 0' 0 

(8) 

y. 1 < Yminl 
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In addition to the original amount of work involved, the -1 products D t. and 
(D-1

)t-r. h b f d B ave to e orme . ecause of the triangular structure of � 
1 -1 D, D t. 

1 

requires essentially one forward solution process with the original lower 
. -1 t-

part of the normal matr�x, and (D ) r. is a back substitution process. Half 
1 

of the normal matrix is involved in both processes. Therfore, one iteration 

of this algorithm actually needs double the amount of work as the version 

without preconditioning. 

PROGRAMS 

Computational Tasks 

To test the conjugate gradient algorithm, representative data were chosen 

from the u. S. horizontal control network. Various survey types occurring 

within the network were included in the study (i. e. , high precision traverse, 

triangulation chains, and area nets). Special emphasis was placed on tri­

angulation because of its dominant role in the national networks. In deter­

mining the 1983 North American Datum, all interconnected nets will be simul­

taneously adjusted, resulting in an extremely large system of equations. 

This enormous size, together with the sparseness of the associated system of 

equations, makes this project ideally suited as a practical test of conjugate 

gradients. 

To adjust the u. S. geodetic networks by means of conjugate gradients, the 

following question must be answered: Should the algorithm be used to solve 

observation equations or "reduced" normal equations (pre-eliminated orienta­

tion unknowns)? 

Using the algorithm for observation equations results in large numbers of 

unknowns for the triangulation networks. Each station may have several 

abstracts of directions that require the solution of orientation unknowns 

in the algorithm. Using the algorithm for reduced normal equations may 

involve a large number of nonzero elements that must be handled in each 

iteration. 



The final choice depends on the following: (1) the number of nonzero 

elements in the matrix of observation equations and the normal matrix, (2) 

the effort in forming the normal equations, and especially (3) the conver­

gence of both systems. Some experiments performed by Grundig (1976) showed 

almost no difference in the number of iterations between the algorithms for 

observation equations and nonreduced normal equations. 

Another problem is the necessity of applying preconditioning to solve 

normal equations. Does preconditioning improve the convergence of ill­

conditioned equation systems enough to justify the extra work? 

9 

To answer both questions, two computer programs were written. One applied 

the conjugate gradient method to original observation equations (a program 

called G), and the other to reduced normal equations (program G-NORM). The 

preconditioning methods were tested by using G-NORM. 

Program G 

Program G was interfaced with a prototype of the NAD adjustment system 

(Dillinger 1978, Hanson 1978, and Isner 1978). Interface was through a 

RESTART file which constitutes the data of the NAD adjustment system. 

Observations are retrieved from the file and results are stored in the same 

file. G performs a single outer iteration, requiring further inner itera­

tions to solve the linear system. Multiple outer iterations are obtained by 

performing several executions of G. Program G contains the following 

routines: 

SETUPA 

WIDER 

LOES 

UPDATE. 

SETUPA retrieves observations from the RESTART file and forms the co-

efficients of the observation equations, considers individual weights, 

and stores the data in blocks of 1, 000 equations on a scratch disk. 
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Each observation equation, vm = a1xi + a2Yi + a3xj + a4Yj - wk - 1m' 

with the weight p , is represented by the set of parameters m, where: m 

m: 

WIDER calculates the right-hand side of the normal equations, using 

elements of A and storing the results in a residual vector r. It also 

calculates the diagonal elements of the normal equations, stores the 

scaling factors in a vector s, and forms scaled observation equations 

(columns with norm 1) and a scaled residual vector. 

LOES solves the system of equations by using algorithms (4), (5), and 

(6). The program reduces the scaled norm of the residuals by 106 and 

does not allow more than n iterations with n unknowns. 

UPDATE updates the RESTART file in the manner described. 

The total amount of storage is determined by three vectors of length n 

plus a 9, 000 words maximum (buffer for 1, 000 observation equations). 

Considering 130, 000 words as an upper bound on the CDC 6600 computer, 

systems with up to 30, 000 unknowns can be handled. By reducing the 

vectors in core to two (which would affect the I/O time only slightly), 

up to 45, 000 unknowns can be accommodated. 

The number of operations (multiplications) per iteration is 11 m + 5 n with 

m observations and n unknowns. This is the quantity that must be compared 

with the number required for reduced normal equations. 

Program G-NORM 

This program uses as input the reduced normal equations formed by the 

NAD adjustment system and stored in HERESI records on the RESTART file 

created by the system. By extracting connectivity information from the 

RESTART file, the normal equations' zero-nonzero structure is derived and 



stored in two index vectors, IA and JA. For optimal use of the stored 

information, the data structure shown in the following example was 

selected. 

5. 1. o. 4. IA 0, 3, 5, 8) 

N = 4. 2. 3. JA 0, 1, 2, 2, 3, 1, 2, 4) 

3. o. AN (5. , 1. , 4. , 2. , 3. , 4. , 3. , 

symmetric 6. 

6. ) . 

IA contains the positions in AN of the diagonal elements of N, and JA 

contains the row numbers of the elements of N in AN. AN stores the 

nonzero elements in N. The elements of AN are extracted from the HERESI 

records. For simplicity, the normal equations are stored on scratch disk 

blocks of 200 columns each. Program G-NORM is structured with the fol­

lowing subroutines: 

OEINV 

INDCRE 

ANCRE 

SCAL 

LOES 

UPDATE 

11 

OEINV and INDCRE read connectivity information from the RESTART file and 

form IA and JA in the order of elimination. 

ANCRE reads HERESI records into AN and reads the right side of the 

normal equations into r. 

SCAL performs scaling of the normal equations. 

LOES solves the equations. 

UPDATE updates the RESTART file. 
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Two additional subroutines VOR and RUECK are used to apply precondi­

tioning. They perform forward and back solutions with matrix N and given 

right-side vectors. 

The outer iterations are again performed by multiple executions of 

G-NORM. 

Program G-NORM uses three vectors of length n (number of unknowns) and 

space for one normal equation partition. It has about the same capacity 

as G. The number of operations (multiplications) for one inner iteration 

is 2n + Sn, where n is the number of nonzero elements of the upper triangle e e 
of the normal equations . Including preconditioning, the number of operations 

is about 4n + Sn. e 

EXPERIMENTAL RESULTS 

Four different networks were adjusted using the conjugate gradient 

method. The results and their calculation time were compared to the 

corresponding adjustments of the NAD system (Dillinger 1978, Hanson 1978), 

which uses Cholesky factorization applied to a minimum profile structure of 

the normal matrix. 

The norm of the scaled residuals was used as a convergence criterion 

for the iterations. It had to decrease by the factor 103. In addition, 

the number of iterations had to be smaller than n. 

The decrease in the norm of the scaled residuals is a reasonable 

measure for evaluating the solution in nonlinear adjustment problems. 

The following equation holds: 

Illliell 
_1 liN II· II r II 

Reducing Ilrll by 103 means a reduction of the same amount for Illliell. Be­

cause the dimensional changes of the initial values Xo are known, the 

inner iteration process can be stopped and a new outer iteration-­

checking the convergence of the nonlinear system--can be performed. In 



this way, the solution can be found in the region of validity of the 

linearization and, therefore, less work is required. 

DISCUSSION OF THE RESULTS 

Table 1 shows the data used to adjust four selected networks by the 

conjugate gradient method. Convergence is shown in table 2. 

The number of iterations for net 2 was limited to 100. Without this 

limitation, the number went up to 1, 150 resulting in no improvement for 

a (the standard error of unit weight) . 
°1 

The method did not converge to the solution (accuracy < 3 mm) for nets 

1, 2, or 4 within the allowable number of iterations. Net 3 did converge 
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to the solution. Convergence of net 1 could have been achieved by holding five 

points fixed. By holding the border points of net 2 fixed, the system 

converged in 45 seconds. 

Program G-NORM was applied only to net 1. It needed as many iterations 

as G and twice as much time for the solution. The number of nonzero 

elements in the reduced normal equations was 2n = 28, 000,which was more e 
than twice the number of nonzero elements in the observation equations. 

Preconditioning reduced the number of iterations for the optimal value 1 

of the over-relaxation parameter w. This approach was unsatisfactory 

because solution time increased. 

Although the results are incomplete, pending further investigation of 

preconditioning, the following statements can be made. 

eThe conjugate gradient method works well for constrained adjustments. 

Convergence behavior depends strongly on the number of fixed positions, 

especially for triangulation nets. This method is not usable for free 

triangulation nets, but converges well for free traverse nets. 
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la 

2 

2a 

3 

4 

Table l.--A description of the networks adjusted by the conjugate gradient 
method showing quantities of adjusted data 

Orientation 
Type Direclions Azimuths Distances unknowns 

.---.----'-----�------- ---.-------, ------�-- ---- -----.------- -----

Triangulation chain 1,200 16 180 

Triangulation chain 1,200 16 180 

Triangulation chain 
plus traverse 2,204 19 399 607 

Triangulation chain 
plus traverse 2,204 19 399 607 

Traverse 280 280 158 

Triangulation chain 1,650 30 396 

Table 2.--Convergence behavior of adjusted networks 

Fixed 
Positions points 

287 

287 

488 

488 

151 

190 

. __ ._- ---

5 

45 

2 

- --- -- ._-- - -----�--- ------ -- -- ----------- -------- ------ -----�---.. --- ----

rqet 

1a 

2 

2a 

3 

4 

Number 
innf'r 

0 iterations 0/\ 

4.27 

4.27 

3.006 

2.893 

66.9 

2.99 

--- ._----- -----

422 

188 

100 

48 

74 

415 

a 
°1 

1.207 

1.245 

1.408 

2.316 

1. 26 

1.425 

N1Imber 
outf'r 

j terat ions 

It 

4 

2 

2 

2 

2 

-------- -

Total lime Total time 
Accuracy for CG for TR/\Vro 

(] (COIl (secolld ) (s('('ono ) 
°E 

- -- -- ------ - - -- - ._-- -- -" 

\. 199 6-8 300 40 

1.242 0.3 150 40 

1.270 6-8 120 10 

2.316 0.3 45 70 

I. 117 0.3 26 30 

1.406 6-8 220 40 

f-' 
.p-



.The global change of the unknowns during the iterations (to their 

final values) is extremely small for triangulation networks. One reason 

could be that small local discrepancies, which may cause global movements 

of the positions, are absorbed. Extremely small changes of a few dis­

tances (scale) may cause large movement. This tendency is stronger for a 
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freE network than for a constrained one where fixed borders introduce the scale . 

• Trilaterations and traverses are stable with regard to scale. 

t If we examine r r, we see that a local smoothing of the observations is-

achieved in a few steps. Figure 2 shows this smoothing as a rapid de­

crease in rtr. Increasing the number of iterations changes the solution 

(net 1) slightly. 

T 
r r 

105 

10' 

103 

102 

10' 

10-' 256 Iterations 
10° 

10-2 421 Iterations 

10-' 10 20 30 Iterations 

Figure 2. --Convergence of rtr as a function of the number of 
iterations using the conjugate gradient method. 

The results show that the conjugate tiradient method does not appear to be 

suited for the adjustment of triangulation type networks that form the main part 

of the U.S. national networks. Although not thoroughly explored, a possible 

application of this method for triangulation networks might be its use in 

checking the observations for gross errors. These act upon the network 

locally and, therefore, show up after a small number of inner iterations, 

e. g. , 100, independent of the magnitude of the adjustment problem. 
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APPLICATION 

The conjugate gradient method can be used for extremely large systems of 

equations if the number of iterations does not increase appreciably as the 

number of unknowns increases, e. g. , in constrained adjustments . The main 

problem in applying this method to large systems (observation equations or 

normal equations) is the necessity of multiplying a matrix by a vector for 

each iteration. To multiply efficiently, certain elements of the matrix, the 

vector, and the resulting product vector must be held in core . Reading and 

rereading the components of the vectors are avoided if both vectors can be 

held entirely in core. 

For very large systems of equations these vectors may be too large for 

both to fit in core. If this is the case, advantage must be taken of the 

structure of the matrix to get a reasonable partitioning of the vectors. For 

a banded matrix the organization shown in figure 3 is feasible. 

� « � 

N p 

Figure 3. --Partition structure of a banded matrix. 

N can be partitioned in k = nla parts. Then "3a" elements of p and "a" 

elements of t must be in core because only these parts are required for 

multiplication. For each part, one must read the components of one vector 

block and one matrix block, and then compute and write the resulting vector 

block. 
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Another possibility is to choose an approach that takes advantage of 

the fact that geodetic observations connect only those unknowns which are 

close to each other . The geodetic net can be divided into individual 

parts, with each part connected only to its neighboring parts, as shown in 

figure 4. The observation equations of each part give incomplete 

coefficients for the normal equations that could be used, together with 

the associated vector blocks, to form the matrix-vector product succes­

sively . 

Figure 4 .--A geodetic net is divided into individual parts and con­
nected to neighboring parts to form a matrix-vector product. 

For efficient computer storage, the vector elements associated with each 

block are separated into two classes: "interior" and "border . "  The 

interior elements are related only to the complete coefficients of the 

normal equations of each individual part . The border elements are re­

lated to the incomplete coefficients of the normal equations of each part 

and of its neighbors. To operate with the matrix elements of one part, 

the elements of the interior vector and the elements of the border 

vectors must be in core. This approach needs a more complicated organi­

zation than the one using banded matrices, but the method may be feasible 

for extremely large nets without regard to bandwidth . 
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Both approaches require that all parts be processed in each iteration. 

Because the global residual vector of the normal equations is formed at the 

first step, local discrepancies appear very early. 

When compared to the direct solution method used with Helmert blocking, 

a big disadvantage of the conjugate gradient method is that all data blocks 

must be available on disk simultaneously before the iteration can start. 
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