Genetic Stock Composition Analysis of Chum Salmon Bycatch Samples from the 2005 Bering Sea Groundfish Fishery

Jeffrey R. Guyon, PhD
Chris Kondzela
Tyler McCraney
Colby Marvin
Ellen Martinson

Genetic Stock Identification
Auke Bay Laboratories, Alaska Fisheries Science Center, NMFS, NOAA
Ted Stevens Marine Research Institute
17109 Pt. Lena Loop Road
Juneau, AK 99801

Submitted February 2, 2010

Table of Contents

Page	Contents
1	Cover page
2	Table of contents
3	List of figures
4	List of tables
5-6	Introduction
6-8	Methods
6-7	Sample collection and DNA extraction
7	Data acquisition
7	Baseline and mixture conversion to SPAM and BAYES formats/stock composition analysis
7-8	Principal coordinate analysis and baseline evaluation
8-10	Understanding the quality of the samples for the purpose of determining stock composition
10-14	Evaluation and adequacy of the baseline
14-18	Stock composition analyses, including temporal trends
14-15	Stock composition analysis of all samples
15-18	Temporal changes in stock contributions
18	Stock composition summary
19	Age structure of AYKSSI genetic samples
19-21	Summary and discussion with future implications
21	Acknowledgements
21-23	References
24-31	Appendix

List of Figures

Page Figures

8

Figure 1. The four salmon bycatch areas used in the AYKSSI project to determine the spatial distribution of chum salmon in the Bering Sea.

Figure 2. 2005 chum salmon bycatch and AYKSSI genetic samples graphed by statistical week.
$0 \quad$ Figure 3. AYKSSI chum salmon bycatch genetic samples grouped by statistical week and area.

Figure 4. Principal coordinate analysis of 380 chum populations analyzed for 11 microsatellite markers.

Figure 5. Baseline evaluation - results from mixed stock simulation experiments.
Figure 6. Genetic samples identified by early, middle, and late temporal groupings.
Figure 7. Early, middle, and late BAYES stock composition estimates and 95% credible intervals for the three temporal periods from the AYKSSI subset of samples from the 2005 chum salmon bycatch.

Figure 8. Comparison of the aggregated stock composition estimate produced from the available 1,084 genetic samples with a weighted estimate based on the temporal stock compositions weighted by the proportion of bycatch caught in each time interval.

Figure 9. Comparison of 2005 stock composition estimates with those derived for the 1994-1996 years.

Figure 10. Age estimates for 618 genetic samples of chum salmon.

List of Tables

Page Tables

$9 \quad$ Table 1. Total number of analyzed genetic samples from the 2005 chum salmon bycatch grouped by areas designated in the AYKSSI project.

14 Table 2. Results from 100% simulation studies in which 100% of a hypothetical mixture of 400 fish was derived from one region (columns) and reallocated back to the region (rows) with SPAM software.

14 Table 3. Regional SPAM and BAYES stock composition estimates for the 1,084 chum salmon samples from the 2005 AYKSSI sample set.

16 Table 4. SPAM and BAYES stock composition estimates for the early, middle, and late time periods of the AYKSSI subset of 2005 chum salmon bycatch samples.

Introduction

The Bering Sea provides habitat for chum salmon from many populations throughout their geographic range during their residence in the marine environment (Abe et al., 2007; Friedland et al., 2001). In some years, large numbers of chum salmon are incidentally caught as bycatch in the Bering Sea trawl fishery for walleye pollock (Stram and Ianelli, 2009; Witherell et al., 2002). When escapement of chum salmon in several western Alaska areas declined in the early 1990s (Eggers, 1995), the incidental chum salmon harvest in the trawl fishery became of concern. This led to changes in the management of that fishery (Ackley, 1997) and the first genetic stock identification analyses of chum salmon bycatch. It was during this time that many fishery agencies worked to develop coastwide genetic baselines that could be used to estimate the stock contributions to mixtures of fish such as chum salmon (Seeb et al., 1995). The Auke Bay Laboratory analyzed samples from three years in the mid-1990s to estimate the regional contribution of chum salmon stocks to the bycatch. More recently, numbers of chum salmon caught as bycatch in the Bering Sea groundfish fishery have increased to a high of over 700,000 fish in 2005. This report presents preliminary genetic stock identification results for a subset of samples collected in 2005.

The first genetic analysis of chum salmon bycatch was completed for the 1994 and 1995 summer/fall B-season walleye pollock fishery (Wilmot et al., 1998). This study used a genetic baseline of 77 populations surveyed for 20 allozyme loci. Based on a sample set of 457 chum salmon caught in the 1994 B-season pollock fishery, the stock composition of the chum salmon samples was partitioned to Asia (39-55\%), western Alaska (20-35\%), and southeast Alaska, British Columbia, and Washington ($21-29 \%$). Based on a larger sample set of 1,853 chum salmon harvested from the 1995 "B" fishery (11% of the total bycatch), stock estimates were partitioned to Asia (13-51\%), western Alaska (33-53\%), and southeast Alaska, British Columbia, and Washington (9-46\%). The range of estimates reflects differences in the stocks present during different time periods and areas of capture in the fishery.

The second genetic analysis was completed by the Alaska Fisheries Science Center's Auke Bay Laboratory for the 1996 groundfish fishery (Seeb et al., 2004). In this analysis, a baseline representing 356 populations assayed for 20 allozyme markers was used. Nearly 3,000 chum salmon were collected from the eastern fishing districts, where approximately half of the catch in the 1996 B-season fishery occurred. The stock composition estimates for this section of the fishery were partitioned to Asia (30\%), western Alaska (16\%), Alaska Peninsula, Prince William Sound, and Kodiak (12\%), and southeast Alaska, British Columbia, and Washington (42\%).

In addition to these genetic analyses, two studies examined scale patterns to investigate the contribution of stocks to the chum salmon bycatch. In one study, scale analysis was used to age chum salmon from the 1993 B-season bycatch (Myers et al., 1994). The proportion of ages represented were $0.2(22 \%), 0.3(65 \%), 0.4(12 \%)$, and $0.5(1 \%)$. While a specific stock composition analysis was not completed for that particular study, many characteristics showed stratification of chum stocks in the Bering Sea including (1) reduced amount of growth in the $3^{\text {rd }}$ year (a characteristic of Asian fish), and (2) differences in age of the affected fish based on the month and area in which fish were collected. In the second study, a scale pattern analysis (SPA) was used to estimate the stock composition of the 1994 chum bycatch. Based on SPA of 1,204 age 0.3 fish, the stock estimation of the sample set was partitioned to Asia (50\%), western and central Alaska (18\%), and SE Alaska, British Columbia and

Washington (32\%) (Patton et al., 1998). As in the genetic studies, the stock composition estimates from SPA varied by date and statistical area.

Presented below are stock composition estimates for a subset of chum salmon bycatch samples from the 2005 Bering Sea groundfish fishery. This is the first analysis of chum salmon bycatch samples that utilizes DNA-based genetic markers. Genetic samples of the chum salmon bycatch were collected in 2005 from the North Pacific groundfish fishery as part of a Special Project. A subset of these samples, supplemented with available scales, was used for an Arctic/Yukon/Kuskokwim Sustainable Salmon Initiative (AYKSSI) funded project to determine the spatial and temporal distribution of chum salmon in the Bering Sea. Four distinct areas in the eastern Bering Sea were identified such that samples within those areas could be pooled and stock composition estimates compared. Whereas potential sample biases within the genetic samples of the bycatch are well documented (Pella and Geiger, 2009), the samples analyzed for the 2005 study were specifically selected with regard for their spatial and temporal distributions rather than by quantity of overall bycatch. With that caveat, a subset of over a thousand 2005 samples was analyzed and the resulting stock composition estimates were similar to those produced previously using allozymes or scale pattern analysis. Despite the issues associated with sample collection bias, the analysis of the 2005 chum bycatch samples provides a rough measure of stock distribution, and at a minimum, provides an indication of the presence and/or absence of specific stocks.

The goal of this report is to present a stock composition estimate for the 2005 AYKSSI chum bycatch samples, but it is important to understand the limitations for making accurate estimates of the entire bycatch imposed by the sampling protocols and the genetic baseline. Hence, this report is divided into three main sections. First, the sampling protocols are documented and the distribution of the AYKSSI genetic samples is compared to the overall chum bycatch (designated as non-Chinook in the NMFS database as chum salmon comprise over 99.6% of the total non-Chinook bycatch (NPFMC, 2005)). Second, the efficacy of the microsatellite DNA baseline is evaluated using principal coordinate analyses based on genetic distances, simulation studies of hypothetical mixtures, and the available phylogenetic trees. Finally, stock composition estimates are provided as a composite of all available samples as well as from three distinct time periods to determine if there continues to be a temporal effect on the composition of the bycatch.

Methods

Sample collection and DNA isolation

All samples were collected by the Alaska Fisheries Science Center's (AFSC) North Pacific Observer Program as part of either a Special Project (designated "Salmon Genetic Project" in 2005) for the Auke Bay Laboratory for genetic analysis (axillary processes) or for species identification/aging purposes (scales) (Figure 1, Table 1). Axillary processes and scales for aging were collected opportunistically throughout the season and stored in coin envelopes which were labeled, frozen and shipped to the Auke Bay Laboratories. Scales for species identification were collected in coin envelopes and shipped to the AFSC's Fisheries Monitoring and Analysis Division for storage and analysis. DNA was extracted from the axillary processes and scales into 96 -well plates with either the QIAGEN DNeasy Blood and Tissue Kits or Corbett X-tractor Gene reagents as described by the
manufacturer (QIAGEN, Inc.) ${ }^{1}$. Extracted DNA had a final concentration of approximately 10-25 $\mathrm{ng} / \mathrm{ul}$ (scales slightly less than axillary process tissue) and was stored at $-20^{\circ} \mathrm{C}$.

Data acquisition

Genotypes were obtained for 11 microsatellite DNA markers. First, 1 uL of a $1: 4$ dilution of extracted DNA was transferred to 384 -well plates. ${ }^{2}$ Then, the microsatellite loci were polymerase chain reaction (PCR) amplified in four multiplexed panels. Each PCR reaction was conducted in a 5 ul volume containing the template DNA, QIAGEN Multiplex PCR Mastermix, 0.2 uM of each primer, and RNase-free water. Primer sequences for the 11 loci have been described in the following publications: Oki100 (Beacham et al., 2009a), Omm1070 (Rexroad et al., 2001), Omy1011 (Spies et al., 2005), One101, One102, One104, One114 (Olsen et al., 2000), Ots103 (Nelson and Beacham, 1999), Ots3 (Banks et al., 1999), Otsg68 (Williamson et al., 2002), and Ssa419 (Cairney et al., 2000). Thermal cycling for the PCR was performed on a dual 384-well GeneAmp PCR System 9700 (Applied Biosystems, Inc.) with the following protocol: initial denaturation at $95^{\circ} \mathrm{C}$ for 15 minutes, then 33 cycles at $94^{\circ} \mathrm{C}$ for 30 seconds, $60^{\circ} \mathrm{C}$ for 1.5 minutes, and polymerization at $72^{\circ} \mathrm{C}$ for 1 minute, followed by a final polymerization step at $60^{\circ} \mathrm{C}$ for 30 minutes and then storage at $15^{\circ} \mathrm{C}$ until removal from the thermocycler.

Samples from the PCR reactions were diluted into 96 -well plates for analysis with a 16capillary, 36 cm array on the ABI 3130xl Genetic Analyzer as follows: 1 ul diluted (1:25) PCR product, 4.4 ul Hi-Di formamide, 4.4 ul ddH2O, 0.2 ul LIZ 600 size standard (Applied Biosystems, Inc.). Samples were denatured for 3 minutes at $95^{\circ} \mathrm{C}$, then cooled to $4^{\circ} \mathrm{C}$ and stored until analysis on the 3130xl. Genotypes were identified with GeneMapper software (Applied Biosystems, Inc.) and exported to Excel spreadsheets (Microsoft, Inc.) for further analysis.

Baseline and mixture conversion to SPAM and BAYES formats/stock composition analysis

Baseline allele frequencies were downloaded from the Division of Fisheries and Oceans Canada (DFO) Molecular Genetics web page (http://www-sci.pac.dfo-mpo.gc.ca/mgl/data_e.htm) and a SPAM (ADFG, 2003) baseline file was created within Excel. To generate the BAYES baseline, a program was written in C to convert the allele frequencies into allele counts for the BAYES format. For the mixture files, allele designations were converted to match those in the baseline. Compatibility of our allele designations to the DFO baseline was confirmed with a set of samples from the DFO Molecular Genetics Lab that were analyzed on the Auke Bay Laboratory's Applied Biosystems 3130xl Genetic Analyzer. Lookup tables were generated within Excel to convert our allele calls to match those in the DFO baseline. Genotypes from converted mixtures were then exported from Excel as text files and C programs were used to format the data into both SPAM and BAYES mixture files. Stock composition analysis was performed with both the SPAM and BAYES software by using previously published procedures (ADFG, 2003; Pella and Masuda, 2001).

Principal coordinate analysis (PCO) and baseline evaluation

The baseline was examined to determine major regional groupings of populations that would then be used for stock identification analyses of the chum salmon mixtures. Larger reporting groups were used to increase estimation accuracy and to compare estimates with those from previous studies. Population genetic structure was examined in three ways. First, population groupings were evaluated

[^0]based on the published neighbor-joining dendrogram of Cavalli-Sforza and Edwards chord distances (Beacham et al., 2009b). Second, Nei's genetic distance was calculated in the software NT-SYS (Applied Biostatistics, Inc.) from the allele frequencies of the baseline populations. Population structure was examined using a principal coordinate analysis (PCO) and resulting eigenvalues were plotted in 3-dimensional graphs. Third, baseline simulation studies were performed to evaluate the effectiveness of the baseline to allocate stocks to the correct regions. Three different types of simulation tests were performed with SPAM software (Version 3.7) by using hypothetical mixtures of 400 fish containing either 100%, equal or selected stock proportions as described in the text. In these simulations, the hypothetical mixtures were derived from the appropriate regions and then re-evaluated with the baseline to determine the percentage that reallocated back to the correct region.

Understanding the quality of the samples for the purpose of determining stock composition

Stock identification results presented in this report are from a subset of samples collected from the 2005 chum bycatch that was specifically selected for an AYKSSI project to address the spatial and temporal distributions of chum salmon in the Bering Sea rather than provide an overall stock composition estimate of the bycatch. Because the sampling was not proportional with the bycatch, there may be bias in the overall stock composition estimate of the chum salmon bycatch for reasons of variable spatial and temporal sampling rates. In total, 1,084 samples were genetically analyzed from a total chum bycatch of 705,963 fish, which is an overall sample rate of 0.15%.

For the AYKSSI project, samples from four regions were selected to examine possible temporal and spatial differences (Figure 1, Table 1); however, they were not in proportion to the total catch throughout the season. Potential temporal biases in the AYKSSI sample set are observed as differences in proportionality to the catch (Figure 2). For example, the peak of the bycatch was in statistical weeks 30-32 (Figure 2, top panel), while the majority of samples analyzed for stock composition were taken in statistical weeks 25-27 and 36-38 (Figure 2, bottom panel), on the shoulders of the primary take in the bycatch. Later, we present a stock composition estimate for the entire set of genetic samples analyzed as well as composition estimates for subsets of samples taken over time to determine the significance of temporal sampling on the composition estimate.

Figure 1. The salmon bycatch areas used in the AYKSSI project to determine the spatial distribution of chum salmon in the Bering Sea. The open circle designates the area of highest chum bycatch in 2005 (NPFMC Bering Sea Chum salmon discussion paper, October 2008).

Table 1. Total number of analyzed genetic samples from the 2005 chum salmon bycatch grouped by areas designated in the AYKSSI project.

Area	Total
1	394
2	170
3	190
4	330
Total	1084

In addition to a temporal stratification, samples were also selected for the AYKSSI project for evaluating stock differences within the four specific areas of the Bering Sea, three of which are outside the area of peak chum salmon bycatch in 2005 (Figure 1, compare circle with AYKSSI sample areas). Only AYKSSI Area 2 closely coincides with the peak bycatch location, suggesting that stock
composition estimates for that one area could be more representative of the overall bycatch than the composition estimate from all four areas. In the selected AYKSSI sample set for 2005, the smallest number of genetic samples came from Area 2 (Table 1). This combination of potential spatial and temporal biases can be visualized in the AYKSSI sample set by plotting the numbers of samples collected per area per week (Figure 3). The peaks highlight the temporal and spatial groupings that can be compared in the AYKSSI project. For example, Areas 1, 3, and 4 can be compared for weeks 35-38 to examine spatial distribution, while Area 1 can be compared for weeks 25-28 and weeks 35-37 to examine temporal distribution. Results from the AYKSSI project are anticipated in the spring of 2011. In contrast to the 2005 AYKSSI samples, genetic samples collected for the analysis of the 2006-2009 chum bycatch were not subsampled, although significant bias in those sample sets may still exist (Pella and Geiger, 2009) highlighting the need for representative sampling for future analyses. Potential biases in the 2005 AYKSSI sample set indicate that care should be taken when interpreting overall bycatch stock composition results with these samples, but, at a minimum, the presence or absence of specific stocks can be identified.

Figure 3. AYKSSI chum salmon bycatch genetic samples grouped by statistical week and area.

Evaluation and adequacy of the baseline

A microsatellite DNA baseline representative of chum salmon populations from throughout the entire Pacific Rim has recently been published, is available for anonymous download, and has been selected for the analysis of the 2005 AYKSSI chum bycatch samples. This baseline contains 381 populations of chum salmon (see Appendix 1 for stream origins) assayed for 14 microsatellite markers (Beacham et al., 2009b). For our analysis, 11 of the markers were used: Oki100, Omm1070, Omy1011, One101, One102, One104, One114, Ots103, Ots3, Otsg68, and Ssa419; while Oki2 and One111 may be available in future analyses, pending optimization. Attempts to optimize the final loci, Oke3, have been unsuccessful.

To determine the ability of the 11 microsatellite markers to discriminate population structure, two different descriptive analyses were used. First, regional groupings were approximated using the published neighbor-joining dendrogram of Cavalli-Sforza and Edwards chord distances (Beacham et al., 2009b). Second, PCO was used based on Nei's genetic distance calculated from the allele frequencies of the baseline populations. By using all 381 populations in the baseline, PCO showed one population to be much different from the others (Sturgeon River on Kodiak Island) and it was excluded from further analysis to better highlight regional separations (Figure 4), although it was retained in the baseline in the Alaska Peninsula region for the stock composition analyses.

Figure 4. Principal coordinate analysis of 380 chum populations analyzed for 11 microsatellite markers. Eigenvalues were plotted in 3 dimensional space with " 1 " being the most informative (55.0%), " 2 " the second most (25.7%), and " 3 " the least (9.7\%). Top panel shows dimensions 1 and 2 (most informative), bottom panel shows dimensions 1 and 3. Populations are designated with the following symbols: Japan/S. Russia (green plus signs), Russia (stars), Upper/Middle Yukon (red circles), Western Alaska (yellow squares), Alaska Peninsula (light blue triangles), Southeast Alaska/Northern BC (light green diamonds), British Columbia/Washington (purple down-triangles), and Skeena (magenta crosses).

From the PCO and the neighbor-joining dendrogram, the following eight regional groupings were apparent: Russia, Japan/Korea/China/S. Russia (designated "Japan/S. Russia"), Upper/Middle Yukon, coastal western Alaska (designated "Western Alaska"), Alaska Peninsula, SE Alaska/Prince William Sound/N. British Columbia (designated "SE Alaska/N. BC"), Skeena, and British Columbia/Washington (designated "BC/Washington"). Most regional groupings were clearly delineated although some were more distinct than others. For example, the Skeena region is a small group of populations that clusters on the neighbor-joining tree, but it is hard to discriminate in the PCO from the other British Columbia stocks, whereas the Upper/Middle Yukon stocks are clearly distinguishable from the Western Alaska stocks (which includes the lower Yukon). These 8 regional groupings were used for all further analyses in this report. The individual populations and the associated groupings are identified in Appendix 1.

To evaluate the ability of the 11 markers to effectively separate the 8 regional groupings in mixed-stock analyses, three simulation studies were performed in which fish from a hypothetical mixture were partitioned back to their respective regions. All simulations were performed with SPAM software. In the first simulation, an equal number of fish from each region (or 12.5% from each region) were used generate a hypothetical mixture of 400 fish. If this mixture correctly reallocates to the appropriate regions, each region would contribute 12.5% of the total. Four regions allocated to within one standard deviation of the known contribution, whereas the $\mathrm{BC} / \mathrm{Washington}$ and Western Alaska regions were slightly overestimated and the Alaska Peninsula and Skeena regions were slightly underestimated (Figure 5, top panel). Previous studies have shown that many chum salmon in the Bering Sea originate from Japan/S. Russia, Russia, Western Alaska, and BC/Washington (Patton et al., 1998; Seeb et al., 2004; Wilmot et al., 1998). To test the efficacy of the baseline to distinguish between these four regional groupings, a simulated mixture was analyzed containing 25% from each of these four regions. Simulation estimates reallocate the fish back to their respective region within one standard deviation of the expected contribution for Western Alaska, BC/Washington, and Japan/S. Russia, whereas the estimate for Russia was slightly less than expected (Figure 5, bottom panel).

As a final measure of the ability of the baseline to discriminate the eight individual regions, 100% simulation studies were completed in which all samples of a hypothetical mixture were from one region and that mixture was re-evaluated against the baseline to determine the percentage reallocating back to the correct region. This analysis was completed for all 8 regions (Table 2). Upper/Middle Yukon, Western Alaska, BC/Washington, Skeena, and Japan/S. Russia all allocated back to the correct region with $87-96 \%$ accuracy whereas 83% correctly reallocated to the Russia region (5\% misclassified to Western Alaska), 82% correctly reallocated to the Alaska Peninsula region, and 77% correctly reallocated back to the Southeast Alaska/N. BC region (17% misclassified to $\mathrm{BC} /$ Washington). These results corroborate those from the previous simulation studies (Figure 5) and suggest that stock composition estimates derived from the use of this baseline may overestimate the numbers of BC/Washington fish and underestimate the numbers of fish from the Alaska Peninsula and SE Alaska/N. BC, two areas with relatively small contributions to the overall bycatch (Patton et al., 1998; Seeb et al., 2004; Wilmot et al., 1998). The overestimation of the BC/Washington region may be due to the increased variability in that large group of populations (see PCO analysis, Figure 4).

Figure 5. Baseline evaluation - results from mixed stock simulation experiments. Mixtures of fish were derived from equal proportions of all regions (top panel) and for only the Western Alaska, BC/Washington, Japan/S. Russia, and Russia regions (bottom panel). Stock compositions of the hypothetical mixtures were allocated back to the region with SPAM software based on the characteristics in the genetic baseline. Standard deviations are shown for all estimates.

The simulation results indicate that the characteristics in the 11 marker microsatellite genetic baseline describe relatively strong population structure suitable for use in performing stock composition estimates from stock mixtures, especially those that contain chum salmon originating from regions encompassing the entire Pacific Rim. In addition to the eleven microsatellite markers used in our study, the published microsatellite baseline contains an additional three loci that, if optimized, may improve estimation accuracies. Additionally, at least two other genetic baselines are currently being developed, both of which utilize single nucleotide polymorphism (SNP) markers. Once reviewed, published, and made publicly available, those baselines may be used in future analyses if found to be more effective in identifying stock origins.

Table 2. Results from simulation studies in which 100% of a hypothetical mixture of 400 fish was derived from one region (columns) and reallocated back to the region (rows) with SPAM software. The fraction of fish from each region is designated.

Region	Japan	Russia	U. Yukon	W. AK	AK Penn	SE AK	Skeena	BC/Wash
Japan/S.Russia	$\mathbf{0 . 8 7 3}$	0.041	0.001	0.003	0.015	0.005	0.001	0.002
Russia	0.036	$\mathbf{0 . 8 3 5}$	0.002	0.009	0.047	0.019	0.002	0.005
Upper/Middle Yukon	0.000	0.002	$\mathbf{0 . 9 3 4}$	0.010	0.001	0.000	0.000	0.000
Western Alaska	0.008	0.055	0.059	$\mathbf{0 . 9 6 0}$	0.040	0.005	0.001	0.002
Alaska Peninsula	0.002	0.007	0.000	0.004	$\mathbf{0 . 8 1 9}$	0.010	0.002	0.002
SE Alaska/N. BC	0.003	0.010	0.000	0.002	0.029	$\mathbf{0 . 7 7 0}$	0.039	0.038
Skeena	0.000	0.001	0.000	0.000	0.002	0.009	$\mathbf{0 . 8 7 4}$	0.007
BC/Washington	0.013	0.034	0.001	0.008	0.040	0.173	0.078	$\mathbf{0 . 9 3 6}$

Stock composition analyses, including temporal trends

Stock composition analysis of all samples
Stock origin of the 1,084 genetic samples (genotyped for 11 microsatellite markers) was determined to be primarily of Asian origin, while the most represented fish from North America were primarily from Western Alaska and British Columbia/Washington (Table 3). The samples had relatively complete data with 787 samples missing no data, 44 missing one marker, 246 missing two markers, 2 missing three markers, and 5 missing four markers. Stock composition estimates were derived by using both the SPAM and BAYES software and yielded almost identical stock composition estimates (Table 3). BAYES software uses a Bayesian algorithm to produce stock composition estimates and can account for missing alleles in the baseline (Pella and Masuda, 2001), something considered critical for microsatellite baselines with loci containing multiple alleles derived from a limited number of samples from each baseline population. In contrast, SPAM uses a maximum likelihood approach in which the mixture genotypes are compared directly with the baseline. Although Version 3.7 of the SPAM software allows Bayesian modeling of baseline allele frequencies, these

Table 3. Regional SPAM and BAYES stock composition estimates for the 1,084 chum salmon samples from the 2005 AYKSSI sample set. SE is the SPAM standard error. SD is the BAYES standard deviation. The 95% credible interval is provided for all BAYES estimates.

	SPAM						
Estimate	SE	BAYES Mean	SD	$\mathbf{2 . 5 0 \%}$	Median	$\mathbf{9 7 . 5 0 \%}$	
Region	$\mathbf{0 . 2 8 1}$	0.009	$\mathbf{0 . 2 9 2}$	0.015	0.264	0.292	0.322
Japan/S. Russia	$\mathbf{0 . 2 5 3}$	0.008	$\mathbf{0 . 2 8 9}$	0.018	0.255	0.289	0.325
Russia	$\mathbf{0 . 0 5 7}$	0.002	$\mathbf{0 . 0 5 2}$	0.010	0.034	0.051	0.074
Upper/Middle Yukon	$\mathbf{0 . 1 6 6}$	0.005	$\mathbf{0 . 1 6 2}$	0.015	0.132	0.161	0.192
Western Alaska	$\mathbf{0 . 0 2 2}$	0.001	$\mathbf{0 . 0 1 5}$	0.005	0.007	0.014	0.026
Alaska Peninsula	$\mathbf{0 . 0 3 7}$	0.001	$\mathbf{0 . 0 3 2}$	0.009	0.015	0.031	0.052
SE Alaska/N. BC	$\mathbf{0 . 0 0 0}$	0.000	$\mathbf{0 . 0 0 1}$	0.002	0.000	0.000	0.006
Skeena	$\mathbf{0 . 1 7 2}$	0.005	$\mathbf{0 . 1 5 8}$	0.014	0.131	0.158	0.185
BC/Washington							

options were not utilized for the stock composition analyses. For each BAYES analysis, eight Monte Carlo chains starting at disparate starting values of stock proportions were configured such that 95% of the stocks came from one designated region with weights equally distributed among the stocks of that region. The remaining 5% was equally distributed among remaining stocks from all other regions. The analyses were completed for a chain length of 10,000 with the first 5,000 deleted during the burnin phase when determining overall stock compositions. Convergence of the chains to posterior distributions of stock proportions was determined with the Gelman and Rubin shrink statistics which were all less than 1.15 conveying strong convergence to a single posterior distribution (Pella and Masuda, 2001).

Figure 6. Genetic samples identified by early, middle, and late temporal groupings. Top panel, graph showing the 3 temporal groupings. Bottom panel, dates corresponding to the statistical week groupings and the number of fish in each temporal group.

Temporal changes in stock contributions

There was a shift in the regional contributions of the stock composition estimate over time, with western Alaska more dominant in the early sampling and Asian fish more dominant in the later. The AYKSSI sample set has the potential for both temporal and spatial biases (Figure 1 and 2) for determining overall bycatch stock composition estimates. These sample strata will be fully evaluated in the report for the AYKSSI project, but an analysis of the overall temporal effects is presented below. The large number of samples $(1,084)$ allowed the temporal splitting of the sample set into three time segments: early peak, middle, late peak with sample sizes of 356 (early), 205 (middle) to 461 (late) (Figure 6). The goal of the analysis was to determine if regional contributions to the bycatch changed over time.

Understanding the temporal distribution of the chum salmon bycatch is important. For example, if the samples are randomly distributed or represent a distribution which can be described mathematically, temporally biased estimates could be adjusted with respect to the overall bycatch rate. Both BAYES and SPAM stock composition estimates were made from the three sample sets (Table 4). All BAYES stock composition estimates were again performed using eight Monte Carlo chains starting at disparate starting values of stock proportions. Gelman and Rubin shrink statistics were calculated and in all cases, they were below 1.10 suggesting strong convergence to a single posterior distribution. The SPAM and BAYES estimates were very similar to each other; however, the stock composition estimates differed between time periods (Table 4).

Table 4. SPAM and BAYES stock composition estimates for the early, middle, and late time periods of the AYKSSI subset of 2005 chum salmon bycatch samples. SE is the SPAM standard error. SD is the BAYES standard deviation. The 95% credible interval is provided for all BAYES estimates.

Wk 24-28	Region
	Japan/S. Russia
	Russia
	Upper/Middle Yukon
	Western Alaska
	Alaska Peninsula
	SE Alaska/N. BC
	Skeena
	BC/Washington

Wk 29-34 Region
Japan/S. Russia
Russia
Upper/Middle Yukon
Western Alaska
Alaska Peninsula
SE Alaska/N. BC
Skeena
BC/Washington

SPAM Estimate	SE	BAYES Mean	SD	$\mathbf{2 . 5 0 \%}$	Median	$\mathbf{9 7 . 5 0 \%}$ \%
$\mathbf{0 . 1 6 9}$	0.009	$\mathbf{0 . 1 8 1}$	0.023	0.139	0.180	0.227
$\mathbf{0 . 1 7 5}$	0.009	$\mathbf{0 . 1 5 8}$	0.028	0.106	0.158	0.215
$\mathbf{0 . 1 1 2}$	0.006	$\mathbf{0 . 1 1 5}$	0.023	0.072	0.114	0.160
$\mathbf{0 . 2 5 7}$	0.014	$\mathbf{0 . 2 7 4}$	0.033	0.213	0.273	0.344
$\mathbf{0 . 0 4 6}$	0.002	$\mathbf{0 . 0 4 4}$	0.015	0.019	0.042	0.076
$\mathbf{0 . 0 2 8}$	0.002	$\mathbf{0 . 0 2 3}$	0.017	0.000	0.021	0.061
$\mathbf{0 . 0 0 0}$	0.000	$\mathbf{0 . 0 0 1}$	0.003	0.000	0.000	0.009
$\mathbf{0 . 2 1 1}$	0.011	$\mathbf{0 . 2 0 5}$	0.026	0.155	0.205	0.258

Wk 35-40 Region

Japan/S. Russia	$\mathbf{0 . 3 5 7}$	0.016	$\mathbf{0 . 3 6 9}$	0.024	0.323	0.369	0.416
Russia	$\mathbf{0 . 2 6 6}$	0.012	$\mathbf{0 . 2 9 8}$	0.027	0.246	0.298	0.353
Upper/Middle Yukon	$\mathbf{0 . 0 2 5}$	0.001	$\mathbf{0 . 0 2 2}$	0.013	0.001	0.020	0.051
Western Alaska	$\mathbf{0 . 1 1 3}$	0.005	$\mathbf{0 . 1 0 5}$	0.020	0.068	0.104	0.145
Alaska Peninsula	$\mathbf{0 . 0 1 1}$	0.001	$\mathbf{0 . 0 1 6}$	0.009	0.002	0.015	0.036
SE Alaska/N. BC	$\mathbf{0 . 0 3 1}$	0.001	$\mathbf{0 . 0 3 0}$	0.015	0.006	0.029	0.063
Skeena	$\mathbf{0 . 0 0 0}$	0.000	$\mathbf{0 . 0 0 1}$	0.002	0.000	0.000	0.006
BC/Washington	$\mathbf{0 . 1 7 6}$	0.008	$\mathbf{0 . 1 6 0}$	0.020	0.122	0.159	0.200

The differences in stock structure by week were significant for both the SPAM and BAYES estimates (Figure 7, see non-overlapping differences in the plotted 95% credible intervals). For example, fish from Western Alaska and the Upper/Middle Yukon were more prevalent in the early part of the season (Weeks 24-28) than the later (Weeks 35-40) whereas the inverse relationship was apparent for stocks from Asia (Figure 7). This is similar to trends observed previously for chum salmon bycatch samples genetically analyzed from the 1994 and 1995 years (Wilmot et al., 1998).

Figure 7. Early, middle, and late BAYES stock composition estimates and 95% credible intervals for the three temporal periods from the AYKSSI subset of samples from the 2005 chum salmon bycatch. Early designates weeks 24-28, middle designates 29-34, and late designates weeks 35-40.

The stock composition of the chum salmon bycatch varied during the course of the season even within closely spaced temporal groupings. For example, disregarding the changing spatial distributions of the sample set (Figure 3), estimates for weeks 24-28 and 35-40 show strong stock differences yet are only separated by 6 weeks. One way to adjust for the effects of the changing distribution is to weight the estimates by the proportion of bycatch caught in each time interval and then compare that estimate with the overall estimate determined for the 1,084 sample set (Table 3). The weighted stock composition estimates were very similar to the estimate produced from the 1,084 samples as a whole (Figure 8) suggesting the potential for a simple linear relationship in which the two sample peaks could be averaged to identify the stock composition of the entire bycatch. For example, if Western Alaska and Yukon stocks decline over time while Asia stocks increase, a weighted average (stock composition estimates for each time period expanded by the integrated total bycatch over the same time periods) between the two peaks may produce an acceptable stock composition estimate for the entire bycatch. Such an analysis would not account for the strong spatial biases in the AYKSSI sample set (Figure 1), but could account for temporal biases.

Figure 8. Comparison of the aggregated stock composition estimate produced from the available 1,084 genetic samples with a weighted estimate based on the temporal stock compositions weighted by the proportion of bycatch caught in each time interval.

Stock Composition Summary

The unweighted stock composition results from the AYKSSI chum bycatch sample set indicate that the major contributing regions were: Upper/Middle Yukon (5-6\%), western Alaska (16\%), BC/Washington (16-17\%), Japan/S. Russia (28-29\%) and Russia (25-29\%). There was little contribution from southeast Alaska/Northern British Columbia, Alaska Peninsula, or Skeena. SPAM simulation studies described above indicate some potential to
 misallocate SE Alaska fish/N. BC to BC/Washington
(Table 2), but because stock composition estimates for the SE Alaska/N. BC stocks were low, they were combined in Figure 9 with the BC/Washington region to allow comparison with previous estimates (Patton et al., 1998; Seeb et al., 2004; Wilmot et al., 1998). Although the AYKSSI genetic sample distribution is different than the overall non-Chinook bycatch distribution (Figure 2), the results derived from our study are similar to those from the 1994 bycatch (Figure 9). The 1994-1996 chum bycatch estimates were produced with allozyme data and the 2005 chum bycatch estimates were derived for the first time from DNA based microsatellite markers.

Figure 9. Comparison of 2005 stock composition estimates with those from the 1994-1996 years. The 1994-1996 estimates were derived using allozyme markers while the 2005 estimates were produced for the first time using DNA based markers. For estimates across different years, not all areas may contain the same populations as different baselines were used in producing these estimates.

Age structure of AYKSSI genetic samples

Ocean migration patterns influence the age at which salmon are caught in the trawl fisheries. As part of the AYKSSI project, spatial and temporal changes of the chum salmon distribution in the Bering Sea will be analyzed with respect to ocean age; consequently, 618 scales from the 2005 chum salmon bycatch from the Bering Sea groundfish fishery were analyzed. Acetate impressions were made and digitized into TIFF files. Scale analysis shows that the majority of samples came from ocean age 3 fish (Figure 10, left panel). Other ages appear to be part of a normal distribution centered about the mean (Figure 10, right panel).

Summary and discussion with future implications

Communities in western Alaska and elsewhere are dependent on salmon for subsistence and commercial purposes. Decreasing salmon returns to western Alaska have caused hardships in these communities. Salmon-dependent communities have expressed concerns that the Bering Sea pollock fisheries could be responsible for the decreasing salmon returns due to the inadvertent catch of salmon as bycatch. Stock composition estimates of the salmon bycatch are needed for pollock and salmon fishery managers to understand whether the pollock fisheries may be impacting salmon returns, however much work remains before such estimates can be produced. To guide the efforts to estimate the stock composition of the total bycatch, this report provides a stock composition analysis of a stratified sample set from the 2005 chum salmon bycatch. The limitations of this analysis for understanding the stock composition of the bycatch are summarized below.

Sampling issues:
Samples from the 2005 chum salmon bycatch were specifically collected for an AYKSSI funded project to determine spatial and temporal distributions of chum salmon in the Bering Sea. We highlight the inherent spatial and temporal biases in the sample set, which limits the application of the AYKSSI sample stock composition estimate to the entire 2005 chum salmon bycatch. With the need to fully understand the effects of the salmon bycatch on western Alaska salmon escapements, changes to the sample collection protocols are being reviewed and new procedures are expected to be implemented during the 2011 fishing season.

Evaluation of the baseline:
We have selected a chum salmon microsatellite baseline developed by Dr. Beacham at the Division of Fisheries and Oceans Canada (DFO) because it is the only publicly available baseline with known populations and references (Beacham et al., 2009b). This baseline represents 381 chum populations distributed throughout the Pacific Rim and is available for anonymous download through a Division of Fisheries and Oceans web portal. While only 11 of the 14 markers have been utilized, these markers provide discriminatory power to identify stock distributions for 8 regional groupings. Additional markers may be added in the future as they are standardized. In addition, at least two other chum salmon baselines are currently being developed and may be considered in future analyses after they are made publicly available, published, and evaluated. Improvements in stock composition estimates will require further baseline development with additional markers and populations, as well as periodic checks to determine if there is drift of allele frequencies or migration within the baseline.

Stock composition estimates:
Overall, Asian fish dominated the AYKSSI sample set, with Western Alaska and BC/Washington as the largest contributors from North American stocks. For this analysis, over one thousand samples were genotyped from the 2005 AYKSSI sample set. Stock composition estimates were prepared using both a Bayesian and maximum likelihood approach (SPAM), both of which provided very similar overall estimates. These results suggest that the genetic baseline provided criteria from which to confidently identify the 8 identified regional groupings of chum salmon.

Temporal effects on stock composition estimates of the AYKSSI chum salmon sample set:
Western Alaska fish dominated in the early part of the sampling effort; Asian fish dominated in the middle and late sampling times. As the AYKSSI genetic sample temporal distribution was dissimilar to the overall chum bycatch in 2005 (Figure 2), separate stock composition estimates were produced for samples taken at three different time periods (early, middle, and late) in the bycatch. Stock composition estimates for these three time periods differed, suggesting temporal stratification of chum salmon stocks in the Bering Sea and/or changes in fishing locations. When stock composition estimates were adjusted for sampling rate, the weighted stock composition estimate was remarkably similar to the composite stock composition estimate of the 1,084 initial samples. This suggests the potential for a simple linear relationship over time in which some stocks decrease (Western Alaska and Upper/Middle Yukon) while others increase (Asia).

Comparison of 2005 with earlier years:
The 2005 AYKSSI stock composition estimates were comparable to those from the 1994 bycatch samples, although it is recognized that small changes in stock composition could represent large changes in individual stocks at the escapement level. The 2005 analysis is the first year for
which DNA-based markers have been used to analyze chum salmon bycatch samples and the similarity with estimates originally derived using both scale pattern and protein markers helps validate the more cost-efficient DNA based methods.

Future estimates:
Proportionate sampling in future years will yield stock composition estimates with greater certainty in the origin of stocks and the proportion of critical stocks in the bycatch. Also, questions such as the composition in time and space, and warm versus cold years, can be tested to see if changes in harvest strategy would have less impact on critical stocks. In addition, the suitability of more refined regional reporting groups will be explored in consultation with other genetic laboratories. Such an analysis with more than 50 reporting groups has recently been reported for chum salmon collections taken from the Gulf of Alaska (Beacham et al., 2009c).

Acknowledgements

Genotyping for this analysis was funded by the Arctic/Yukon/Kuskokwim Sustainable Salmon Initiative (AYKSSI) through a grant awarded to both the National Marine Fisheries Auke Bay Laboratories (Kondzela, co-Principal Investigator) and the University of Alaska Fairbanks School of Fisheries and Ocean Sciences (Gharrett, co-Principal Investigator). Genotyping of the 2005 chum bycatch was performed by Quenna Szafran, Tyler McCraney, Colby Marvin, and Chris Kondzela (NMFS). Bycatch samples and their collection protocols have been developed by Chuck Guthrie. DNA was purified by Hanhvan Nguyen and Wei Cheng (NMFS). Jacek Maselko, Andrew Gray and Sharon Wildes helped review the report and provided statistical support. The baseline used for these analyses was obtained through a web portal sponsored by the Division of Fisheries and Oceans Canada and developed in the Molecular Genetics Laboratory with genetic markers identified in a number of laboratories (see text for references). This document has been peer reviewed by internal and external reviewers.

References

Abe, S., Moriya, S., Sato, S., Azumaya, T., Suzuki, O., Urawa, S., and Urano, A. (2007). Genetic stock identification of chum salmon in the Bering Sea and North Pacific Ocean using mitochondrial DNA microarray. Aquaculture 272, S238-S239.

Ackley, D. (1997). Bycatch patterns in the Bering Sea: Templates for area closures. In Symposium on the Consequences and Management of Fisheries Bycatch, pp. 47-51, University of Alaska Sea Grant College Program, University of Alaska Fairbanks, Fairbanks, AK.

ADFG (2003). SPAM Version 3.7: Statistics Program for Analyzing Mixtures., Special Publication No. 15, Alaska Department of Fish and Game, Division of Commercial Fisheries Division, Gene Conservation Laboratory, Anchorage, AK.

Banks, M.A., Blouin, M.S., Baldwin, B.A., Rashbrook, V.K., Fitzgerald, H.A., Blankenship, S.M., and Hedgecock, D. (1999). Isolation and Inheritance of Novel Microsatellites in Chinook Salmon (Oncorhynchus tschawytscha). Journal of Heredity 90, 281-288.

Beacham, T.D., Le, K.D., Wetklo, M., McIntosh, B., Ming, T., and Miller, K.M. (2009a). Population structure and stock identification of chum salmon from western Alaska determined with microsatellite and major histocompatibility complex variation. Pages 141-160. Pacific Salmon: ecology and management of western Alaska's populations (C.C. Krueger and C.E. Zimmerman, eds.). In American Fisheries Society, Symposium 70 (Bethesda, MD).

Beacham, T.D., Candy, J.R., Le, K.D., and Wetklo, M. (2009b). Population structure of chum salmon (Oncorhynchus keta) across the Pacific Rim, determined from microsatellite analysis. Fishery Bulletin 107, 244-260.

Beacham, T.D., Candy, J.R., Sato, S., Urawa, S., Le, K.D., and Wetklo, M. (2009c). Stock origins of chum salmon (Onchorhynchus keta) in the Gulf of Alaska during winter as estimated with microsatellites. North Pacific Anadromous Fish Commission Bulletin 5, 15-23.

Cairney, M., Taggart, J.B., and Hoyheim, B. (2000). Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Molecular Ecology 9, 2175-2178.

Eggers, D.M. (1995). Harvest rates by the South Unimak and Shumagin Islands June Fishery on northwest Alaska summer chum salmon, 1979-1994, and Bristol Bay sockeye salmon. Regional Information Report No 5J95-05, Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Juneau, AK.

Friedland, K.D., Walker, R.V., Davis, N.D., Myers, K.W., Boehlert, G.W., Urawa, S., and Ueno, Y. (2001). Open-ocean orientation and return migration routes of chum salmon based on temperature data from data storage tags. Marine Ecology-Progress Series 216, 235-252.

Myers, K.W., Walker, R.V., and Davis, N.D. (1994). Evaluation of U.S. observer biological data and scale samples from chum salmon in the bycatch of the 1993 pollock B-season fishery in the Bering Sea. North Pacific Anadromous Fish Commission Document 88, FRI-UW-9415. Fisheries Research Institute, School of Fisheries, University of Washington, Seattle. 19 pp.

Nelson, R.J., and Beacham, T.D. (1999). Isolation and cross species amplification of microsatellite loci useful for study of Pacific salmon. Animal Genetics 30, 228-229.

North Pacific Fishery Management Council (NPFMC). (2005) Environmental Assessment/Regulatory Impact Review/Initial Regulatory Flexibility Assessment for Modifying Existing Chum and Chinook Salmon Savings Areas: Amendment 84, Secretariat Review Draft. North Pacific Fishery Management Council, Anchorage.

Olsen, J.B., Wilson, S.L., Kretschmer, E.J., Jones, K.C., and Seeb, J.E. (2000). Characterization of 14 tetranucleotide microsatellite loci derived from sockeye salmon. Molecular Ecology 9, 2185-2187.

Patton, W.S., Myers, K.W., and Walker, R.V. (1998). Origins of chum salmon caught incidentally in the eastern Bering Sea walleye pollock trawl fishery as estimated from scale pattern analysis. North American Journal of Fisheries Management 18, 704-712.

Pella, J., and Geiger, H.J. (2009). Sampling considerations for estimating geographic origins of Chinook salmon bycatch in the Bering Sea pollock fishery. ADFG Special Publication No SP 09-08.

Pella, J., and Masuda, M. (2001). Bayesian methods for analysis of stock mixtures from genetic characters. Fishery Bulletin 99, 151-167.

Rexroad, C.E., Coleman, R.L., Martin, A.M., Hershberger, W.K., and Killefer, J. (2001). Thirty-five polymorphic microsatellite markers for rainbow trout (Oncorhynchus mykiss). Animal Genetics 32, 317-319.

Seeb, L.W., Crane, P.A., and Gates, R.B. (1995). Progress report of genetic studies of Pacific Rim chum salmon and preliminary analysis of the 1993 and 1994 south Unimak June fisheries. Regional Information Report No 5J95-07, Alaska Department of Fish and Game, Division of Commercial Fisheries Management and Development, Anchorage, AK.

Seeb, L.W., Crane, P.A., Kondzela, C.M., Wilmot, R.L., Urawa, S., Varnavskaya, N.V., and Seeb, J.E. (2004). Migration of Pacific Rim chum salmon on the high seas: Insights from genetic data. Environmental Biology of Fishes 69, 21-26.

Spies, I.B., Brasier, D.J., O'Reilly, T.L., Seamons, T.R., and Bentzen, P. (2005). Development and characterization of novel tetra-, tri-, and dinucleotide microsatellite markers in rainbow trout (Oncorhynchus mykiss). Molecular Ecology Notes 5, 278-281.

Stram, D.L., and Ianelli, J.N. (2009). Eastern Bering Sea pollock trawl fisheries: Variation in salmon bycatch over time and space, p. 827-850. In C. C. Krueger and C. E. Zimmerman (editors), Pacific Salmon: Ecology and Management in Western Alaska's Populations. American Fisheries Society Symposium 70. Bethesda, Maryland.

Williamson, K.S., Cordes, J.F., and May, B. (2002). Characterization of microsatellite loci in chinook salmon (Oncorhynchus tshawytscha) and cross-species amplification in other salmonids. Molecular Ecology Notes 2, 17-19.

Wilmot, R.L., Kondzela, C.M., Guthrie, C.M., and Masuda, M.M. (1998). Genetic stock identification of chum salmon harvested incidentally in the 1994 and 1995 Bering Sea trawl fishery. North Pacific Anadromous Fish Commission Bulletin No. 1, 285-299.

Witherell, D., Ackley, D., and Coon, C. (2002). An overview of salmon bycatch in Alaska groundfish fisheries. Alaska Fishery Research Bulletin 9, 53-64.

Appendices

Appendix 1. Chum salmon populations in the DFO microsatellite baseline with regional designations used in the analyses of this report.

DFO Number	Population Name	Region Number	Region
8	Big_Creek	1	Upper/Middle Yukon
89	Big_Salt	1	Upper/Middle Yukon
86	Black_River	1	Upper/Middle Yukon
87	Chandalar	1	Upper/Middle Yukon
28	Chandindu	1	Upper/Middle Yukon
82	Cheena	1	Upper/Middle Yukon
81	Delta	1	Upper/Middle Yukon
7	Donjek	1	Upper/Middle Yukon
5	Fishing_Br	1	Upper/Middle Yukon
88	Jim_River	1	Upper/Middle Yukon
85	Kantishna	1	Upper/Middle Yukon
2	Kluane	1	Upper/Middle Yukon
59	Kluane_Lake	1	Upper/Middle Yukon
181	Koyukuk_late	1	Upper/Middle Yukon
90	Koyukuk_south	1	Upper/Middle Yukon
10	Minto	1	Upper/Middle Yukon
6	Pelly	1	Upper/Middle Yukon
439	Porcupine	1	Upper/Middle Yukon
83	Salcha	1	Upper/Middle Yukon
4	Sheenjek	1	Upper/Middle Yukon
1	Tatchun	1	Upper/Middle Yukon
9	Teslin	1	Upper/Middle Yukon
84	Toklat	1	Upper/Middle Yukon
348	Agiapuk	2	Coastal Western Alaska/Lower Yukon
376	Alagnak	2	Coastal Western Alaska/Lower Yukon
3	Andreafsky	2	Coastal Western Alaska/Lower Yukon
357	Aniak	2	Coastal Western Alaska/Lower Yukon
301	Anvik	2	Coastal Western Alaska/Lower Yukon
80	Chulinak	2	Coastal Western Alaska/Lower Yukon
347	Eldorado	2	Coastal Western Alaska/Lower Yukon
358	George	2	Coastal Western Alaska/Lower Yukon
307	Gisasa	2	Coastal Western Alaska/Lower Yukon
371	Goodnews	2	Coastal Western Alaska/Lower Yukon
288	Henshaw_Creek	2	Coastal Western Alaska/Lower Yukon
339	Imnachuk	2	Coastal Western Alaska/Lower Yukon
361	Kanektok	2	Coastal Western Alaska/Lower Yukon
362	Kasigluk	2	Coastal Western Alaska/Lower Yukon
328	Kelly_Lake	Coastal Western Alaska/Lower Yukon	
340	Kobuk	2	Coastal Western Alaska/Lower Yukon
343	Koyuk	Coastal Western Alaska/Lower Yukon	
363	Kwethluk	Costal Western Alaska/Lower Yukon	
336	Kwiniuk_River	Costal Western Alaska/Lower Yukon	
303	Melozitna	Coastal Western Alaska/Lower Yukon	
		2	

373	Mulchatna	2
372	Naknek	2
330	Niukluk	2
329	Noatak	2
345	Nome	2
302	Nulato	2
374	Nunsatuk	2
13	Peel_River	2
322	Pikmiktalik	2
331	Pilgrim_River	2
346	Shaktoolik	2
341	Snake	2
368	Stuyahok_River	2
375	Togiak	2
154	Tozitna	2
342	Unalakleet	2
344	Ungalik	2
323	Carroll	3
353	Constantine	3
414	Crag_Cr	3
210	Dipac_Hatchery	3
319	Disappearance	3
276	Ensheshese	3
227	Gambier	3
237	Greens	3
234	Herman_Creek	3
162	Kateen	3
238	Kennell	3
351	Keta_Creek	3
437	Klewnuggit_Cr	3
423	Kumealon	3
127	Lachmach	3
448	LagoonCr	3
444	Nakut_Su	3
422	Nass_River	3
321	Neets_Bay_early	3
320	Neets_Bay_late	3
377	Olsen_Creek	3
236	Sawmill	3
249	Shustnini	3
416	Stumaun_Cr	3
30	Taku	3
18	Takwahoni	3
247	Tuskwa	3
232	Wells_Bridge	3
352	Wells_River	3
248	Yellow_Bluff	3
360	Alogoshak	4
333	American_River	4
366	Big_River	4

354	Coleman_Creek	4	Alaska Peninsula
355	Delta_Creek	4	Alaska Peninsula
359	Egegik	4	Alaska Peninsula
332	Frosty_Creek	4	Alaska Peninsula
365	Gertrude_Creek	4	Alaska Peninsula
370	Joshua_Green	4	Alaska Peninsula
364	Meshik	4	Alaska Peninsula
283	Moller_Bay	4	Alaska Peninsula
369	Pumice_Creek	4	Alaska Peninsula
367	Stepovak_Bay	4	Alaska Peninsula
335	Sturgeon	4	Alaska Peninsula
350	Uganik	4	Alaska Peninsula
334	Volcano_Bay	4	Alaska Peninsula
356	Westward_Creek	4	Alaska Peninsula
239	Ahnuhati	5	BC/Washington
69	Ahta	5	BC/Washington
155	Ain	5	BC/Washington
183	Algard	5	BC/Washington
58	Alouette	5	BC/Washington
325	Alouette_North	5	BC/Washington
428	Arnoup_Cr	5	BC/Washington
153	Ashlulm	5	BC/Washington
156	Awun	5	BC/Washington
133	Bag_Harbour	5	BC/Washington
164	Barnard	5	BC/Washington
16	Bella_Bell	5	BC/Washington
79	Bella_Coola	5	BC/Washington
49	Big_Qual	5	BC/Washington
201	Big_Quilcene	5	BC/Washington
281	Bish_Cr	5	BC/Washington
198	Bitter_Creek	5	BC/Washington
103	Blackrock_Creek	5	$\mathrm{BC} /$ Washington
390	Blaney_Creek	5	BC/Washington
138	Botany_Creek	5	BC/Washington
264	Buck_Channel	5	BC/Washington
169	Bullock_Chann	5	BC/Washington
61	Campbell_River	5	BC/Washington
78	Cascade	5	BC / W ashington
76	Cayeghle	5	BC/Washington
42	Cheakamus	5	BC/Washington
398	Cheenis_Lake	5	BC / W ashington
51	Chehalis	5	BC / W ashington
19	Chemainus	5	BC/Washington
47	Chilliwack	5	BC/Washington
392	Chilqua_Creek	5	BC / W ashington
117	Chuckwalla	5	BC / W ashington
139	Clapp_Basin	5	BC/Washington
107	Clatse_Creek	5	BC/Washington
118	Clyak	5	BC/Washington
62	Cold_Creek	5	BC/Washington

Colonial
Cooper_Inlet
County_Line
Cowichan
Dak_-_reek
Dana_Cre_Inlet
Dawson_-
Dean_River
Deena
Deer_Pass
Demamiel
Draney
Duthie_Creek
East_Arm
Elcho_Creek
Ellsworth_Cr
Elwha
Fairfax_Inlet
Fish_Creek
Flux_Cr
Foch_Creek
Frenchman
Gill_Creek
Gilttoyee
Glendale
Gold_Harbour
Goldstream
Goodspeed_River
Government
Grant_Creek
Green_River
GreenRrHatchery
Harrison
Harrison_late
Hathaway_Creek
Heydon_Cre
Hicks_Cr
Homathko
Honna
Hoodsport
Hooknose
Hopedale_Cr
Hutton_Head
Illiance
Inch_Creek
Indian_River
Jenny_Bay
Kainet_River
Kakweiken
Kanaka_Cr
$\mathrm{BC} /$ Washington
BC/Washington
BC/Washington
BC/Washington
BC/Washington
$\mathrm{BC} /$ Washington
$\mathrm{BC} /$ Washington
$\mathrm{BC} /$ Washington
$\mathrm{BC} /$ Washington
BC/Washington
$\mathrm{BC} /$ Washington
$\mathrm{BC} /$ Washington
$\mathrm{BC} /$ Washington
BC/Washington
BC/Washington
$\mathrm{BC} /$ Washington
BC/Washington
$\mathrm{BC} /$ Washington
$\mathrm{BC} /$ Washington
$\mathrm{BC} /$ Washington
$\mathrm{BC} /$ Washington
BC/Washington
$\mathrm{BC} /$ Washington
$\mathrm{BC} /$ Washington
BC/Washington
BC/Washington
$\mathrm{BC} /$ Washington
BC/Washington
BC/Washington
$\mathrm{BC} /$ Washington
BC/Washington
$\mathrm{BC} /$ Washington

402	Kano_Inlet_Cr
389	Kawkawa
95	Kemano
192	Kennedy_Creek
101	Khutze_River
126	Khutzeymateen
282	Kiltuish
93	Kimsquit
187	Kimsquit_Bay
419	Kincolith
106	Kitasoo
99	Kitimat_River
275	Kitsault_Riv
21	Klinaklini
418	Ksedin
125	Kshwan
112	Kwakusdis_River
436	Kxngeal_Cr
262	Lagins
131	Lagoon_Inlet
167	Lard
160	Little_Goose
50	Little_Qua
413	Lizard_Cr
119	Lockhart-Gordon
176	Lower_Lillooet
137	Mace_Creek
242	Mackenzie_Sound
116	MacNair_Creek
55	Mamquam
121	Markle_Inlet_Cr
27	Martin_Riv
338	Mashiter_Creek
109	McLoughin_Creek
178	Milton
194	Minter_Cr
254	Mountain_Cr
111	Mussel_River
157	Naden
337	Nahmint_River
14	Nanaimo
399	Necleetsconnay
113	Neekas_Creek
173	Nekite
104	Nias_Creek
143	Nimpkish
53	Nitinat
191	Nooksack
186	Nooseseck
318	NorrishWorth

$\mathrm{BC} /$ Washington
$\mathrm{BC} /$ BC/Washington
$\mathrm{BC} /$ Washington
$\mathrm{BC} /$ Washingington
$\mathrm{BC} /$ Washington
BC

159	North_Arm	5	BC/Washington
184	Orford	5	BC/Washington
287	Pa-aat_River	5	BC/Washington
260	Pacofi	5	BC/Washington
56	Pallant	5	BC/Washington
65	Pegattum_Creek	5	BC/Washington
48	Puntledge	5	BC/Washington
98	Quaal_River	5	BC/Washington
147	Quap	5	BC/Washington
108	Quartcha_Creek	5	BC/Washington
199	Quinault	5	BC/Washington
110	Roscoe_Creek	5	BC/Washington
397	Salmon_Bay	5	BC/Washington
195	Salmon_Cr	5	BC/Washington
134	Salmon_River	5	BC/Washington
200	Satsop	5	BC/Washington
410	Seal_Inlet_Cr	5	BC/Washington
158	Security	5	BC/Washington
130	Sedgewick	5	BC/Washington
393	Serpentine_R	5	BC/Washington
317	Shovelnose_Cr	5	BC/Washington
206	Siberia_Creek	5	BC/Washington
25	Silverdale	5	BC/Washington
196	Skagit	5	BC/Washington
171	Skowquiltz	5	BC/Washington
447	SkykomishRiv	5	BC/Washington
132	Slatechuck_Cre	5	BC/Washington
43	Sliammon	5	BC/Washington
15	Smith_Cree	5	BC/Washington
54	Snootli	5	BC/Washington
180	Southgate	5	BC/Washington
26	Squakum	5	BC/Washington
142	Squamish	5	BC/Washington
128	Stagoo	5	BC/Washington
265	Stanley	5	BC/Washington
52	Stave	5	BC/Washington
396	Stawamus	5	BC/Washington
409	Steel_Cr	5	BC/Washington
424	Stewart_Cr	5	BC/Washington
327	Sugsaw	5	BC/Washington
324	Surprise	5	BC/Washington
75	Taaltz	5	BC/Washington
251	Tarundl_Creek	5	BC/Washington
149	Theodosia	5	BC/Washington
22	Thorsen	5	BC/Washington
129	Toon	5	BC/Washington
279	Tseax	5	BC/Washington
202	Tulalip	5	BC/Washington
97	Turn_Creek	5	BC/Washington
430	Turtle_Cr	5	BC/Washington

165	Tyler	5
33	Tzoonie	5
140	Vedder	5
70	Viner_Sound	5
45	Wahleach	5
172	Walkum	5
73	Waump	5
105	West_Arm_Creek	5
326	Widgeon_Slough	5
277	Wilauks_Cr	5
120	Wilson_Creek	5
401	Worth_Creek	5
60	Wortley_Creek	5
270	Andesite_Cr	6
123	Date_Creek	6
269	Dog-tag	6
266	Ecstall_River	6
268	Kalum	6
273	Kispiox	6
163	Kitwanga	6
271	Kleanza_Cr	6
122	Nangeese	6
274	Skeena	6
124	Upper/Middle_Kitsumkal	6
267	Whitebottom_Cr	6
434	Zymagotitz	6
41	Abashiri	7
218	Amur	7
215	Avakumovka	7
40	Chitose	7
315	Gakko_River	7
292	Hayatsuki	7
44	Horonai	7
213	Kalininka	7
252	Kawabukuro	7
313	Koizumi_River	7
300	Kushiro	7
37	Miomote	7
211	Naiba	7
391	Namdae_R	7
231	Narva	7
298	Nishibetsu	7
293	Ohkawa	7
297	Orikasa	7
214	Ryazanovka	7
312	Sakari_River	7
311	Shari_River	7
36	Shibetsu	7
299	Shikiu	7
253	Shiriuchi	7

[^1]| 310 | Shizunai | 7 | Japan/Korea/China/S. Russia |
| :---: | :---: | :---: | :---: |
| 217 | Suifen | 7 | Japan/Korea/China/S. Russia |
| 35 | Teshio | 7 | Japan/Korea/China/S. Russia |
| 39 | Tokachi | 7 | Japan/Korea/China/S. Russia |
| 38 | Tokoro | 7 | Japan/Korea/China/S. Russia |
| 314 | Tokushibetsu | 7 | Japan/Korea/China/S. Russia |
| 291 | Toshibetsu | 7 | Japan/Korea/China/S. Russia |
| 296 | Tsugaruishi | 7 | Japan/Korea/China/S. Russia |
| 383 | Tugur_River | 7 | Japan/Korea/China/S. Russia |
| 226 | Tym | 7 | Japan/Korea/China/S. Russia |
| 230 | Udarnitsa | 7 | Japan/Korea/China/S. Russia |
| 316 | Uono_River | 7 | Japan/Korea/China/S. Russia |
| 309 | Yurappu | 7 | Japan/Korea/China/S. Russia |
| 207 | Anadyr | 8 | Russia |
| 384 | Apuka_River | 8 | Russia |
| 382 | Bolshaya | 8 | Russia |
| 380 | Dranka | 8 | Russia |
| 223 | Hairusova | 8 | Russia |
| 378 | Ivashka | 8 | Russia |
| 225 | Kamchatka | 8 | Russia |
| 219 | Kanchalan | 8 | Russia |
| 379 | Karaga | 8 | Russia |
| 294 | Kikchik | 8 | Russia |
| 209 | Kol | 8 | Russia |
| 233 | Magadan | 8 | Russia |
| 295 | Nerpichi | 8 | Russia |
| 381 | Okhota | 8 | Russia |
| 212 | Oklan | 8 | Russia |
| 222 | Ola | 8 | Russia |
| 386 | Olutorsky_Bay | 8 | Russia |
| 228 | Ossora | 8 | Russia |
| 224 | Penzhina | 8 | Russia |
| 385 | Plotnikova_R | 8 | Russia |
| 221 | Pymta | 8 | Russia |
| 220 | Tauy | 8 | Russia |
| 290 | Utka_River | 8 | Russia |
| 208 | Vorovskaya | 8 | Russia |
| 387 | Zhypanova | 8 | Russia |

[^0]: ${ }^{1}$ Reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA.
 ${ }^{2}$ Most liquid handling steps were performed with a Perkin-Elmer Janus AJL8M01 Robot.

[^1]: $\mathrm{BC} /$ Washington
 $\mathrm{BC} /$ Washington
 $\mathrm{BC} /$ Washington
 $\mathrm{BC} /$ Washington
 BC/Washington
 $\mathrm{BC} /$ Washington
 $\mathrm{BC} /$ Washington
 $\mathrm{BC} /$ Washington
 BC/Washington
 BC/Washington
 BC/Washington
 BC/Washington
 BC/Washington
 Skeena
 Japan/Korea/China/S. Russia
 Japan/Korea/China/S. Russia Japan/Korea/China/S. Russia Japan/Korea/China/S. Russia Japan/Korea/China/S. Russia Japan/Korea/China/S. Russia Japan/Korea/China/S. Russia Japan/Korea/China/S. Russia Japan/Korea/China/S. Russia Japan/Korea/China/S. Russia Japan/Korea/China/S. Russia Japan/Korea/China/S. Russia Japan/Korea/China/S. Russia Japan/Korea/China/S. Russia Japan/Korea/China/S. Russia

