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6. Data-rich approaches

6.X. Probabilistic approaches to setting catch levels

K. W. Shertzer, M. H. Prager, E. H. Williams, SEFSC, Beaufort, NC

6.X.1. Introduction

6.X.1.1. Probability-based reference points

The use of probability theory to derive fishery reference points (typically targets and limits)
has been described by several authors. Caddy and McGarvey (1996) described a procedure
to set a target reference point, given a limit reference point Fim specified as a point estimate,
such that the realized fishing mortality rate in the next period F; would exceed Fiim with only
some specified probability P* The procedure assumes that F; will be centered on the target
but not necessarily equal it, because of imperfect implementation of management controls
or imperfect estimation in the stock assessment.

In the Caddy and McGarvey (1996) framework, the probability of overfishing in the next
year is computed from Fim and the probability density function (PDF) ¢F[ of F:

PH(F, > Fi) = | 4 (F)IF 1)

Riim

The catch target can be set to position the distribution of F; so that the allowable probability

of overfishing is achieved; i.e,, Pr(F, > F,,) = P* (Figure 1). That fishing mortality rate is

lim

the target for the next period.

By “allowable probability,” we mean a probability allowed in any single year, such that P* is
the annual probability of overfishing. In a series of n years, the probability that overfishing
will occur in at least one year, assuming independence among years, increases to p, =1 - (1
- P*¥)n, Forn=>5and P*=0.2, p,=0.672.

Prager et al. (2003) extended the work of Caddy and McGarvey (1996) in several ways. The
revised procedure, termed REPAST, allows for uncertainty both in estimating the limit
reference point and in attaining the target; uses ratios to reduce possible covariance
between quantities; and considers reference points in biomass as well as in fishing
mortality rate. Also, the authors suggested that an adjustment (bias correction) be made
when past catches have not been centered on their targets.



In more detail: Prager et al. (2003) pointed out that Fiin should be described when possible

by its PDF (¢an ) rather than by a point estimate, to account for scientific uncertainty in the

estimate of the limit reference point (which in the context of U.S. fisheries is MFMT). Then,
the probability of overfishing is computed

Pr(F, > F, )= j[j 4. (e)de} 4. (F)dF
0 F (2)

where 0 is a dummy integration variable. As before, a target is computed by positioning the

corresponding distribution of F; to achieve Pr(F, > F,,) =P *.

An assumption of eq. 2 is that Fiim and F; are independent. If the two are correlated, the

probability of overfishing could be computed from the bivariate PDF ¢an o

PI(F, > F,) = | | 4, dedF
0F (3)

Although use of a bivariate PDF is more general, it may not be possible to estimate ¢FlimrFt

from most data sets. Fortunately, simulation analysis has supported the assumption of
independence, and thus the less general eq. 2 should in many cases be a suitable
approximation (Shertzer et al. 2008).

6.X.1.2. New requirements

The reauthorizing legislation (MSRA 2006) established several new requirements for
federal fishery management. The most notable in this context are that fishery management
councils must set annual catch limits (ACLs), and that those limits may not exceed
recommendations of the councils’ scientific advisers.

The NS1 Guidelines (USOFR 2009) suggest that, as one precursor to establishment of an
annual catch limit, the council’s scientific advisors should determine acceptable biological
catch (ABC) by reducing the overfishing level (OFL) to account for scientific uncertainty. In
that context, the overfishing level is generally defined as the catch obtainable from current
stock biomass at the limit reference point (or “threshold”) in fishing mortality rate Fiim (in
practice often set to Fusy).

6.X.2. Simple method for computing ABC for one time step

[t is not yet clear how the new statutory requirements and guidance will be implemented by
fishery management councils, but it seems likely that some will take a serial approach,
asking the scientific advisors to set ABC each year, and then setting some annual catch limit
and annual catch target at lower levels in a separate step. In this section, we describe a
simple procedure (Prager and Shertzer 2009) by which a council’s scientific advisors could



set the ABC below the overfishing level. The approach is intended for use in a single year for
which estimates of current stock biomass B and the limit reference point Fim are available.
An estimate of OFL can be derived from those two estimates, and we demonstrate two ways
to approximate the variance (or distribution) of OFL, as well.

Our one-step-ahead approximations are based on propagation of error, modeled either
analytically or numerically. The analytical approximation can be used for fishery models
using the Baranov catch equation, and we show that similar results can be obtained through
numerical sampling (Monte Carlo simulation). We present a hypothetical example and
illustrate its solution by each method.

Some stock assessments provide estimates of OFL and its distribution. In that case, the
estimated distribution is used directly (instead of being approximated) to set ABC from
probability points of OFL. The rest of the procedure is the same as in our examples (e.g., Fig.
2b).

6.X.2.1. Analytical approximation — Baranov equation

Most age-structured fishery models use the Baranov catch equation, which considers
natural mortality M and fishing mortality F as continuous-time processes. Setting F to Fiim in
the catch equation, and disregarding age-specific considerations, we obtain the overfishing
level:

FimB(L— e_M_F"m)
Fim + M

lim

OFL = 4)

where M is the annual instantaneous rate of natural mortality.

Given the distribution of OFL, one could use a procedure symmetrical to that of Caddy and
McGarvey (1996) to set ABC < OFL such that Pr(ABC > OFL) is less than some chosen value
P* (Fig. 2a). In the Caddy and McGarvey (1996) procedure (Fig. 1), the limit reference point
Fiim is considered a fixed quantity, while the corresponding target is considered uncertain.
Here, the situation is reversed: the limiting value OFL is assumed uncertain, while the ABC
will be a point value. Still, the general concept of Caddy and McGarvey (1996) applies.

We assume here that OFL is centered at the value given by eq. 4 and that it is normally
distributed (Fig. 2a). Thus, all that remains to describe its distribution is the variance. Most
assessment provide either the variance of OFL explicitly or else components necessary to
compute it. Specifically, when an assessment provides the variances of B and Fiim, the
variance of OFL can be approximated by the delta method (Seber 1973). The delta method
approximates the variance of a function G(084, 02, ..., 8¢) through a Taylor expansion. If one
assumes—as we do for this example—that covariances among the 6 are zero, the estimated
variance of G is



Var[G(6)] ~ > Var[6,1(6G /96, (5a)

A more complex form is used to account for nonzero covariances. Casting eq. 5a into a form
more explicit for the current problem, we obtain

2 2
Var[OFL] ~ Var[F“m](aﬁ?:ij + Var[B](%} (5b)

lim

Variances of Fim and B should be available from a stock assessment, so that only the partial
derivatives need be computed to apply eq. 5b. Differentiating eq. 4 with respect to Fiim and
letting symbol Z = Fiim + M gives

oOFL Be*(Me* +F,, M —M +F.2) .
aFIim ZZ ! ( )
and differentiating eq. 4 with respect to B gives
oOFL F; . (1- e?) )
oB Z '

We then can estimate the variance of OFL by substituting eqs. 6 and 7 into eq. 5b. Once that
is done, the distribution of OFL is sufficiently described to proceed.

Let P*be the chosen probability that ABC > OFL. We choose ABC from the distribution of
OFL so that P*is satisfied. This procedure is symmetrical to the one described by Caddy and
McGarvey (1996), as shown in Figs. 1 and 2a.

A similar procedure can be used when the model under consideration has a different catch
equation. For example, catch equations for the Schaefer surplus-production model are given
by Prager (1994).

6.X.2.2. Numerical sampling — Baranov equation

The preceding development used an analytical approximation to arrive at propagation of
error. A more modern way of accomplishing the same result is by numerical approximation,
e.g., Monte Carlo sampling, in which many draws are made from the distributions of Fim and
B, and the corresponding distribution of OFL is computed. The ABC is taken as the
percentile of the distribution of OFL corresponding to P*. Monte Carlo simulation can be
programmed directly by the analyst or implemented through a computer program such as
WinBUGS (Lunn et al. 2000). Among the strengths of the numerical approach are that any
distribution can be used, including empirical distributions, and that a complete distribution
of OFL results, which need not be assumed normal.



6.X.2.3. Example — simple one-year-ahead method

In this example, we assume a stock assessment using the Baranov equation. The stock
assessment gives the estimates B = 1000 t and Fiim = 0.3 /yr. The assessment model also
estimates that the coefficient of variation (CV) of B is 0.2 and the CV of Fiin is 0.25. We know
from prior work that M = 0.2 /yr.

By applying eq. 4, we estimate that OFL = 236.1 t. We then apply eqs. 5-7 and find that the
variance of OFL is 4820 t2. Assuming normality (Fig. 2a), the ABC can be computed for
various levels of P* (Fig. 3a). For example, if no more than a 30% chance that ACL > OFL is
desired (P* = 0.3), the ABC should be set at 200 t.

The same values were used to generate the distribution of OFL by a Monte Carlo simulation
programmed in R (R Development Core Team 2008). The resulting distribution of OFL is
given in Fig. 2b, and the ABCs in Fig. 3b. The corresponding example of ABC at P* = 0.3 is
195+t

6.X.2.4 Simple method with age or size structure

The example above did not consider a structured population model, however the same
methods could be applied with age or size structure. The OFL of a structured population
can be computed from eq. 4 summed over age or size classes, and its approximate variance
from eq. 5. It is not obvious whether the assumption of independence among age- or size-
specific terms, as in eq. 5, would bias the estimated variance of the OFL, and if so, in which
direction.

6.X.3. Multi-year methods for ABC and ACT

In the next section, we describe two related, probabilistic approaches to setting catch levels
for more than one year into the future. These approaches are modified slightly from
Shertzer et al. (2008) for consistency with the 2008 NS1 Guidelines. Each approach
calculates an acceptable biological catch (ABC) accounting for scientific uncertainty and an
annual catch target (ACT) accounting for both scientific uncertainty and implementation
uncertainty. One approach considers the two sources of uncertainty simultaneously, the
other sequentially.

The 2008 NS1 Guidelines specify that the annual catch limit (ACL) must be less than or
equal to the ABC. The approaches here do not refer to an ACL, but leave the ACL to be set
anywhere below or equal to the ABC and sufficiently above the ACT so that accountability
measures (AMs) will not be triggered too frequently.

We term both approaches PASCL, for Probability Approach to Setting Catch Levels. One
approach is Integrated PASCL, the other, Sequential PASCL. The methods are based on
probabilities of future events, probabilities whose allowable levels are assumed to have
been set a priori, each less than 0.5:



e P*isthe allowable probability that the ABC will exceed the overfishing level (OFL).
(P* is used in both sequential and integrated PASCL.)

e P**isthe allowable probability that catch from an ACT will exceed the ABC. (P**is
used in sequential PASCL only.)

e P**jgthe allowable probability that catch from an ACT will exceed the OFL. (P*** is
used in integrated PASCL only. To ensure ACT < ABC, P*** < P*))

In each variant of PASCL, ABC is set below OFL using a control rule such that, based on
scientific uncertainty, the probability that ABC > OFL is P*. In each variant, the
corresponding ACT is set below the ABC, but the way that ACT is determined differs
between approaches.

In Integrated PASCL, the ACT is set below the OFL in nearly the same way that the ABC is set
below the OFL, but accounting for both scientific and implementation uncertainties. That is,
integrated PASCL sets the ACT such that, considering scientific and implementation
uncertainty, overfishing will occur with probability P***,

In Sequential PASCL, the ABC is set first, then the ACT is set from the ABC, rather than
directly from the OFL as in integrated PASCL. Because the ABC has been set accounting for
scientific uncertainty, the ACT control rule here accounts only for implementation
uncertainty: it sets the ACT so that future catch exceeds the ABC with annual probability
P**. The variants of PASCL are described below in more detail.

The difference between the two methods can be summarized—

1. Integrated PASCL sets the ACT by reference to the OFL, while Sequential PASCL sets
the ACT by reference to the ABC (also the ACL if it is set equal to the ABC).

2. Integrated PASCL sets the ACT to control the probability of overfishing directly,
while Sequential PASCL sets the ACT to avoid exceeding the ABC (also the ACL if itis
set equal to the ABC).

6.X.3.1. Integrated PASCL method

In integrated PASCL (Fig. 4), the goals are to compute the ACT such that

Pr(F, > F;,,) = P*** and the ABC such that Pr(F'> F,,) = P*. In this notation, the
values of F and F, differ because they correspond to the different catch levels: F," are
hypothetical fishing rates that would occur if the catch were set to achieve the ABC, and F,

are actual fishing rates predicted to occur when the catch is set to achieve the ACT. The
goals can be accomplished through use of a projection model similar to the many such
models already used by NMFS. When adapted to PASCL, such a model can be structured to
describe any individual stock, and it can incorporate any source of uncertainty considered



important. For example, scientific uncertainties can include uncertainty in assessment
results (e.g., in estimating Fim or initial abundance) and stochasticity in future stock
conditions (e.g, recruitment or life-history characteristics). Implementation uncertainty is
modeled as stochasticity in achieved catch from a target catch.

The probabilistic approach can be applied through a projection model with the following
steps (modified from Shertzer et al. 2008):

1. Initialize N replicates of the stock, each different in abundance and age structure to
reflect uncertainty in estimated current state of the stock.

2. Compute the ABC
a. Choose a trial value C’of the ABC without considering implementation
uncertainty.

b. Compute for each replicate the fishing mortality rate F,’ that yields C’ This

produces N values of F,' that define its empirical probability density (¢5;1 ).

c. Given ¢¢ and ¢ , compute P =Pr(F'> F,) fromeq. 2.
d. Using a numerical optimization method, adjust C” until P = P". The
adjusted C” is that year’s ABC.

3. Compute the ACT
a. Inthe presence of implementation uncertainty (imprecision of management
measures in controlling catch), each ACT will be the central tendency x of a
probability distribution ¢, . Choose a trial value of 4 and draw N values {C;
... Cy} from the corresponding distribution. Catch C; is the catch taken from
stock replicate Ny, C; from N, and so forth.

b. To combine uncertainties in state of the stock and implementation, compute
for each replicate the fishing mortality rate that yields C,. This produces N

values of F; to define its empirical probability density (¢5Ft ).

c. Given ¢ and ¢ , compute P = Pr(F, > F, ) from eq. 2.

d. Using a numerical optimization method, adjust x# until P=P***, The adjusted

s that year’s ACT.

4. Project each replicate one year forward, by applying recruitment and natural
mortality and taking catch C,.



5. Repeat steps 2—4 for T years. The duration T should be chosen to extend the
projection at least until catch levels based on the next assessment can be
implemented.

The preceding procedure gives an ABC and ACT for each year in the period, with the annual
probability of overfishing kept at P***. (This P*** corresponds to P* in the notation of
Shertzer et al. (2008)). To ensure that ACT < ABC, the constraint P *** < P * should be
applied, although even if P *** = P * the ACT would be expected to fall below the ABC
because it includes additional (implementation) uncertainty. In integrated PASCL, the order
of computation of this year’s ABC and ACT does not matter (step 2 could just as well be
done after step 3).

6.X.3.2. Example—Integrated PASCL method

In this example, we apply a three year projection with integrated PASCL to compute values
of ABCs, ACTs, and spawning biomass. The projection model extends from the 2008
assessment of vermilion snapper off the Southeastern U.S. (SEDAR 2008). It includes
stochasticity in future recruitment and in the initial stock structure (i.e., number at age).
For the example, we used P* = 0.4 and P***={0.1, 0.2, 0.3}, and assumed that the CV of
management implementation was CV ={0.2, 0.4, 0.6}. As one might expect, lower values of
P*** corresponded with lower ACTs, but also higher spawning biomass and consequently
higher ABCs (Fig. 5). For a given P*** greater precision in management implementation
(i.e., lower CV) allowed higher ACTs.

6.X.3.3 Sequential PASCL method

In the sequential method (Fig. 6), the ABC accounts only for scientific uncertainty, as before,
) = P*. Unlike the

integrated method, however, the value of the ABC is used explicitly when computing the

and is computed as in the integrated method such that Pr(F/> F,
ACT, so that the buffer between ABC and ACT accounts for implementation uncertainty only,
with probability P**. Any of egs. 1-3 could be used, but would be recast in terms of catch
rather than fishing mortality rate. It is expected that the modified eq. 1 would most often

apply:

Pr(C, > ABC) = T¢Ct (C)dc )

ABC

where (¢c‘ ) is the PDF of catch in year ¢, defined by the ACT and implementation

uncertainty. As before, the ACT is adjusted to position the distribution of C; so that the
allowable probability of exceeding the ABC is achieved [i.e., Pr(C, > ABC) = P **].



The sequential method could be applied in a procedure similar to that of the integrated
method, but with the following modification to step 3:

3. Compute the ACT

a. Given implementation uncertainty in controlling catch, each ACT will be the

central tendency  of a probability distribution ¢ . Choose a trial value of

and draw N values {C; ... Cy} from the corresponding distribution. Catch C; is
the catch taken from stock replicate N, Cz from N, and so forth.

b. Given ¢, and the ABC, compute P = Pr(C, > ABC) from eq. 8.

¢. Using a numerical optimization method, adjust x# until P = P** The adjusted
A is that year’s ACT.

In the sequential method, step 2 must come before step 3, because the ABC is used to derive
the ACT. To ensure that ACT < ABC, it is not necessary that P** < P *,

6.X.4 Discussion

Because in fisheries analyses, statistical assumptions are rarely (if ever) met, it is unlikely
that any of the methods described here will produce perfectly accurate results. We certainly
do not claim perfect accuracy in determining probabilities. What makes these methods
valuable is that they are objective, repeatable, and computable from standard assessment
outputs (or clear assumptions about variance). What is more, they are explicit in use of a
priori probabilities of exceeding reference points. Because it is impossible to avoid
overfishing with full certainty (unless F=0), we think that it is critical to define the allowable
probability of overfishing clearly and transparently.

6.X.4.1 Implementation imprecision and bias

When computing ACT, both variants of PASCL account for implementation uncertainty
(Rosenberg and Brault 1993; Rice and Richards 1996), as well as scientific uncertainty. We
have assumed so far that that implementation is unbiased, i.e., that actual catches are
centered on the ACT. If, however, catches tend to be higher or lower than the ACT, that
assumption can be avoided by including a bias-correction term in the computation (step 3).
Prager et al. (2003) suggested that the correction could be based on a running average of
observed bias in immediately preceding years. Semmens (2008) recommended “adjusting
for quota overages by sector after considering all sources of uncertainty.” That procedure is
theoretically equivalent to, but at times may be more practical than, including a bias-
correction in the overall computation.



Whether to account for imprecision or to correct for bias, an estimate of the form
(distribution) of implementation uncertainty is needed. For some stocks, that will be
estimable from data on fishery performance; if not, assumptions will be needed. With
widespread application of ACTs, implementation uncertainty, including implementation
bias, eventually should become estimable for many stocks.

6.X.4.2 Setting catch levels for multiple years

If catch levels are set just one year in advance, the ABC and ACT can be set under separate
consideration, as in §6.x.2 of this chapter. If catch levels for a series of years are required, it
seems better to set ACT and ABC under joint consideration, as in the two PASCL methods,
because of the feedback loop between catch levels and stock abundance (Rice and Richards
1996). Each year’s ACT influences the actual catch taken (C;), which in turn influences the
next year’s stock size, and thus its OFL and ABC.

6.X.4.3. Choosing P*

What value should be chosen for P*? That is at least in part a policy issue, so no definitive
answer can be given here. However, we note that setting ABC < OFL is only one step of a
multi-step process. A council is then charged with setting annual catch limits and annual
catch targets such that ACL < ABC and ACT < ACL. Because accountability measures (e.g.,
future catch reductions) are invoked when the actual catch exceeds the ACL, councils may
want to set the ACT low enough to avoid that condition. Because the P* described here is
only one buffer of a multi-buffer system, it seems reasonable to set it higher than if it were
the only buffer. A reasonable range might be 0.3 < P*< 0.5.

6.X.4.4. Integrated or sequential method?

We have described both an integrated and a sequential version of PASCL. While we have
described both for completeness, it seems likely that handling the uncertainties sequentially
will result in more protection, and thus less catch, than might have been envisioned,
because of the fundamental non-additivity of sequential probability events. That conclusion
was supported in a study by Semmens (2008), who wrote: “Importantly, the results suggest
that all sources of uncertainty and variability should be assessed together to determine the
appropriate buffer, a contrast to the currently suggested separation of biological and
management steps where the SSC handles the biological uncertainty buffer and Councils
handle the management uncertainty buffer.” For that reason, when setting ACT, methods
such as integrated PASCL, which consider all forms of variability together, may be
preferable to methods that consider them sequentially. We also note that, by setting P***,
integrated PASCL directly controls the probability of overfishing, an important
consideration.
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Figure 1. Probability density of future fishing mortality rate (¢§FI ). Shaded area is the

probability that future fishing mortality rate exceeds a point estimate of the limit fishing
mortality rate.
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Figure 2. Probability density of an example OFL (a) assuming the normal distribution or
(b) computed from numerical Monte Carlo sampling. The shaded area represents P* = 0.3.
Dashed line in (a) represents a point estimate of the OFL.
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Figure 3. Example of ABCs as a function of P*, where the distribution of OFL (a) is normal
or (b) computed from numerical sampling.
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Figure 4. Flowchart of integrated PASCL.
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Figure 5. Example of integrated PASCL. Here, P* = 0.4, and P***= 0.1, 0.2, or 0.3, as indicated. The CV of management implementation was

assumed to be 0.2, 0.4, or 0.6, as shown in column headings.
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Figure 6. Flowchart of sequential PASCL.
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