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Abstract 
Recent interest in incorporating uncertainty into how quotas are established for marine 
resources has brought a myriad of complex procedures. In this study, I show the use of a 
simple “catch-all” procedure to use survey biomass uncertainty to compute an Acceptable 
Biological Catch (ABC) or Annual Catch Limit (ACL) that incorporates uncertainty. As 
opposed to techniques that use model derived uncertainty estimates, this technique is 
available to nearly all stock and regions (assuming the stock is caught in a survey) and 
captures both process and measurement error. By using the coefficient of variation of a 
time series of biomass estimates or a Kalman filter variance estimate, I potentially 
account for both life history (short-lived stock with rapid fluctuations), and poorly 
surveyed stock (high variability from sporadic capture). Under current federal budget 
constraints, important biomass surveys are in jeopardy. Therefore, the uncertainty 
adjustment is compounded by the length of time since the last survey. This adjustment 
could also be used to account for the length between assessment updates. To illustrate the 
technique, the adjustment is applied to a variety of stock across regions. 

 

Introduction 
 

The Magnuson-Stevens Fishery Conservation and Management Act (MSA) was 
reauthorized and amended on January 12, 2007, by the Magnuson Stevens Fishery 
Conservation and Management Reauthorization Act (MSRA 2007). The MSRA 
established new requirements to end and prevent overfishing, including Annual Catch 
Limits (ACLs) and Accountability Measures (AMs). Specifically in MSA section 303 
(a)(15), fishery management plans shall  

“establish a mechanism for specifying annual catch limits in the plan (including a multiyear plan), 
implementing regulations, or annual specifications, at a level such that overfishing does not occur 
in the fishery, including measures to ensure accountability.” 

These annual catch limits are to apply to all fisheries with two exceptions: (1) stock that 
have a life cycles of one year or less, and (2) fisheries that are provided for under an 
international agreement in which the U.S. participates (e.g. The International Pacific 
Halibut Commission). A working group was convened to provide guidance on the 
application of ACLs for U.S. fisheries (Rosenberg et al. 2007) and a final rule on 
guidance for the implementation of ACLs was published on Januray 16, 2009 and was 
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enacted on February 17, 2009 (Department of Commerce 2009). Several key guiding 
principles were: 

(1) As a default or starting point, preventing overfishing applies to ALL stocks, therefore, so should 
ACLs. 

(2) To successfully end and prevent overfishing, OFL (Overfishing Level) > ABC (Acceptable 
Biological Catch) ≥ ACL. 

(3) Uncertainty is inevitable and should be accounted for in setting ABC and ACL. 

(4) Consideration of risk must include some evaluation of the vulnerability of a stock to the fishery. 

One of the difficulties of meeting the first guideline is that across regions and stock, 
stock assessment scientists apply a wide variety of analytical techniques on a wide 
variety of data types and quality to determine limits and targets for fishing mortality. 
Ideally, risk and uncertainty could be estimated directly from data and managers could 
choose what level of risk-aversion that is appropriate for particular fisheries. 
Unfortunately, a small proportion of fisheries have sufficient data to estimate reliable 
probability distributions of key parameters such as female spawning biomass and MSY 
fishing mortality (e.g. only two stocks in the Alaska region). Therefore, to meet the first 
guideline, a procedure is needed that works for fisheries that are both data-poor and data-
rich. 

However, to satisfy the third and fourth guidelines, uncertainties about both the 
stock size and the vulnerability of a stock to the fishery need to be accommodated for. As 
stated previously, quantification of these uncertainties is straightforward for data-rich 
stocks and can be estimated from maximum likelihood or Bayesian models. The majority 
of stocks do not have the data to produce model-derived estimates of uncertainty, and 
must rely on simpler methods.  

In this study, I show the use of a simple generalized procedure to use survey 
biomass uncertainty to adjust quotas to make an Acceptable Biological Catch (ABC) that 
incorporates uncertainty. As opposed to techniques that use model derived uncertainty 
estimates, this technique is available to nearly all stock and regions (assuming the stock is 
caught in a survey) and captures both process and measurement error. By using the 
coefficient of variation (CV) of a time series of biomass estimates or a Kalman filter 
derived CV, I potentially account for both life history (short-lived stock with rapid 
fluctuations), and poorly surveyed stock (high variability from sporadic capture). Under 
current federal budget constraints, important biomass surveys are in jeopardy. Therefore, 
the uncertainty adjustment is compounded by the length of time since the last survey. 
Since some regions do not regularly update assessments, this adjustment could also be 
used to account for the length between assessment updates. To illustrate the technique, 
the adjustment is applied to a variety of stocks across regions. 

 

Methods 
 

Table 1. Abbreviations and mathematical symbols 
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ACL Annual Catch Limit 

ABC Acceptable Biological Catch 

CV Coefficient of Variation (SD/mean) 

OFL Overfishing Level 

Z-1 Inverse-normal function 

 

 

Caddy-McGarvey Extended 
 

Caddy and McGarvey (1996) developed a framework the compute a “target reference 
point” using simple statistical theory to allow a manager to choose an acceptable 
probability of exceeding MSY or a “limit reference point”. In the Caddy-McGarvey 
framework (CM), a probability distribution for fishing mortality is assumed and MSY is 
assumed known exactly. Prager et al. (2003) generalized the CM framework by allowing 
uncertainty in both estimates of fishing mortality and MSY fishing mortality. While the 
Prager et al. (2003) method is preferable in situations where an estimate of the precision 
of MSY is easily obtainable, I prefer an approach that applies to more levels of data 
availability. In this analysis, I reverse the CM framework to determine a buffer size 
utilizing uncertainty in the limit reference point based on the uncertainty in a survey 
biomass index. 

The most straightforward way to implement an ABC will be to base it on the way OFLs 
are already determined, which can be quite different across stock and region. For 
example, in Alaska fisheries, OFL and ABC can be determined by an age-structured 
model using Spawners-per-recruit (SPR) proxies for MSY in a relatively data-rich stock. 
Conversely, OFL and ABC may be determined by multiplying an estimate of natural 
mortality with a three year average of survey biomass estimates. ABC is computed as 
0.75 x OFL. While these methods attempt to buffer against uncertainty within the same 
perceived level of data-richness, uncertainty is not explicitly accounted for between 
stocks at the same level. For our method, I start with an OFL determined by whatever 
method the particular Council prescribes for the stock and data-quality. Then, a manager 
chooses what level of risk is acceptable that the ABC/ACL exceeds the true OFL. 
Presumably, this level should not exceed 50%, which would mean ABC is set equal to or 
higher than OFL, a level that is prohibited by the MSRA. 

 

The assumption could be made that the buffer proportion could be either normal or 
lognormal.  
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The normal approximation of this integral is 
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where 
nextpCV is the approximation of survey CV used, Z-1 is the inverse normal 

approximation and P* is the level of risk assumed by the manager, the probability that the 
ABC exceeds the actual OFL. 

The lognormal approximation is 
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Finally, each year following a survey without a new survey, there would be a 
compounding of the uncertainty buffer based on multiplicative probabilities. 

( )i
t

nextt pOFLABC ⋅=   `     (4) 

 

where tABC is the acceptable biological catch in year t from the last survey estimate, and i 
is an arbitrary constant if it is to desired to assume that the probabilities are not i.i.d. 
events. I use i=2 for the examples in this study. Illustrations of these three different 
methods for probabilistically determining the catch limit are contrasted in Figure 1. 

Choosing a CV from survey data 
Essential to the methods described here is the choice of CV used in the assumed 
distribution of the ABC buffer size. I contend that using a CV that accounts for not only 
the uncertainty of the most recent survey, but the inter-survey variability contains 
information about both the quality of the survey (measurement error) and the biological 
variability (process error) of the stock. I discuss a number of methods to choose the 
appropriate CV, and show two methods in our examples that I suggest are the most 
appropriate. 

 

Several ways to compute a survey biomass CV for use in this method exist: 

 

1) The sampling error CV of the last survey 

2) The mean of all survey sampling error CVs  

3) The mean of the last several sampling error CVs (e.g. last 3) 

4) The CV of the time series of the biomass index 
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5) The posterior Kalman filter CV of the biomass index time series 

6) An assessment model derived CV estimate 

 

Because this is a method to be used across as many possible stock as possible, I will 
discuss methods 1-5, and only mention 6 to point out that model-based estimates of 
uncertainty for data-rich stocks could be used in this method instead. There are 
advantages and disadvantages to each approach. When the sampling error CV of the last 
survey is used (1), this gives maximum weight to the most recent information and 
accounts for the distributional aspects of the population and how well it is sampled by the 
survey, but not temporal changes in the population. When the mean sampling CV of all 
surveys is used (2), this gives what the “typical” sampling error is for the stock, but does 
not account for trends in time (e.g. distributional changes). If the mean of the last several 
sampling error CVs is used (3), this is a compromise between (1) and (2) by giving 
weight to more recent information, but protecting from using one outlier CV. Computing 
the CV of the time series of the biomass index utilizes the information of large changes 
between surveys (4), which can be caused by both sampling error and 
biological/environmental changes. The CV of the underlying state variable could be 
computed using a random-walk Kalman filter model (5), which also accounts for process 
and measurement error, but in a more rigorous way than (4) and is briefly explained 
below. 

 

Kalman Filter methods 
Here I describe the equations in the calculations for using the Kalman filter method to 
obtain a posterior CV on the last survey biomass estimate that accounts for process and 
measurement error. I will only present the specific recursive equations for the univariate 
Kalman filter approach here. Useful overviews of the Kalman filter are provided by 
Meinhold and Singpurwalla (1983) and Pella (1993). Schnute (1994) provides general 
theory of the Kalman filter approach for estimating fisheries models.  

 

Observation equation 
ttt vby +=  

where yt is an estimate of the unobservable state of nature, which is the sum of bt, the 
biomass estimate at time t and vt is the observation error. 

State equation 
ttt wbb += −1  

where bt is the sum of the previous biomass estimate and a process error, wt. 

It is assumed that wt and vt are independent. 

Prediction equations 
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where the prior biomass 1|
ˆ

−ttb in year t is equal to the posterior biomass in year t-1. 

2
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The prior variance 1| −ttP  is equal to the posterior variance 1−tP in year t-1 summed with the 

process error 2
wσ . 

Update equations 
2
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The mean squared error of 1|ˆ −tty , tF  is the sum of the prior variance 1| −ttP at time t-1 and 

the observation error 
2

vσ at time t  
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The error, te , is the difference from the survey biomass estimate ty  in year t from the 

prior biomass estimate 1|
ˆ

−ttb  
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The posterior or Kalman predicted estimate of biomass tb̂  in year t is equal to the prior 

estimate 1|
ˆ

−ttb summed with the prior variance 1| −ttP divided by the mean squared error 

of 1|ˆ −tty , tF and multiplied by the prediction error et. 

12
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−
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The posterior or Kalman variance, Pt, is the prior variance 1| −ttP minus the square of the 

prior variance, 2
1| −ttP , divided by the mean squared error of 1|ˆ −tty , tF . 

 

Choosing a P* value 
The value of P* chosen should be chosen as a measure of management uncertainty. One 
way to choose this value would be to make an adjustment to P* based on past 
performance of the ABC setting system. Assuming the ABC should not be exceeded 
more than half of the time, the default value is 0.5. An adjustment based on past 
performance could be based on the proportion of overages in some number of recent 
years. A simple formula for P* would be: 

c
t

oP −
+

−=
1

5.05.0*    (5) 
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Where o is the number of overages during t past assessment years. One is added to the 
denominator to insure a P* of zero does not occur and c is a constant for additional 
management uncertainty. 

 

Results/Examples 
 

To illustrate the different versions of the method, I apply it to example stocks that vary in 
life history, region, and data-richness. I compiled example data sets of eight stocks from 
various sources with their associated survey estimate time series and CVs in Table 1. 
Some of these stock are surveyed annually, have current surveys, and are considered well 
sampled. Others have been surveyed in the past, but not synoptically and have no current 
survey. I believe these methods can be applied to any of these data sets. 

While I show the method applied to many stocks, three specific examples were chosen to 
represent different typical situations. In each stocks time-series graph, I also show the 
Kalman Filter estimates of the time-series with associated uncertainty. 

(1) Current, annual, synoptic surveys – George’s Bank Atlantic Cod 

(2) Current, biennial/triennial, synoptic survey – Gulf of Alaska arrowtooth flounder 

(3) Past, annual, non-synoptic survey – Gulf of Mexico red grouper  

 

George’s Bank Atlantic cod  
 

I use the weight/tow results and associated CVs from the Northeast Fisheries Science 
Center’s autumn bottom trawl survey from 1963-2007. This is an example of a stock that 
has an annual long-term survey, with good distributional coverage, and has shown large 
changes in the population size (Figure 2).  

 

Gulf of Alaska arrowtooth flounder 
 

I use the absolute biomass estimates (tons) and associated CVs from the Alaska Fisheries 
Science Center’s triennial/biennial bottom trawl survey from 1984-2007. This is an 
example of a stock that has a current, non-annual, medium-term survey with good 
distributional coverage and low survey CVs (Figure 3). 

 

Gulf of Mexico red grouper 
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I use an abundance index from a zero-inflated delta-lognormal model of Southeast 
Fisheries Science Center’s longline survey catches of Gulf of Mexico red grouper from 
2000-2005 (Ingram et al. 2005). This is an example of a model-derived abundance index 
and CV, formed by a short-term survey data set, with changing distributional coverage, 
and high CVs (Figure 4). 

 

Effect of survey uncertainty 
The different methods of calculating the survey uncertainty give variable results 
depending on which of the five methods are calculated (Table 2). I show the use of 
P*=0.25 because it corresponds with exceeding the OFL in one of every four years. 
Because the time series are different in terms of inter-annual variability (large changes in 
abundance), and in terms of sampling variability (large annual sampling CVs), different 
methods behave differently depending on the stock. In the Gulf of Mexico red grouper 
stock, the CV of the time series was similar to other methods, while in the GOA 
arrowtooth stock, this method yielded a CV four times higher. Like the GOA arrowtooth 
stock, George’s Bank cod have experienced large changes in biomass so this method is 
accounting for potential large changes in population, whether environmentally or 
anthropogenically driven. The Kalman filter estimates generally had the lowest CVs, this 
is because the filtering process is recursively utilizing information from the rest of the 
time series to smooth the measurement error component. 

When these methods are applied for the three example stock for an ABC adjustment in 
the next year (Table 3), the adjustment can be slight (GOA arrowtooth flounder), or 
substantial (George’s Bank cod). For most cases, using the coefficient of variation of the 
time series of biomass estimates yielded the largest downward adjustment, while the CV 
of the last Kalman filter estimate yielded the smallest downward adjustment.  

Effect of P* value 
The choice of P* value has a large effect on the size of the downward adjustment. If 
management is very risk-adverse and chose to target exceeding the ABC in only one of 
twenty years, the adjustment would be severe for all three stocks under method 4 (time 
series CV) (Figure 5). Under method 5 (Kalman filter), the P* makes relatively little 
difference for arrowtooth flounder but has a much larger effect on red grouper and 
George’s Bank cod. If the simple P* formula (5) presented earlier was used, it could be 
based on the proportion of recent overages. This would be a way to assign an 
accountability measure (AM) to this method. Arrowtooth has no catch levels in excess of 
TAC, and data for the other two examples were unavailable. The following table shows 
example results of the calculations of P* given the number catches in excess of ABC in 
the last five years with c=0: 

Overages 0 1 2 3 4 5 
P* 0.50 0.42 0.33 0.25 0.17 0.08 
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Effect of loss of survey 
Compounding the effects of losing a survey over many years could lead to large 
adjustments for stocks’ where the status is already uncertain (Figure 6). In this figure, I 
use an independence value (i) of 2 in equation (4) to compensate for autocorrelation in 
the unobserved time series. In this analysis, a short lapse in survey would lead to 
comparable reductions in ABC, while long lapses would lead to disparate differences 
based on stock uncertainty. 

 

Discussion 
I have proposed a relatively simple and general approach for deriving an adjustment to a 
standard catch limit (OFL) to determine a more conservative limit (ABC or ACL) to be 
exceeded with some set amount of probability. The ideas in this study are not novel, but a 
variation on prior authors’ work (Caddy and McGarvey 1996, and Prager et al. 2003).  

However, this study shows an application on how survey uncertainty can be incorporated 
directly into setting new limits and targets required by the new MSRA guidelines. In its 
most basic form, the method could be used with variable quantities (P*, i, and c) set the 
same across stocks and regions which would promote transparency and standardization.  

Conversely, these variables offer some amount of flexibility to account for other 
uncertainties. The values of P* and c should likely be set to represent management 
uncertainty, risk aversion, and socioeconomic concerns by bodies such as the Councils. 
As demonstrated in our example, this value could be set based on past overages in the 
fishery. This would be an example of an Accountability Measure where the buffer is 
automatically reduced when limits are exceeded less often. 

Stock assessment biologists should set the value of i with some measure of 
autocorrelation in the survey time-series, fishing pressure, and vulnerability of the stock 
that reflect how important annual surveys should be in determining future uncertainty 
buffers. Simulation work based on the known data and biology would be useful in 
evaluating different values for any of these quantities on a stock-specific basis. 

This method’s greatest advantage is that it can operate within existing management 
frameworks. It is not a method that sets a hard biomass target, it sets an uncertainty 
adjustment to the best available scientific judgment as to what Acceptable Biological 
Catch is for that stock. This adjustment would become smaller, both when the stock is 
adequately surveyed, and management effectively limits catch. 

This method’s greatest limitation is that it requires some kind of survey or survey proxy 
to come up with a defensible CV to apply. Most species that are caught in a fishery are 
also caught in a survey, but there will always be stocks or species that “slip though the 
mesh”. For these species, there still will need to be some data-poor system to apply an 
uncertainty buffer. These should likely be not be subject to Annual Catch Limits because 
information is so tenuous that any number would be quite arbitrary. The MSRA 
guidelines do allow for Ecosystem Component stocks to be exempt from ACLs and for 
some stocks, this will be the necessary avenue. Future work in this area should be 
focused on how to deal with rare or low-catchability stocks. 
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Figure 1. Representations of the interpretation of P* for each of three methods (a) Caddy-
McGarvey (1996), (b) Prager et al. (2003), (c) present study. Shaded areas correspond to 
P*. 
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Figure 2. NEFSC autumn trawl survey index of George’s Bank Cod (blue diamonds), and 
Kalman Filter estimates (pink squares with blue line). 
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Figure 3. AFSC bottom trawl survey index of Gulf of Alaska arrowtooth flounder (blue 
diamonds), and Kalman Filter estimates (pink squares with blue line). 
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Figure 4. Red snapper (blue diamonds), and Kalman Filter estimates (pink squares with 
blue line). 
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Figure 5. Comparison of different P* values for two different methods of calculating CVs 
for use in ACL adjustment. 

 

a) Kalman filter CV b) Time series CV 
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Figure 6. Effect on adjustment to ABC as years without surveys compound. P*=0.4, i=2. 

b) Time series CV a) Kalman filter CV 
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Table 2. Biomass indices and uncertainty (CV, coefficient of variation) for eight stocks. 
 King Mackerela Red grouperb English solec WC sablefishd Acadian redfishe George's Bank Code GOA Northern rockfishf GOA Arrowtooth Flounderf 

 Index CV Index CV Index CV Index CV Index CV Index CV Index CV Index CV 

1963                       17.80 0.27             

1964                     53.6 0.75 11.40 0.30             

1965                     13.2 0.37 11.80 0.32             

1966                     29.3 0.45 8.10 0.23             

1967                     24.4 0.37 13.60 0.23             

1968                     40.4 0.43 8.60 0.25             

1969                     23.8 0.26 8.00 0.20             

1970                     33.0 0.19 12.60 0.19             

1971                     23.4 0.22 9.80 0.26             

1972                     24.6 0.19 22.90 0.36             

1973                     17.0 0.18 30.90 0.29             

1974                     24.2 0.30 8.20 0.21             

1975                     40.0 0.29 14.10 0.41             

1976                     15.3 0.39 17.70 0.24             

1977                     17.3 0.15 12.50 0.14             

1978                     20.7 0.16 23.30 0.15             

1979                     16.0 0.21 16.50 0.13             

1980         3,544 0.17       12.6 0.31 6.70 0.25             

1981                 12.2 0.32 20.30 0.44             

1982                 3.5 0.27 6.10 0.42             

1983         4,651 0.09       4.1 0.23 6.10 0.30             

1984                 3.9 0.38 10.00 0.32 39,334 0.29 1,112,215 0.07 

1985                 5.7 0.31 3.10 0.46     
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Table 2. Biomass indices and uncertainty (CV, coefficient of variation) for eight stocks. 
 King Mackerela Red grouperb English solec WC sablefishd Acadian redfishe George's Bank Code GOA Northern rockfishf GOA Arrowtooth Flounderf 

 Index CV Index CV Index CV Index CV Index CV Index CV Index CV Index CV 

1986         6,254 0.09       8.0 0.34 3.70 0.27     

1987                 5.5 0.32 4.40 0.30 136,417 0.29 931,598 0.08 

1988                 6.3 0.57 5.60 0.34     

1989 0.81 0.21     8,395 0.15       6.8 0.30 4.70 0.29     

1990 2.38 0.16             12.2 0.33 11.50 0.42 107,076 0.42 1,907,177 0.13 

1991 0.70 0.22             8.4 0.45 1.40 0.30     

1992 0.84 0.24     9,510 0.10       8.1 0.29 3.00 0.32     

1993 0.45 0.25             11.2 0.33 2.20 0.34 104,480 0.35 1,551,657 0.06 

1994 0.71 0.23             5.9 0.43 3.30 0.33     

1995 1.23 0.20     5,992 0.11       4.7 0.24 5.60 0.47     

1996 2.26 0.17             30.6 0.33 2.70 0.28 98,965 0.27 1,639,632 0.07 

1997 0.52 0.24             18.9 0.39 1.90 0.48     

1998 1.79 0.20     15,312 0.08 69,733,110 0.23 31.7 0.45 2.80 0.21     

1999 1.21 0.18       72,400,243 0.29 22.9 0.24 3.00 0.43 242,187 0.61 1,262,151 0.08 

2000 0.82 0.22 0.58 0.68   90,313,581 0.23 26.2 0.29 1.40 0.37     

2001 0.45 0.23 0.66 0.29 12,551 0.09 74,986,689 0.20 28.2 0.25 2.10 0.35     

2002 0.51 0.21 1.73 0.83   66,560,943 0.20 41.9 0.33 11.30 0.45     

2003 0.99 0.20 1.02 0.22   87,161,424 0.27 65.5 0.49 2.10 0.32 66,310 0.48 2,819,095 0.13 

2004 0.62 0.36 1.35 0.19 36,113 0.15 123,453,322 0.34   5.90 0.70     

2005 0.73 0.49 0.65 0.41     101,271,759 0.22 47.0 0.23 1.60 0.30 359,026 0.37 1,899,770 0.07 

2006 1.01 0.22       95,970,856 0.20 50.2 0.30 2.70 0.45     

2007           50.4 0.25 1.10 0.37 227,069 0.38 1,939,055 0.08 

Sources: a Age-0 king mackerel from SEAMAP SEFSC shall trawl survey, Ingram (2007) p. 8; b SEFSC longline survey from Ingram et al. (2005); c NWFSC 
triennial northern bottom trawl survey, Stewart (2007), p.107; d NWFSC slope survey, Schirripa (2007), p. 54; e NEFSC autumn bottom trawl survey, Legault 
2008 (pers. comm., Woods Hole, MA, NEFSC/NMFS); f Gulf of Alaska biennial/triennial bottom trawl survey (RACEBASE AFSC/NMFS). 
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Table 2. Results of using methods 1-5 for calculating CV for use in ABC adjustment for survey uncertainty for eight stocks. 

 

Method 
King 
Mackerel Red grouper English sole WC sablefish 

Acadian 
redfish 

George's 
Bank Cod 

GOA 
Northern 

GOA 
Arrowtooth 

(1) CV_last 0.22 0.41 0.15 0.20 0.25 0.37 0.38 0.08 

(2) CV_mean 0.24 0.44 0.12 0.24 0.32 0.32 0.38 0.09 

(3) CV_last 3  0.36 0.28 0.11 0.25 0.26 0.37 0.41 0.09 

(4) CV_all 0.58 0.46 0.88 0.21 0.71 0.79 0.73 0.36 

(5) CV_KF 0.22 0.18 0.16 0.16 0.16 0.33 0.29 0.07 

 

Table 3. ABC adjustment in 1st year using lognormal method, P*=0.25 

Method 
King 
Mackerel 

Red 
Grouper English Sole 

WC 
Sablefish 

Acadian 
redfish 

George's 
Bank Cod 

GOA 
Northern 

GOA 
Arrowtooth 

(1) CV_last 0.928 0.871 0.951 0.935 0.919 0.883 0.880 0.973 

(2) CV_mean 0.922 0.862 0.960 0.922 0.898 0.898 0.880 0.970 

(3) CV_last 3  0.886 0.910 0.964 0.919 0.916 0.883 0.871 0.970 

(4) CV_all 0.822 0.856 0.743 0.932 0.787 0.766 0.782 0.886 

(5) CV_KF 0.930 0.909 0.949 0.949 0.947 0.895 0.907 0.977 

 


