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WindBlade: LANL's Turbine and Plant Simulation Code

e Couples R&D 100-winning HIGRAD/FIRETEC with LANLs new turbine/wind interaction modeling
technique, WindBlade (patent and copyright pending)

* Provides capability to study realistic wind interactions with rotating turbines

e Lagrangian tracking scheme that accounts for 2-way feedback between winds and moving
solid objects

* Resolves complex environments: topography, unsteady winds, severe weather, solar
heating/unstable mixing, low-level jets, and stable boundary layers
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WindBlade-an Extension of Past Successes,HIGRAD/FIRETEC

HIGRAD/FIRETEC developed at LANL since 1994 |
~$16 M invested in development, validation, and application of HIGRAD/FIRETEC @
Utilized for more than 10 M CPU hours of calculations Im

Test bed for state-of-the-art numerical techniques
Wide range of applications
R&D 100 winner

Proven HPC agility and ability to take full advantage of new architectures as they are
developed (illustrated by current porting to hybrid machines for 30 times speed up)

HIGRAD 20m HCL Transport Simulation

HCL Concentration Isosurface = 20 ppm

Resolved Fluctuating Winds
Solid Surface Deposition
Meteorology from 11/23/95
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Scope of WindBlade Development under LDRD

* Coupling NREL's Turbsim for unsteady boundary conditions
* Implementing basic Pitch and Yaw control algorithms
 Exploring atmospheric factors affecting:

— Power generation
— Interaction between multiple turbines
— Initial exploration of factors affecting turbine-array-performance optimization

— Dynamic loads transmitted to the blade root
 |Implementing Aeroelastic, fluid-structure interaction (FSI) (allowing flexing blades)
e Comparison with small scale experiments
* Exploration of basic Influences of topographic and vegetative features

e Examination of implications of resolution and model simplification (will include
Mathew Barone at SNL)

e Continual collaborative efforts towards validation against field data
— Neil Kelley (NREL)
— Julie Lundquist (University of Colorado, NREL)
—  Greg Poulos (V-Bar, LLC)
—  Eugene Tackle (lowa State university)
—  Others if interested
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Preliminary validation exercises
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WindBlade turbine wake simulation (colors) compared with measurements
(black +'s) and other model results (grey/black curves) from Rados et al.
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Significance of turbulence to wake recovery

Visualizing streamwise velocity in vertical and horizontal slices

TurbSim LLJ simulation Laminar LLJ simulation



Streamwise velocity (m/s)

Wake velocities for single turbine simulations
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Local instantaneous velocities recorded behind blades every 2 m downstream. One data point per second recorded at each
downstream location over 1 minute duration. Each downstream distance has 60 data points which show the variability in the

velocity at that location over a minutes time span.
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Influence of a turbine spacing (3D and 7D spacing)

Visualizing streamwise velocity in vertical and horizontal slices

3D separation 7D separation
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Power output from two turbines, the significance of

upstream turbulence
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Wake velocities measured from upstream turbines

Streamwise veloclitles behind the upstream turbine
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Time averaged streamwise velocity at hub height (m/s)

Wake velocities measured from upstream and downstream
turbines

Streamwise velocities behind the upstream turbine
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Single 3-bladed turbine (avg.)

Two 3-bladed turbines, 7D spacing, Turbsim (avg.)
Two 2-bladed turbines, 7D spacing, Turbsim (avg.)
Two 3-bladed turbines, 3D spacing, Turbsim (avg.)
Single 3-bladed turbine, laminar, (avg.)

Two 3-bladed turbines, 7D spacing, laminar (avg.)
Two 3-bladed turbines, 3D spacing, laminar (avg.)

Time averaged streamwise velocity at hub height (m/s)

Streamwise velocities behind the downstream turbine
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HPC turbine/wind interaction

Streamwise velocity visualized on a horizontal slice Vorticity

Streamwise velocity visualized on a horizontal slice Turbulent mixing visualized with emitted tracer



Streamwise velocity (m/s)

Wake velocities for single vs. multiple turbine simulations
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Topography

* Implementation of Windblade on
a hypothetical site near Las
Vegas, NM.

e Use of automatic yaw control
algorithm to adjust for the
influence of terrain on wind field

e Realistic heterogeneous
vegetation is present in this
simulation.




Blade loads and toro
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Opportunities beyond this LDRD project

Opportunities for capability advancement: Providing for the community:
« Leveraging order of magnitude computational * Inexpensive method of exploring influences of
acceleration of HIGRAD/FIRETEC off-shore environments on turbine and turbine

array designs as well as reliability

* Inclusion of marine atmospheric boundary layer
(leveraging HIGRAD hurricane-intensification
research for air/sea interaction)

e  Coupling effects of wave mechanics

e Translation of forces into gearbox

Off-shore atmospheric boundary layer
Larger turbine designs
Influence of coupled wave interaction

Gear box loadings and failure
mechanisms

* Coupling to CFD blade-design codes «  Providing guidance for observation strategies

e HPC-based transformational *  Providing explanations for observed
hydrodynamic/aerodynamic model phenomena

(These tasks would be done in partnership with *  Opportunity for optimization of wind farm

research institutions possessing relevant expertise, configurations for off shore, great plains, and

including: SNL, NREL, universities)
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