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Motivation - IWT Sensing and SHM

= Validate / update physics-based numerical models

= Estimate the current state of the blade, including detection of
the onset and growth of damage

= Monitor / predict load characteristics to estimate remaining life
In the presence of damage (prognostics)
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Challenging Issues in Sensing System Design

= Critical state of damage is not well defined for wind turbine blades
= Low cost, low power solution with wireless capabilities
= Improved reliability in a robust electronics package

= Optimally configured and installed
— Maximize observability while minimizing necessary hardware

Courtesy of Wind Systems Courtesy of gallery.pictopia.com
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IWT Structural Sensing System

= Multi-scale sensing for SHM and prognostic assessment
— Local active sensing
— Global passive sensing

=  Pjlezoelectric transducers are used as sensors and actuators
— Dual use reduces the total amount of installed hardware

= Develop an integrated hardware / software solution designed
specifically for wind turbine applications

Piezoelectrics can serve as Hardware has evolved from previous Current prototype of the multi-scale
both sensors and actuators experience in civil applications sensing platform
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Active Sensing SHM Techmques

= Lamb wave propagations |
= High frequency response functions 1*5)-
= Time series predictive models of

— CX-100 turbine blade 1-m section 13

— Introduced simulated damage -15}
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Active Sensing: Method Comparison

= Lamb wave propagations
— Detect and locate damage

— Requires higher electric power,
extremely small propagating
distance (< 0.5 m)

* Frequency domain (up to 80 kHz)

— Damage localization capabilities

— Moderate power and memory usage
= Time series analysis

— Similar capabllities of FRF methods
while requiring less measured data

— Low power requirements
— Electromagnetic interference
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Sandia’s Full-Scale Fatigue Test at NREL

8.5m >

6.5m
4.25m >

Damage monitoring - Actuator Collocated MFC Sensor MFC Sensors — to test attenuation along
sensors length of blade

= After 2.3 M cycles, damage was
identified visually in the root
section

= Measurements were taken from
multiple MFC sensors

= Several sensors (Ch. 6, 7, 10)
became de-bonded during the
test

Courtesy of SNL and NREL
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Fatigue Test: Active Sensing SHM

= The MFC actuator was used to excite the system with band-
limited (30 to 60kHz) signals

— amplified sine chirp (30V peak to peak)
— burst random signal (20V RMS)
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Fatigue Test: Active Sensing SHM

Fatigue damage
was visually
identified after

2.3 M cycles
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Fatigue Test: Active Sensing SHM

Cross-Correlation =
of FRFs
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= Corresponds to 1.5 M cycles: acoustic emission systems also noticed
changes in emission activities
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| essens Learned / Issues

= Demonstrated that piezoelectric active-sensors could detect and
approximately locate damage in the blade.

= Sensors
— Sensor / actuator locations could be optimized with model input
— Reliability: three sensors were debonded / broken during the test

= Validation

— No reference to assess the performance of the sensing system
— Only high frequency responses - no attempt for multi-scale sensing

= We are planning to address these issues in the fatigue tests
scheduled in 2011
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Modal Test of Full-Scale Blade

= Tested a 9-m CX-100 blade with
different boundary conditions

— free-free, clamped-free

= |dentified first several modes
using accelerometers and
passive piezoelectric sensors

= Roving hammer test
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Modal Test of Full-Scale Blade

10
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Full-Scale Blade at LANL: Active Sensing

= Compare response at various points

— Determine effective frequency range at points along length of
blade (energy dissipation)

— 2 actuators are needed to monitor the entire blade

Acutation MFC
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Full-Scale Blade at LANL: Active Sensing

= Local stiffness changes were imposed through the use of a point load

= The location and intensity of damage can be assessed by the response
characteristics of each sensor

Regions of Local
Stiffness Change

PZT Sensor
Locations

Load Frame used to Apply a Point Load to the Blade
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Simulated Damage — Active Sensing

= Damage was applied near PZT 3&4 **

= Measurements were collected for

each of the sensor-actuator paths

e PZTs 2 and 5 were insensitive to the
applied damage
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Simulated Damage — Active Sensing

= Damage was applied near PZT 3&4 *©
= Measurements were collected for _
each of the sensor-actuator paths £
* PZTs 2 and 5 were insensitive to the E
applied damage g 10"
e The influence of damage can be seen H31 exhibits sensitivity at -
for PZT 3 at frequencies > 25 kHz ‘higher frequencies (> 25kHz) -
e Asexpected PZT 4 is the most 05 D ey xlof

sensitive to the local stiffness change

Applied Damage
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H41 exhibits the greatest -
sensitivity to damage
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Simulated Damage — Active Sensing

= Damage was applied near PZT 3&4
= Measurements were collected for

S 10°!

each of the sensor-actuator paths £

* PZTs 2 and 5 were insensitive to the 2
applied damage s 10"

e As we would expect — PZT 3 shows an H31is more sensitiveat
. eie . | f i 15kHz) -
increased sensitivity to damage in ower frequencies (>15kHz)
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Simulated Damage — Active Sensing
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= Demonstrated localization of damage using active-sensing
— Sensing range: ~ 0.3 m radius for detecting the point load

= Extending this technique to identify damage along the spar cap and
through the spar/shear web
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Hardware Development:

* Embedded Hardware for Multi-Scale Sensing

- Los Alamos

NATIONAL LABORATORY

Active / passive capable up to 250 ksps

Freguency response, time series analysis, impedance methods
Sensor diagnostics

Accommodate multiple sensing modalities

Web-driven data acquisition

Higher (embedded) processing power
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Powering Embedded Hardware

= Power demands will become a major design
criteria for long term deployments Solar using thin film

technologies

= Currently we are investigating energy
harvesting techniques to supplement
onboard power sources

=  Several sources are available on rotor blades LUEUEEITERIS
through blade

= Solar, thermal, kinetic, electromagnetic, etc.  RUEUEEE

= To provide a robust power source, the harvesting

system may need to extract energy from multiple EMI

Mechanical motion emissions
SOUrces 35 \ ‘ : : of the blade

Vibration-based 7
using piezoelectrics

0 1000 2000 3000 4000
time (s)
Charging response for civil infrastructure
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Summary

= Several experimental investigations have demonstrated the potential
of piezoelectric transducers for:

— Structural Health Monitoring

» Sensitive to small defects in blades

* Immune to operational condition changes
— Multi-scale sensing of wind turbine blades

* Low-cost, low-power

= A wireless sensor node is being developed to integrate multi-scale
sensing and SHM capabillities for damage prognosis
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= Full-scale fatigue tests of CX-100 (2011)

— Collaboration with NREL, UMass-Lowell,
SNL, Luna. We are currently open to
other participants as well.

= NDE characterization of damage on
fatigued CX-100 blade sections (2011)

— Correlation with SHM results
* NREL’s Gearbox CM round robin (2011)

= Fabrication of SHM Rotor Blade (2011)

FY-2011
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Plans for FY2011-12
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FY-2011-12

Integration with damage modeling and
advanced data processing (2011-12)

— Sensor location optimization

— Prognostic analysis of blade condition
Collaborative testing of SHM Rotor
Blade with Sandia (2012)

— Onboard SHM (LANL)

Operational Monitoring (SNL)
— Large form PIV (LANL)

N Glue residue
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