

Robotics CTA

Alliance

- General Dynamics Robotic Systems
- Carnegie Mellon University
- Florida A&M University
- University of Central Florida
- University of PA
- Boston Dynamics
- QinetiQ North America
- Cal Tech/Jet Propulsion Lab
- US Army Research Lab

Objectives

Make the research investments that support the Army's robotic system development goals:

- Perceive and understand dynamic & unknown environments, including creation of a comprehensive model of the surrounding world
- Autonomously plan and execute military missions; readily adapt to changing environments and scenarios; learn from prior experience; share common understanding with team members
- Seamlessly integrate unmanned systems into military and civilian society
- Manipulate objects with near-human dexterity and maneuver through threedimensional environments

Technical Areas

- Perception
- Intelligence
- Human-Robot Interaction
- Manipulation & Mobility

Intelligence

Plan and execute military tasks & missions

- Intelligence framework
- Cognitive reasoning & behavior generation
- Learning & Adaptation
- Meta-cognition & transparency
- Distributed intelligence & scaling

- Learn & Adapt
 - Deductive reasoning
 - Inference
 - Generalization/Rules of engagement
 - Uncertainty of future conditions
 - Probabilistic reasoning
 - Spatial & temporal reasoning
- Self-awareness/introspection
 - Transparency
 - Providing non-verbal cues
 - Human-robot collaboration
 - Fault detection
- World model
 - Common ground
 - Mixed initiative
- Scale
 - Adapting to resource limitations
- Tactically intelligent behavior
- Collaboration between homogeneous & heterogeneous systems

Perception

Perceive & understand a dynamic & unknown environment

- Sensing
- Terrain and object classification, identification & reasoning
- Activity detection & Understanding
- Distributed & collaborative perception

Sensing

- Greater resolution & range, lower cost
- Increased fields of view; focus of attention
- Scale
- All weather/environments
- Terrain/Object Understanding
 - Broader vocabulary
 - Recognition of cues/saliency of observations
 - Robust & adaptive
 - Reasoning
 - Fusion
- Understanding activity
 - Human activity/intent recognition
 - Saliency of observations/ context & cues
 - Learning
- World model
 - Managed & validated
 - Long-term & short-term memory
 - Collaborative or distributed
 - Common ground (HRI)
 - Navigation (Intelligence, mobility & manipulation)

Human-Robot Interaction

Seamless integration of robots into military & civilian activity

Shared situational awareness

- Aware of cultural and behavioral norms.
- Comprehend commander's intent & act upon it
- Understand the intent of surrounding humans for consideration in planning
- Possess common spatial & temporal frames of reference – a "common ground"
- Trust & Confidence
 - Transparency of action
 - Cues to activity
 - Tolerance to failure
- Intuitive Communication
 - Language unconstrained dialogue
 - Non-verbal cues, gestures, context, & behavior
- Operating within society
 - Adaptable to varying social cues & context
- Span of control
- Understanding human-robot intra-team cognition
- Multi-modal communication
- Collaborating socially, organizationally & culturally

Manipulation of objects with near-human dexterity & unfettered mobility in 3-D

- Dexterous manipulation
- Unique mobility

RDECON

Next generation actuation

- Human-like manipulation
 - Range of motion
 - Dexterity
 - Strength
- Control
- Efficiency
- Automation/Intelligence
- Close coupling of perception, planning, & control
- Mobility in complex three-dimensional environments
 - Urban
 - Jungle/Riverine
 - Confined spaces
- Animal-like adaptability to changing conditions - reconfigurable
- Learning from prior experience

RDECOM) ARL Collaborative Technology Alliance

Research to enable future autonomous unmanned systems

Provide technology to enable:

- Greater level of autonomy for:
 - Ground vehicles
 - Air systems
 - Surface vessels

Teaming:

- With soldiers
 - Combat multiplier
 - Team member
- With unmanned systems
 - Heterogeneous groups
 - Following commander's intent