

U.S. Department of Transportation Maritime Administration Office of Ship Operations

NUCLEAR SHIP (NS) SAVANNAH

REACTOR PRESSURE VESSEL DRILLING, SAMPLING AND RADIOCHEMICAL ANALYSIS PROJECT REPORT

Contract No. DTMA1C05013

Prepared by:

WPI 1011 E. Main Street, Ste 220 Richmond, VA 23219

> January 31, 2006 Revision 1

TABLE OF CONTENTS

1.0 EXECUT	TIVE SUMMARY	4						
1.1 PRINC	IPAL FINDING	4						
1.2 OBJECTIVE								
1.3 RESUL	1.3 RESULTS							
2.0 PROJEC	CT REPORT	6						
2.1 BACKG	GROUND	6						
	DACH							
	TICAL METHODOLOGIES							
	adiochemical Data							
	ater Sample Analysis							
	amma Scansetection Methods							
	ata Anomalies							
	ETRY MEASUREMENTS							
2.5 EXTRA	CONTROL BLADE	13						
2.6 ORIGE	N-ARP 2.0 COMPUTER CODE	13						
3.0 FINDING	3S	17						
3.1 DISCU	SSION OF RESULTS	17						
3.2 REGUL	_ATORY CONDITIONS	18						
4.0 CONCL	USIONS	18						
5.0 REFERE	ENCES	19						
	LIST OF TABLES AND FIGURES							
TABLE 1A	Summary of Radioactivity Present							
TABLE 1B	Summary of Radioactivity Present							
TABLE 2	Sample Derived Activity Levels							
TABLE 3								
TABLE 4	Comparison of 2004 and 2005 ORIGEN Analysis							
	ΓABLE 5A Summary of Radioactivity Present							
	ΓABLE 5B Summary of Radioactivity Present							
TABLE D1	Material Composition							
TABLE D2	NSS Component Volumes							
LIGUKE FI	IGURE F1 RPV Diagram							

US DOT / Maritime Administration

N/S SAVANNAH RPV Drilling, Sampling, and Radiochemical Analysis Project Report

APPENDICES

- A GEL Data
- B Explanation and Certification of Data Anomalies
- C Reactor Power Profile & History Documentation
- D ORIGEN ARP Code Description & Inputs
- E ORIGEN ARP Output
- F Core, Internals, RPV, and Primary Shield

US DOT / Maritime Administration

N/S SAVANNAH RPV Drilling, Sampling, and Radiochemical Analysis Project Report

1.0 EXECUTIVE SUMMARY

1.1 PRINCIPAL FINDING

The principle finding of the project is that the reactor pressure vessel and related components on the NS SAVANNAH are class A radioactive waste material for land disposal purposes.

1.2 OBJECTIVE

The objective of this project, conducted on the NS SAVANNAH between August 25, 2005 and September 1, 2005, was to refine the 2004 analysis performed by WPI and obtain a more accurate set of nuclide activation measurements. These measurements are based on current RPV and internals conditions as observed from actual metal sampling in the reactor internals. All earlier analyses dating back to the late 1950's were based on theoretical design values which were very conservative. The 2005 analysis provides a highly reliable baseline in the decision-making process associated with various disposal options for the NS SAVANNAH Reactor Pressure Vessel (RPV) and internals.

The specific objective was to determine the curie content, waste classification and radioisotopic inventory of the NS SAVANNAH RPV, Internals and Neutron Shield Tank (NST) by extracting metal samples at selected locations, and subsequently performing radiochemical analysis of the samples. Refined calculations were performed based on the integrated actual reactor power history, actual radiochemical data from reactor components and realistic neutron flux approximations.

It is important to note that MARAD intends to remove, package, ship and dispose of the RPV and internals package without opening the RPV or further sampling of the RPV/internals. Further sampling would entail more radiation exposure and expense with marginal value of the additional data. Opening the RPV (the ambient dose rate by measurement in the internals is approximately 16 R/Hr) would require the expense of specialized equipment and systems far exceeding the value of any additional data, and would not be consistent with ALARA principles. If necessary, the RPV could be filled with cement or grout prior to shipment.

1.3 RESULTS

Table 1A and 1B below presents the results of total RPV nuclide activation levels based on actual radiochemistry data from the samples, and analysis using the ORIGEN code for the part 10 CFR part 61 analyses. Table 1A and 1B correspond to the applicable nuclide locations in Tables 1 and 2 of 10 CFR part 61.55. The concentration of each radionuclide was averaged over the entire volume of metal in the RPV and internals. As shown, all nuclides are within the Waste Classification Class A limit both individually per isotope and when combined using the sum of the fractions for Class A Waste, which is 0.89. These results satisfy the branch technical position WAC criteria and averaging methodology for burial at Chem-Nuclear Systems and Envirocare of Utah (EOU). The result of the analysis, using a current computer code and radiochemical analysis of metal samples is that the NS SAVANNAH's RPV and internals package meets the radiological requirements of the US NRC and the states of Utah and South Carolina for a Class A waste package.

TABLE 1A
SUMMARY OF RADIOACTIVITY PRESENT

Nuclide	Metal Sampl	e Analysis	OR	ORIGEN		
	Curies	Curies/m ³	Curies	Curies/m ³	Curies/m ³	
Ni-59***	4.1	0.3	3.9	0.3	22 / 0.014	
Nb-94***	< MDA**	1	<0.0001			
C-14***	<0.01	-	<0.0001			

^{*}Ratio of Curie concentration from metal sample analysis to Class A limit

^{**} Minimum Detectable Activity Level

^{***} in activated metal

TABLE 1B
SUMMARY OF RADIOACTIVITY PRESENT

Nuclide	Metal Samp	le Analysis	OR	IGEN	WAC Class A Limit / Ratio*
	Curies	Curies/m ³	Curies	Curies/m ³	Curies/m ³
Ni-63***	385	30.1	356	27.9	35 / 0.86
Co-60	62	4.9	80	6.3	700 / 0.007
Fe-55	1.1	0.09	0.9	0.07	700 / 1.3E-4

^{*}Ratio of Curie concentration from metal sample analysis to Class A limit

2.0 PROJECT REPORT

2.1 BACKGROUND

Between August 25, 2005 and September 1, 2005, a project was conducted on the NS SAVANNAH to determine the Curie content and radioisotopic inventory of the NS SAVANNAH Reactor Pressure Vessel (RPV), Internals and Neutron Shield Tank (NST) by extracting metal samples at selected locations in the RPV and internals, and subsequent radiochemical analysis. The purpose of the project is to develop more representative baseline information to use in the decision-making process associated with various disposal options for the RPV and internals. MARAD intends to remove, package, ship and dispose of the RPV/Internals package without opening the RPV or conducting further sampling of the RPV/Internals.

^{**} Minimum Detectable Activity Level

^{***} in activated metal

2.2 APPROACH

Using a heavy metal boring system, a 4" access hole was drilled through the external lead shield and the outer and inner annuli of the neutron shield tank, and the thermal insulation layer adjacent to the RPV wall. The 4" bore was sleeved with PVC pipe, and a 1.0625" hole was bored in the center through the carbon steel RPV wall and ID SS clad layer, and through the outer thermal shield. A 0.5" hole was drilled through the middle thermal shield.

All metal samples were taken in the form of chips by extending a drill bit with an extension shaft, operating inside of a sleeve, through the metal to be sampled. The sleeve forced the chips up the drill bit flute from which samples were obtained. A new drill bit and sleeve was used for each sample to eliminate cross-sample contamination. Each sample was packaged separately and marked to preserve a chain of custody.

This physical drilling process was mocked-up and demonstrated at the contractor's (Wachs Technical Services) facilities in Charlotte, NC by the personnel who actually performed the shipboard drilling operation.

The methodology for drilling holes for sampling and other purposes in reactor and other pressure vessels is not new. As an example, the Shoreham reactor vessel, which was the same wall thickness and experienced dose rates similar to that of the NS SAVANNAH, was drilled in a similar manner to render the vessel forever inoperable. The drilling or boring of heavy wall vessels and castings is a common field machining practice.

A total of eight metal samples, one insulation sample, and two liquid samples from the secondary steam generator loops were collected, bagged, packaged for transportation and shipped to General Engineering Laboratory (GEL), a QA certified laboratory in Charleston, SC. A 10 CFR part 61 analysis of seven metal samples was performed. The lead shield and thermal insulation were analyzed by gamma scan only.

The sample locations included:

- 1. NST-Lead (Neutron Shield Tank)
- 2. NST- Outer Diameter (OD) Inner Wall (Neutron Shield Tank) (Steel)
- 3. NST Inner Diameter (ID) (Neutron Shield Tank) (Steel)
- 4. RPV Non-Asbestos Insulation (Reactor Pressure Vessel)
- 5. RPV OD (Reactor Pressure Vessel) (Steel)
- 6. RPV ID (Reactor Pressure Vessel) (Steel)

- 7. OTS ID/OD (Outer Thermal Shield) (Stainless Steel)
- 8. MTS OD (Middle Thermal Shield) (Stainless Steel)
- 9. MTS ID (Middle Thermal Shield) (Stainless Steel)
- 10. Starboard Steam Generator secondary side (water)
- 11. Port Steam Generator secondary side (water)

2.3 ANALYTICAL METHODOLOGIES

2.3.1 Radiochemical Data

Sample data was reviewed and discussed with GEL personnel responsible for the NS SAVANNAH radiochemical analysis. Data anomalies were satisfactorily resolved. Activation levels at statistically significant levels above MDA (Minimum Detectable Activity) were reported in uCi/gm, which were converted to uCi/cm³ for direct comparison with South Carolina DHEC (Department of Health and Environmental Control) Waste Acceptance Criteria. All GEL data was decayadjusted to October 2008, the date considered to be the earliest feasible date for RPV disposal.

For each of the isotopes of interest, activity concentration levels were scaled to the core centerline in conformance to reactor flux profiles developed as part of the initial reactor physics calculations. Though the 1956 design basis peak flux for the NS SAVANNAH core has been shown to be an over-estimate, the general shape of the thermal flux curve is considered to be an adequate representation of NS SAVANNAH reactor's neutron distribution. Using the middle thermal shield data as a benchmark, ID and OD activation levels were extrapolated to components in higher flux regions of the core including the core basket – an internal component with the highest expected Curie concentration in the vessel. This flux ratio approach enabled the use of relative flux differences without arbitrarily selecting a baseline peak flux value.

All RPV/internal samples were extracted at an access hole with an elevation equal to mid-height of the core, where peak axial flux would be expected to occur. Based on flux profiles used in design of the NSS reactor (*Nuclear Merchant Ship Reactor*, April 1958, W.R.Smith & M.A.Turner), a peak to average axial flux ratio of 1.48 was calculated, a typical ratio for pressurized water reactors. The 1.48 ratio corresponds to a 68% reduction in Curie concentrations derived from metal sample data obtained at the core mid-height.

The presence of Nickel-63 and Cobalt-60 in the internals along with trace amounts of Nickel-59 and Iron-55 were positively identified by GEL in their radiochemical analysis.

Niobium (Nb-94), a 10CFR part 61-reportable isotope with low concentration limits for all waste classification categories, was not found in any samples at levels above the minimum detectable activity (MDA). To approximate Nb-94 Curie concentrations, the MDA level for Nb-94 was assumed to be the actual concentration and was extrapolated to the peak flux region of the core. This overly conservative approach still yielded activation levels three orders of magnitude below the State of South Carolina and Envirocare of Utah (EOU) Waste Acceptance Class A limit of 0.02 Ci/m³ for Nb-94.

Carbon (C-14), another reportable isotope in 10CFR part 61, was detected at concentrations above MDA. However, peak concentration levels were calculated to be more than two orders of magnitude below Waste Acceptance Class A limits of 8 Ci/m³.

2.3.2 Water Sample Analysis

Water samples (previously obtained from the port and starboard secondary steam generator loop) had no detectable levels of activity based on the gamma scan results. Water sample results are consistent with the operating history of the steam generators, which experienced no significant leakage into the secondary system.

2.3.3 Gamma Scans

The lead shield external to the NST outer diameter had no activation above MDA. Trace amounts of Eu-152, Eu-154 and Co-60 were detected in the insulation between the inner diameter of the NST and outer diameter of the RPV. The Eu isotopes (Eu-152 and Eu-154) were most likely impurities inherent in the insulation. Europium isotopes are not reportable nuclides in 10CFR part 61 analyses. Detectable trace amounts of Co-60 in the insulation are not readily explainable from the composition of typical insulation materials. However, the presence of Co-60 likely resulted from slight cross contamination of the samples during the drilling process, or left from the original construction. These concentrations have negligible effect on the total Co-60 content of the RPV.

2.3.4 Detection Methods

A gamma scan analysis was considered adequate for the NST-Lead, RPV-Insulation and both liquid samples due to the expected low activation levels. The remaining samples were subjected to a complete 10 CFR Part 50/61 radionuclide identification and quantitative analysis.

GEL employed the following radionuclide detection processes in their analysis:

- Gamma spectroscopy suitable for most gamma emitters.
- Liquid scintillation counting used for measuring low energy beta particles.
- Gas flow proportional counter able to discriminate among nuclides in a combined alpha-beta sample.
- Alpha spectroscopy suitable for most alpha emitters.

Most radionuclides analyzed were not detected at or above the Minimum Detectable Activity (MDA) levels. The MDA levels for each radionuclide analyzed are specified in GEL Report, Sample Data Summary, pages 28-51. The presence of a specific radionuclide was considered statistically positive at the 99.9% confidence level, i.e., activation is greater than three times the one sigma uncertainty. (one sigma = 68.3%; two sigma = 96.0%; three sigma = 99.7%).

2.3.5 Data Anomalies

Several of the findings were inconsistent with expected results and were reviewed with GEL personnel. These anomalies and their likely explanations include:

1. Trace amounts of Co-60 in NST outer diameter.

The NST is a carbon steel structure that is not expected to contain natural cobalt (Co-59), which would transmute to Co-60 when irradiated with neutrons. A plausible explanation is the presence of natural cobalt as an impurity in the carbon steel composition of the NST. However, the small amount of Co-60 has a negligible effect on the total Co-60 Curie content of the RPV and internals.

2. Eu-152 and Eu-154 in RPV Insulation.

Trace quantities of Eu-152 and Eu-154 were identified in the RPV insulation. GEL personnel reviewed their analysis and confirmed the original findings. Europium, which is not a reportable nuclide in 10 CFR Part 50/61, was likely a trace impurity in the insulation.

3. Presence of Co-58 in RPV Insulation.

Co-58 with a 71 day half-life was detected in the RPV insulation at a concentration slightly above MDA. The gamma spectroscopy signature of Co-58 is very similar to that of Eu-154, about 810 Kev. It is difficult to distinguish similar energy peaks in a gamma spectrum created by trace quantities of individual isotopes. It was concluded that detection of the Co-58 finding was a false positive.

4. Presence of Co-60 in RPV Insulation.

A trace amount of Co-60, slightly above MDA, was detected in the insulation. This was likely due to cross-contamination of the insulation by metal from the adjoining inner diameter of the NST addressed in Item #1 above.

GEL's certified concurrence with explanations of these data anomalies is shown in Appendix B.

2.4 DOSIMETRY MEASUREMENTS

An independent confirmation of credibility of the radiochemistry data is supported through actual dose measurements taken aboard ship. Dosimetry readings were taken at two locations - one external to the NST Inner Diameter (7 mR/hr at contact, taken April 2005); the other in the annular space between the outer and middle thermal shields (16 R/hr, taken September 2005). The reading at the thermal shield was taken with a small diameter Teletector extension instrument on a shaft that was inserted through the vessel drill hole. The face of the detector was extended 50 inches (127 cm) from the outer diameter of the lead shield surrounding the NST to the annular space between the outer and middle thermal shields as shown in Figure ES-1. The detector was used with a closed plastic shield to block beta radiation and low energy gammas; therefore, the readings are attributable primarily to the energetic gamma radiation from Cobalt (Co-60).

Using conventional gamma dosimetry calculations, the laboratory-derived activity concentrations for Co-60 at the two locations were compared to the dosimetry readings. This activation scaling approach yielded agreement within a factor of 6 over a dose range of almost four orders of magnitude. This was well within acceptable correlation limits. Results of activation levels based on metal sample analysis are shown in Table 2.

US DOT / Maritime Administration

N/S SAVANNAH RPV Drilling, Sampling, and Radiochemical Analysis Project Report

Table 2. Sample Derived Activity Levels

Table 2. Sample Derived Activity Levels								
Reactor Components Volui		Activity in Curies						Totals
	(m ³)	F0.55	00.00	NI: FO	NI: CO	NIL O4	C 4 4	(WAC
		Fe-55	Co-60	Ni-59	Ni-63	Nb-94	C-14	Class/Rat io)
								218.8
Core Basket	0.186	0.6	28.8	2.4	187	*	**	(C/0.14)
COTO BUONOS	0.100	0.0	20.0		107			, ,
- ·· ·	0.004	0.4	440	4.0	0.4.0	*	**	110.5
Upper Transition Nozzles	0.094	0.4	14.6	1.2	94.3	•	^^	(C/0.14)
								110.5
Lower Transition Nozzles	0.094	0.4	14.6	1.2	94.3	*	**	(C/0.14)
							dede	3.4
Control Rods	0.008	*	0.42	*	3.1	*	**	(B/0.55)
Inner Thermal Chield	0.226	0.2	15.5	1 1	101	*	**	117.8
Inner Thermal Shield	0.336	0.2	15.5	1.1	101			(B/0.43) 97.4
Middle Thermal Shield	0.924	0.1	13.0	0.1	84.2	<mda< td=""><td>*</td><td>(B/0.13)</td></mda<>	*	(B/0.13)
Wildale Friedman Griffela	0.02-	0.1	10.0	0.1	04.2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		13.0
Outer Thermal Shield	0.439	*	4.7	0.1	8.2	<mda< td=""><td>*</td><td>(A/0.54)</td></mda<>	*	(A/0.54)
Lower Grid Plate & Flow						<mda< td=""><td></td><td>2.2</td></mda<>		2.2
Baffle Plate	0.189	*	0.3	*	1.9		*	(A/0.29)
						<mda< td=""><td></td><td>0.8</td></mda<>		0.8
Upper Grid Plate	0.073	*	0.1		0.7		*	(A/0.27)
						<mda< td=""><td></td><td>4.0</td></mda<>		4.0
Upper Grid Plate Shrouds	0.175	*	0.5		3.5	145.4	*	(A/0.57)
Lawar Flow Daffla Chravda	0.440	*	*		*	<mda< td=""><td>*</td><td></td></mda<>	*	
Lower Flow Baffle Shrouds	0.149				-	<mda< td=""><td></td><td></td></mda<>		
Upper Flow Baffle Shrouds	0.245	*	*		*	< IVIDA	*	
Pressure-Vessel (Midsect.)	3.349	*	*		*	<mda< td=""><td>*</td><td></td></mda<>	*	
Trocodio voccoi (Middedii)	0.010					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
Neutron Shield Tank (ID)	0.286	*	*		*	<mda< td=""><td>*</td><td></td></mda<>	*	
Totals		1.7	93	6.1	578			678.3
I Utais		1.7	33	0.1	310			010.3
Axial Flux Adjusted Totals		1.1	63	4.1	391			459.2
7 Dilai i lait / lajaotoa i otalo				<u> </u>		<u> </u>	L	100.2

^{*} Less than 0.001Curies

^{**} Less than 0.01 Curies

NOTE: The MDA levels for Niobium-94 and all other radionuclides analyzed are specified in GEL Report, Sample Data Summary, pages 28-51.

2.5 EXTRA CONTROL BLADE

During de-fueling there was an extra used (irradiated) NS SAVANNAH cruciform control blade to be disposed of in 1971. This control blade was either damaged during the fuel shuffle or was destructively tested at the shipyard. The control blade was placed vertically and rotated 45 degrees in an empty fuel element I space in the core region before insertion of the upper internals package. It is now not practical from a cost, safety, or ALARA standpoint to take this control blade out of the RPV. If that was done it would be buried with the RPV in its own cask or container.

The effects of the (22nd) control blade are minimal. In the analysis the blade was assumed to be among the most highly irradiated blades and the curie content assigned to it was 150% of the average control blade activity from the most current ORIGEN-ARP analysis.

2.6 ORIGEN-ARP 2.0 COMPUTER CODE

ORIGEN-ARP performs isotopic activation and depletion/decay calculations for pressurized and boiling water reactors. Oak Ridge National Laboratory developed ORIGEN-ARP (and its predecessors) for the Nuclear Regulatory Commission and the Department of Energy to satisfy the need for a standardized method of isotope depletion/decay analysis of spent fuel, fissile material and radioactive material. It can be used for spent fuel characterization, isotopic inventory, radiation source terms and decay heat. The neutron cross sections used in the analysis are based on cross section libraries in Origen ARP 2.0, SCALE 5, developed by Oak Ridge National Laboratories and available at http://www.ornl.gov/sci/origen-arp/index.htm.

The NSS reactor operated from 1962 to 1970 at an average plant capacity factor of 30% resulting in 2.423 years of effective full power operation. A realistic fuel irradiation profile was input to the ORIGEN code, consistent with the complete operational history of NSS' reactor. A total of 2.423 effective full power years of operation was utilized, but was apportioned in accordance with NSS' actual operating history as shown in Appendix B. A more realistic RPV/Internals irradiation profile based on GEL results was inputted to the ORIGEN code.

The eight-year operating period with extended interim shutdown resulted in significant decay of Cobalt (Co-60) and Iron (Fe-55) and minor decay of Nickel

US DOT / Maritime Administration

N/S SAVANNAH RPV Drilling, Sampling, and Radiochemical Analysis Project Report

(Ni-63). Because NSS seldom operated at full power for extended periods, peak neutron flux was rarely experienced. October 2008 is considered the earliest realistic date for reactor burial. The resulting 38-year decay mode results in only trace quantities of Fe-55 currently in the RPV (decay factor = 2.1×10^{-6}), considerable reduction in Co-60 (decay factor = 6.8×10^{-3}) and modest reduction in Ni-63 (decay factor = 0.77). Ni-59, with a 7.5×10^{4} year half-life, has a unity decay factor.

As with the radiochemical analysis, an axial neutron flux factor of 1.48 corresponding to a 68% reduction in axial neutron flux was assumed in realistically describing average activation levels across the reactor internals and pressure vessel.

Results of the ORIGEN-ARP analysis by reactor component are shown in Table 3.

US DOT / Maritime Administration

N/S SAVANNAH RPV Drilling, Sampling, and Radiochemical Analysis Project Report

Table 3 ORIGEN -ARP Activity Levels

Reactor Components	Volume	RIGEN –ARP Activity Levels Activity in Curies						Totals
(m ³)		/ tourny in Canac						WAC
	, ,	Fe-55	Co-60	Ni-59	Ni-63	Nb-94	C-14	(Class/
								Ratio)
								267
Core Basket	0.186	0.5	48.5	2.4	216	**	**	(C/0.17)
T 22 M 1	0.004	0.0	0.4.5	4.0	440	**	**	136
Upper Transition Nozzles	0.094	0.3	24.5	1.2	110	^^	^^	(C/0.17)
								136
Lower Transition Nozzles	0.094	0.3	24.5	1.2	110	**	**	(C/0.17)
						de de	dist	4.0
Control Rods	0.008	*	8.0	*	3.2	**	**	(B/0.53)
Inner Thermal Shield	0.336	0.2	17.6	0.9	78.3	**	**	97.0 (B/0.33)
Illiei Theimai Silieid	0.550	0.2	17.0	0.9	70.5			13.8
Middle Thermal Shield	0.924	*	2.8	0.1	10.9	**	*	(A/0.34)
								3.2
Outer Thermal Shield	0.439	*	0.6	*	2.6	**	*	(A/0.17)
Lower Grid Plate & Flow								2.7
Baffle Plate	0.189	*	0.5	*	2.2	**	*	(A/0.30)
								1.1
Upper Grid Plate	0.073		0.2	*	0.9	**	*	(A/0.35)
								5.0
Upper Grid Plate Shrouds	0.175	*	0.9	*	4.1	**	*	(A/0.82)
Lower Flow Baffle Shrouds	0.149	*	*	*	*	**	*	
Lower Flow Barne Officials	0.140							
Upper Flow Baffle Shrouds	0.245						*	
Pressure Vessel	-							
(Mid-Section)	3.349	*	*	*	*	**	*	
Neutron Objekt Teats (ID)	0.000	*	*	*	*	**	*	
Neutron Shield Tank (ID)	0.286	-						
Totals		1.3	121	5.7	538			666.0
Axial Flux Adjusted Totals		0.9	82	3.9	364			451.0

Table 4 Comparison of 2004 and 2005 ORIGEN Analysis

Nuclide	ORIGEN (April 2004)	WAC Class/ Ratio*	ORIGEN (October2005)	WAC Class/ Ratio*
Ni-63	2902	B/0.324	364	A/0.81
Co-60	1108	A/0.124	82	A/0.009
Ni-59	30.6	A/0.109	3.9	A/0.014
Fe-55	17.8	A/0.002	0.9	A/1.3E-4
Nb-94	0.100	A/0.391	<0.0001	
C-14	7.32	A/0.072	<0.0001	
Total	4066		451	

3.0 FINDINGS

3.1 DISCUSSION OF RESULTS

Table 5A and 5B below presents the results of total RPV nuclide activation levels based on actual radiochemistry data from the samples and analysis using the ORIGEN code for the part 61 analyses, respectively. The concentration of each radionuclide was averaged over the entire volume of metal in the RPV and internals. As shown, all nuclides are within the Waste Classification Class A limit both individually per isotope and when combined using the sum of the fractions for Class A Waste, which is 0.89. These results satisfy the WAC criteria and averaging methodology for burial at Chem-Nuclear Systems and Envirocare of Utah (EOU).

An analysis of the surface coating (CRUD) levels were performed as part of the NSS Characterization Study and are documented in Appendix B of the NS Savannah Characterization Survey Report, Revision 0, September 22, 2005. The principal isotope in the crud was confirmed to be C0-60 through the use of gamma spectroscopy. A surface coating analysis is also documented in the Reactor Vessel, Internals and Neutron Shield Tank Characterization and Classification Assessment dated April 3, 2004.

TABLE 5A
SUMMARY OF RADIOACTIVITY PRESENT

Nuclide	Metal Sampl	e Analysis	OR	IGEN	WAC Class A Limit / Ratio*
	Curies	Curies/m ³	Curies	Curies/m ³	Curies/m ³
Ni-59***	4.1	0.3	3.9	0.3	22 / 0.014
Nb-94***	< MDA**	1	<0.0001		
C-14***	<0.01		<0.0001		

^{*}Ratio of Curie concentration from metal sample analysis to Class A limit

^{**} Minimum detectable Activity Level

^{***} in activated metal

TABLE 5B SUMMARY OF RADIOACTIVITY PRESENT

Nuclide	Metal Samp	le Analysis	OR	IGEN	WAC Class A Limit / Ratio*
	Curies	Curies Curies/m ³ Curies Curies/m ³		Curies/m ³	
Ni-63***	385	30.1	356	27.9	35 / 0.86
Co-60	62	4.9	80	6.3	700 / 0.007
Fe-55	1.1	0.09	0.9	0.07	700 / 1.3E-4

^{*}Ratio of Curie concentration from metal sample analysis to Class A limit

3.2 REGULATORY CONDITIONS

The regulatory conditions, limitations and allowances are such that the NS SAVANNAH RPV and Internals package is a class A package per 10 CFR Part 61. And they are a class A package at both Envirocare of Utah and Chem-Nuclear in Barnwell, SC.

4.0 CONCLUSIONS

The following conclusions are drawn from this project:

- These results are consistent with previous analyses and are based upon a conservative methodology and assumptions.
- This project approach has been proven and accepted for similar projects, such as one completed at Shoreham Nuclear Power Station.
- The analytical data and results also correlate with actual field dosimetry measurements taken during the project.

^{**} Minimum detectable Activity Level

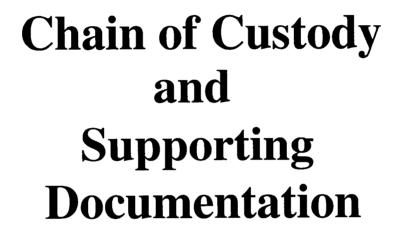
^{***} in activated metal

- The computer code used for this analysis (ORIGEN-ARP Version 2.0) is the state-of-the-art code used by the nuclear industry and government for analyses of this type.
- The radionuclide concentration for the NS SAVANNAH RPV and internals package is clearly shown to be within Class A disposal limits. The specific waste classification criteria and allowable limits comply with the written requirements set forth by the federal government, state governments, and waste management facilities.
- Further intrusive sampling or opening of the RPV and/or internals will be expensive, will require additional personnel radiation exposure, and will not yield data that will change this waste classification conclusion.

5.0 REFERENCES

- 1. NS SAVANNAH Reactor Construction and Design Calculations; The Babcock & Wilcox Company, Barberton, OH; March 10, 1958
- 2. NS SAVANNAH Primary Piping Design Calculations; The Babcock & Wilcox Company, Barberton, OH; March 13, 1959
- 3. Steam Generator Instruction Book, NS SAVANNAH Nuclear Power Plant; The Babcock & Wilcox Company, New York, NY; February, 1959
- 4. South Carolina Department of Health and Environmental Control, Radioactive Material License no.097, July 31, 2000.
- 5. ENVROCARE of UTAH, Bulk Waste Disposal and Treatment Facilities Waste Acceptance Criteria, Revision 5, April 2005.
- 6. *N. S. SAVANNAH Radiological Survey*, Todd Shipyard Corporation, August 1976.
- 7. Nuclear Merchant Ship Reactor, W.R.Smith & M.A.Turner, April 1958.
- 8. N. S. SAVANNAH SAFETY ASSESSMENT, Vol. I, Engineering and Construction, Edited by Zelvin Levine, June 1959.
- 9. *N. S. SAVANNAH SAFETY ASSESSMENT,* Vol. III, Radiological Health, Prepared by States Marines Lines, August 1961.
- 10. *N. S. SAVANNAH SAFETY ASSESSMENT,* Revision III, Prepared by First Atomic Ship Transport Inc., October 1968.
- 11. DOE/LLW-238, Selected Radionuclides Important to Low-Level Radioactive Waste Management, Idaho National Engineering Laboratory, November 1996.
- 12. BAW-1164, NUCLEAR MERCHANT SHIP REACTOR, FINAL SAFEGUARDS REPORT, VOLUME I, The Babcock & Wilcox Company, June 1960.

US DOT / Maritime Administration


N/S SAVANNAH RPV Drilling, Sampling, and Radiochemical Analysis Project Report

APPENDIX A

GEL Data

Chain of Custody and Supporting Documentation	1
Radiological Analysis	7
Sample Data Summary	28
Quality Control Data	52

RADIOACTIVE MATERIALS (EXEMPT QUANTITIES OR LOWER) SAMPLE CHAIN OF CUSTODY DOCUMENTATION

WPI

2020 KRAFT DRIVE, SUITE 2200 BLACKSBURG, VIRGINIA 24060 (336) 316-0707 (336) 210-0662 (CELL)

SHIPPER:

R. Jon Stouky, Project Manager

September 2, 2005

WPI

2020 Kraft Drive, Suite 2200 Blacksburg, Virginia 24060

DRIVER:

Thomas Craddick, WPI employee

sole use private vehicle - exempt quantities RM

1448141

Thomas Craddick

09/02 Date

PACKAGE/CONTENTS DESCRIPTION:

Item 1, DOT Cert. ammo box with wired closed lid containing 7 each 14.2 to 28.2 gram each CS, SS, and lead metal shaving, and one thermal insulation samples (see attached list) in individual poly baggies which are in 3/4" capped pipe nipples, and wrapped in 1/4" lead. All containers have been surveyed and have no residual contamination. Total measured activity is 3.2 Ci CO-60 and 10.0 Ci NI-63.

Highest dose rate is samples 7 through 9, and is approximately 40 mrem/hr. Major isotopes are CO-60 and NI-63. Samples contain no measurable fissionable materials.

All samples are from NS SAVANNAH reactor vessel and internals and samples 1, 3, 5, 6, 7, 8, and 9 are to be subjected to a full Part 61 analysis. Sample 4 is to be gamma scanned only for induced activity and residual contamination.

Item 2, 2 each non approved containers of NS SAVANNAH secondary system water, counted previously on board the SAVANNAH and found to contain no radioactive materials in excess of background.

These two liquid samples are to be subjected to a gamma scan only to confirm the above results.

All samples are exempt quantities or lower in classification and the liquid samples are not shipped as any class of RM.

RECEIPT SIGNATURE:

T.BOM 9.6.05

I certify that General Engineering Laboratories (GEL), of Charleston, South Carolina received the above packages/samples (contaienrs not on September 27, 2005.

2

Received by;

Date

Subject: Samples from NS SAVANNAH

Date: Wed, 7 Sep 2005 09:26:20 -0400

From: "Fitzgerald, Frank" <frank_fitzgerald@wpi.biz>

To: "Cheryl Jones" <cj@mail.gel.com>

CC: "Solovey, Garrick" < Garrick_Solovey@wpi.biz>, < gjsolovey@aol.com>, "Howell, Wayne" < Wayne_Howell@wpi.biz>,

"Stouky, Jon @ AOL" <jstouky@aol.com>, "Bowen, John" <john_bowen@wpi.biz>

Cheryl:

This email is to confirm our discussion this morning, concerning the samples received by GEL from the NS SAVANNAH.

- O There are 11 total samples.
- Seven of the samples will undergo Part 61 Analysis
 - Two of the seven samples will be accelerated. The two samples to be accelerated are:
 - MTS-ID-1
 - OTS-ID/OD
- O Please perform a Gamma Scan only on the following two samples:
 - Sample 1 NST-Lead
 - Sample 4 RPV-INSUL-1
 - The price for the Gamma scan on these samples (as we discussed) is \$234/each. \$156 each x 1.5X for RAD II = \$234.
 - Total price for the gamma scan on the 2 samples is \$468 (\$234 x 2).
- Please perform a Gamma Scan only on the two water samples:
 - The price for the gamma scan on the 2 water samples is \$156/each or \$312 total.

Please confirm you have these samples. Also, I will issue a change order to the P.O. WPI-06-0025 to authorize the Gamma scans.

If you have questions or need additional information, please let me know. We appreciate your help with these.

Sincerely,

Frank Fitzgerald

Contracts Manager, CFCM

WPI, Inc.

Frank_Fitzgerald@wpi.biz Phone: 540-557-6034 Fax: 540-557-6043

NOTICE:

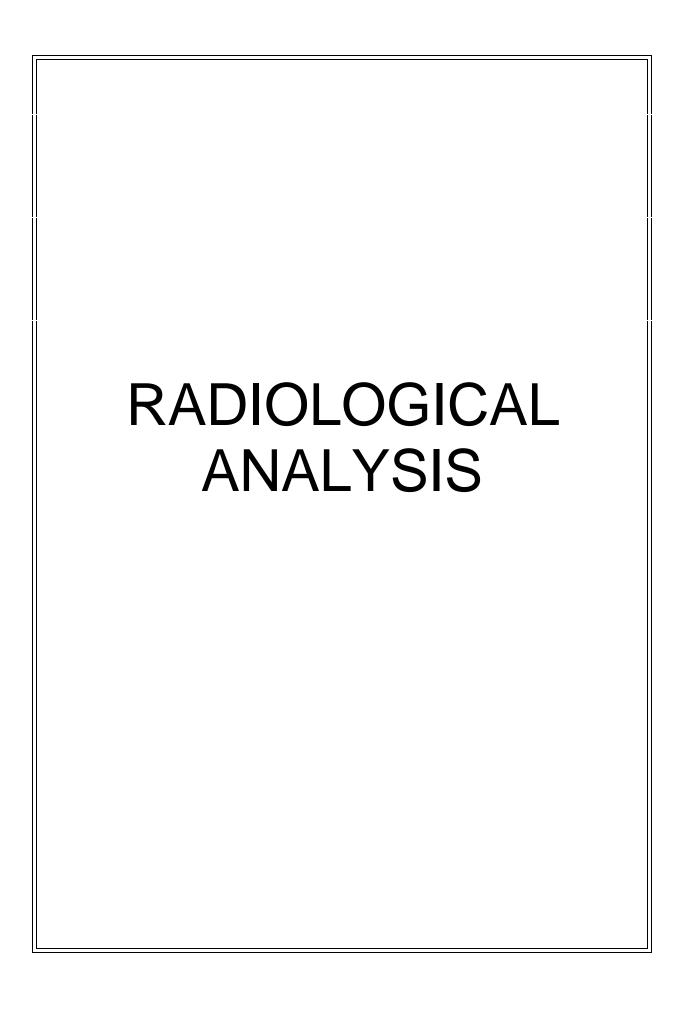
This message is for the designated recipient only and may contain privileged or confidential information. If you have received it in error, please notify the sender immediately and delete the original. Any other use of this e-mail by you is prohibited.

•	SAMPLES	Approx. sample
10	NST - Lead	Approx. sample Wt. (gm) (26.1)
V 3	NST - OD - Inner Wa	11 (14.6)
/3	NST-ID-1	(19.8)
~ (4)	RPV Insulation-1	(28.8)
13	RPV-OD-1	(19.3)
16	RPV-ID-1	(17.0)
v (7)	OTS ID/OD	(16.3)
· (3)	MTS OD-1	(14.6)
v (9)	MTS ID-1	(14.4)

--- 1307s

TO: 13363160550

SEP-3-2005 09:13 FROM: ISLAND INN MOTEL 9102014 4 TO:1
SHIPPING DECLARATION
REQUISITION FOR MATERIAL


NOTE:	Only app Be sure	licable to des	informati cribe full	on need be entere ly the items in t	ed on the first five line the Description of M	es of this form. eterial column.	Requisition Num	Det 200;	5-001
Date of	5€	PT	01	2005	Delivery requested	и			_ofpages
Feat						LAMES	RUER RES	FOET;	Nowfret Live VA .
Deliver	·	ME OF VE	SSEL DR B	UILDING LOCATION		DEPARTMENT		HAME	
If veas	el, give .		·	En		PORT		AOAYEE MIMB	E9
60	NG. OF	NO.OF		<u> </u>				n -	NOT USE
HOT USE	CHITS	UNITS NEEDED	UNIT		DESCRIPTION	OF MATER		UMIT VALU	E TOTAL VALUE
		<u> </u>	ļ	RADIDAC	THE MATE	eial (=	AUPLES)	∦+	
		<u> </u>		EXEM	PT QUANTIT	<u> </u>		-	
				CLAS	s 7, UN	13332	(0000)		
			_		uCi_			_#	+
		ļ						#	
		ļ	<u> </u>	SHIP TO	o: Gover	L ENGW	stlung (ABON	TORIE	5
		İ			CHARL	ESTOU, -	<u>sc</u>	-	
				ANN BY	: ERHA	es W. Ko	EHLER	-	
							orisal N.S.	SAVANK	1401
					<u> </u>	MARITIME	= ARMIN	4	
			J		WASH	INGTON ,	Ac 20590		
				Debu	s: (202)				
			+	\$ ~ .	Therese	CRAN	cl.		+
	-	 	1-	Selver:		INC.			
	-				RICHAR	and VA			
				Delant	RICHMO : (336) 2	10-066	2		
) 		TOTAL	
Submit	ited	516	MATURE		Approved 3	ALL KILL	Material Faceived	SIEMAYU	ic
		TITLE			/1171			TITUE	PRINTED BE U.S.A.

American Export Isbrandtsen Lines

TABORATONES,

SAMPLE RECEIPT & REVIEW FORM

PM use only 144814 SDG/ARCOC/Work Order: Client: PM(A) Review (ensure non-conforming items are resolved prior to signing): Date Received: Received By: NA A Comments/Qualifiers (Required for Non-Conforming Items) 9 Sample Receipt Criteria Circle Applicable: seals broken damaged container leaking container other (describe) Shipping containers received intact and sealed? other describe) Circle Coolant # ice bags dry ice Samples requiring cold 2 preservation within (4 +/- 2 C)? Record preservation method. Chain of custody documents included with shipment? Circle Applicable: seals broken damaged container leaking container other (describe) Sample containers intact and sealed? Sample ID's, containers affected and observed pH: Samples requiring chemical preservation at proper pH? Sample ID's and containers affected: VOA vials free of headspace (defined as < 6mm bubble)? Are Encore containers present? (If yes, immediately deliver to VOA laboratory) Id's and tests affected: Samples received within holding time? Sample ID's and containers affected: Sample ID's on COC match ID's on bottles? Date & time on COC match date & time on bottles? Number of containers received 11 match number indicated on COC? COC form is properly signed in relinquished/received sections? 1. Starboard Scendery Stean generator liquid Sample 2. Port Secondary stean generator liquid Sample Liquid clied 10's-Air Bill ,Tracking #'s, & Additional Comments RSO RAD Receipt # Regulated Regulated *If > x2 area background is observed on samples identified as "nonregulated/non-radioactive", contact the Radiation Safety group for further **Suspected Hazard Information** Radiological Classification? Maximum Counts Observed*: Comments: waters are RAD, Solids are RADIE B PCB Regulated? Shipped as DOT Hazardous Hazard Class Shipped: C Material? If yes, contact Waste UN#: Manager or ESH Manager. لكما Date: 6/05 Initials PM (or PMA) review of Hazard classification:

Radiochemistry Case Narrative WPI (WPIA) Work Order 144814

Method/Analysis Information

Product: Alphaspec Am241, Cm, Solid High Rad
Analytical Method: DOE EML HASL-300, Am-05-RC Modified

Prep Method: Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method: Dry Soil Prep
Analytical Batch Number: 461113
Prep Batch Number: 461043

Dry Soil Prep GL-RAD-A-021 Batch Number: 461025

Sample ID	Client ID
144814002	NST - OD Inner Wall
144814003	NST - ID-1
144814005	RPV OD-1
144814006	RPV ID-1
144814007	OTS ID/OD
144814008	MTS OD-1
144814009	MTS ID-1
1200932035	Method Blank (MB)
1200932036	144814005(RPV OD-1) Sample Duplicate (DUP)
1200932037	144814005(RPV OD-1) Matrix Spike (MS)
1200932038	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-011 REV# 14.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 144814005 (RPV OD-1).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. An NCR was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Liquid Scint Pu241, Solid High Rad
Analytical Method:	DOE EML HASL-300, Pu-11-RC Modified
Prep Method:	Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method:	Dry Soil Prep
Analytical Batch Number:	461078

Prep Batch Number: 461043 Dry Soil Prep GL-RAD-A-021 Batch Number: 461025

Sample ID	Client ID
144814002	NST - OD Inner Wall
144814003	NST - ID-1
144814005	RPV OD-1
144814006	RPV ID-1
144814007	OTS ID/OD
144814008	MTS OD-1
144814009	MTS ID-1
1200931922	Method Blank (MB)
1200931923	144814005(RPV OD-1) Sample Duplicate (DUP)
1200931924	144814005(RPV OD-1) Matrix Spike (MS)
1200931925	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering

Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-035 REV# 7.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 144814005 (RPV OD-1).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. An NCR was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: Alphaspec Pu, Solid High Rad

Analytical Method: DOE EML HASL-300, Pu-11-RC Modified

Prep Method: Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method: Dry Soil Prep

Analytical Batch Number: 461109
Prep Batch Number: 461043
Dry Soil Prep GL-RAD-A-021 Batch Number: 461025

Sample ID	Client ID
144814002	NST - OD Inner Wall
144814003	NST - ID-1
144814005	RPV OD-1
144814006	RPV ID-1
144814007	OTS ID/OD
144814008	MTS OD-1
144814009	MTS ID-1
1200932031	Method Blank (MB)
1200932032	144814005(RPV OD-1) Sample Duplicate (DUP)
1200932033	144814005(RPV OD-1) Matrix Spike (MS)
1200932034	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-011 REV# 14.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 144814005 (RPV OD-1).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. An NCR was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: Liquid Scint Tc99, Solid High Rad

Analytical Method: DOE EML HASL-300, Tc-02-RC Modified

Analytical Batch Number: 461039

Sample ID	Client ID
144814002	NST - OD Inner Wall
144814003	NST - ID-1
144814005	RPV OD-1
144814006	RPV ID-1
144814007	OTS ID/OD
144814008	MTS OD-1
144814009	MTS ID-1
1200931827	Method Blank (MB)
1200931828	144814002(NST - OD Inner Wall) Sample Duplicate (DUP)
1200931829	144814002(NST - OD Inner Wall) Matrix Spike (MS)
1200931830	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-005 REV# 12.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 144814002 (NST - OD Inner Wall).

OC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. An NCR was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product:	Liquid Scint Fe55, Solid High Rad
I I duuct.	Liquiu Scint 1 ess, sonu iligii Rau

Analytical Method: DOE RESL Fe-1, Modified

Prep Method: Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method: Dry Soil Prep
Analytical Batch Number: 461073
Prep Batch Number: 461043

Dry Soil Prep GL-RAD-A-021 Batch Number: 461025

Sample ID	Client ID
144814002	NST - OD Inner Wall
144814003	NST - ID-1
144814005	RPV OD-1
144814006	RPV ID-1
144814007	OTS ID/OD
144814008	MTS OD-1
144814009	MTS ID-1
1200931907	Method Blank (MB)

1200931908 144814003(NST - ID-1) Sample Duplicate (DUP) 1200931909 144814003(NST - ID-1) Matrix Spike (MS) 1200931910 Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-040 REV# 3.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 144814003 (NST - ID-1).

OC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. An NCR was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: Gamma Ni59, Solid High Rad

Analytical Method:

Prep Method:

DOE RESL Ni-1

Ash Soil Prep

Dry Soil Prep GL-RAD-A-021 Method:

Dry Soil Prep

Analytical Batch Number:

461105

Prep Batch Number: 461043
Dry Soil Prep GL-RAD-A-021 Batch Number: 461025

Sample ID	Client ID
144814002	NST - OD Inner Wall
144814003	NST - ID-1
144814005	RPV OD-1
144814006	RPV ID-1
144814007	OTS ID/OD
144814008	MTS OD-1
144814009	MTS ID-1
1200932016	Method Blank (MB)
1200932017	144814003(NST - ID-1) Sample Duplicate (DUP)
1200932018	144814003(NST - ID-1) Matrix Spike (MS)
1200932019	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-022 REV# 7.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 144814003 (NST - ID-1).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Sample 1200932018 (NST - ID-1) was recounted due to low/high recovery.

Chemical Recoveries

All chemical recoveries meet the required acceptance limits for this sample set.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. An NCR was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Qualifier information

Qualifier	Reason	Analyte	Sample
UI	Data rejected due to low abundance.	Nickel-59	144814003
			144814005

Method/Analysis Information

Product: Liquid Scint Ni63, Solid High Rad

Analytical Method: DOE RESL Ni-1, Modified

Prep Method: Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method: Dry Soil Prep
Analytical Batch Number: 467200
Prep Batch Number: 461043
Dry Soil Prep GL-RAD-A-021 Batch Number: 461025

Sample ID	Client ID
144814002	NST - OD Inner Wall
144814003	NST - ID-1
144814005	RPV OD-1
144814006	RPV ID-1
144814007	OTS ID/OD
144814008	MTS OD-1
144814009	MTS ID-1
1200946695	Method Blank (MB)
1200946696	144814002(NST - OD Inner Wall) Sample Duplicate (DUP)
1200946697	144814002(NST - OD Inner Wall) Matrix Spike (MS)

1200946698 Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-022 REV# 7.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 144814002 (NST - OD Inner Wall).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Samples were reprepped due to high relative percent difference/relative error ratio.

Samples were reprepped due to low/high recovery.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. An NCR was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: Gamma I129, Solid High Rad

Analytical Method: EML HASL 300, 4.5.2.3

Analytical Batch Number: 461082

Sample ID	Client ID
144814002	NST - OD Inner Wall
144814003	NST - ID-1
144814005	RPV OD-1
144814006	RPV ID-1
144814007	OTS ID/OD
144814008	MTS OD-1
144814009	MTS ID-1
1200931936	Method Blank (MB)
1200931937	144814002(NST - OD Inner Wall) Sample Duplicate (DUP)
1200931938	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-013 REV# 10.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 144814002 (NST - OD Inner Wall).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Sample 1200931938 (LCS) was recounted due to low/high recovery.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. An NCR was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Additional Comments

The standard detection limits were not met, however, the 10CFR Part 61 detection limits were met. 1200931937 (NST - OD Inner Wall), 144814002 (NST - OD Inner Wall), 144814003 (NST - ID-1), 144814006 (RPV ID-1), 144814007 (OTS ID/OD), 144814008 (MTS OD-1) and 144814009 (MTS ID-1).

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: Gammaspec, Gamma, solid High Rad

Analytical Method: EML HASL 300, 4.5.2.3

Prep Method: Dry Soil Prep

Analytical Batch Number: 461085 Prep Batch Number: 461025

Sample ID	Client ID
144814001	NST - Lead
144814002	NST - OD Inner Wall
144814003	NST - ID-1
144814004	RPV Insulation-1
144814005	RPV OD-1
144814006	RPV ID-1
144814007	OTS ID/OD
144814008	MTS OD-1
144814009	MTS ID-1
1200931947	Method Blank (MB)
1200931948	144814001(NST - Lead) Sample Duplicate (DUP)
1200931949	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-013 REV# 10.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 144814001 (NST - Lead).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Sample 1200931949 (LCS) was recounted due to low/high recovery.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. An NCR was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Additional Comments

The standard detection limits were not met, however, the 10CFR Part 61 detection limits were met. 144814007 (OTS ID/OD), 144814008 (MTS OD-1) and 144814009 (MTS ID-1).

Qualifier information

Qualifier	Reason	Analyte	Sample
U	Result not detected above the detection limit	Thorium-234	144814004
UI	Data rejected due to interference.	Cobalt-57	144814004
UI	Data rejected due to low abundance.	Barium-133	144814004
		Cesium-137	144814007
			144814009
		Lead-210	1200931948
		Lead-212	144814003
		Sodium-22	144814004
		Thorium-234	1200931947

		Uranium-238	1200931947
		Zinc-65	144814004
			144814007
			144814008
		Zirconium-95	144814004
UI	Data rejected due to no valid peak.	Cerium-139	144814004
		Cobalt-60	144814001
		Niobium-95	144814004
		Potassium-40	1200931948
			144814001
			144814004
		Thorium-234	144814004
		Uranium-235	1200931948
		Uranium-238	1200931948
			144814004
		Zinc-65	144814009

Method/Analysis Information

Product: GFPC, Sr90, solid High Rad

Analytical Method: EPA 905.0 Modified

Prep Method: Ash Soil Prep
Dry Soil Prep GL-RAD-A-021 Method: Dry Soil Prep

Analytical Batch Number: 461107 Prep Batch Number: 461043

Dry Soil Prep GL-RAD-A-021 Batch Number: 461025

Sample ID	Client ID
144814002	NST - OD Inner Wall
144814003	NST - ID-1
144814005	RPV OD-1
144814006	RPV ID-1
144814007	OTS ID/OD
144814008	MTS OD-1
144814009	MTS ID-1
1200932020	Method Blank (MB)
1200932021	144814003(NST - ID-1) Sample Duplicate (DUP)
1200932022	144814003(NST - ID-1) Matrix Spike (MS)
1200932023	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-004 REV# 9.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 144814003 (NST - ID-1).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Samples were recounted at least five days after the separation date to verify sample results. Second counts being reported.

Chemical Recoveries

All chemical recoveries meet the required acceptance limits for this sample set.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. An NCR was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: LSC, Tritium Dist, Solid High Rad

Analytical Method: EPA 906.0 Modified

Analytical Batch Number: 465649

Sample ID	Client ID
144814002	NST - OD Inner Wall
144814003	NST - ID-1
144814005	RPV OD-1
144814006	RPV ID-1
144814007	OTS ID/OD
144814008	MTS OD-1
144814009	MTS ID-1
1200943141	Method Blank (MB)
1200943142	144814002(NST - OD Inner Wall) Sample Duplicate (DUP)
1200943143	144814002(NST - OD Inner Wall) Matrix Spike (MS)
1200943144	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-002 REV# 10.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 144814002 (NST - OD Inner Wall).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Samples were reprepped due to low/high recovery.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. An NCR was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: Liquid Scint C14, Solid
Analytical Method: EPA EERF C-01 Modified

Analytical Batch Number: 461028

Sample ID	Client ID
144814002	NST - OD Inner Wall
144814003	NST - ID-1
144814005	RPV OD-1
144814006	RPV ID-1
144814007	OTS ID/OD
144814008	MTS OD-1
144814009	MTS ID-1
1200931790	Method Blank (MB)
1200931791	144814002(NST - OD Inner Wall) Sample Duplicate (DUP)
1200931792	144814002(NST - OD Inner Wall) Matrix Spike (MS)
1200931793	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-003 REV# 8.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 144814002 (NST - OD Inner Wall).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. An NCR was not generated for this SDG.

Manual Integration

No manual integrations were performed on data in this batch.

Qualifier information

Manual qualifiers were not required.

Method/Analysis Information

Product: Gammaspec, Gamma, Liquid (Long List)

Analytical Method: EPA 901.1 Analytical Batch Number: 463088

Sample ID	Client ID
144814010	Starboard Secondary Steam Gene
144814011	Port Secondary Steam Generator
1200936878	Method Blank (MB)
1200936879	145401002(SMH South End) Sample Duplicate (DUP)
1200936880	145401002(SMH South End) Matrix Spike (MS)
1200936881	Laboratory Control Sample (LCS)

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-013 REV# 10.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume in this batch.

Designated QC

The following sample was used for QC: 145401002 (SMH South End).

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Miscellaneous Information:

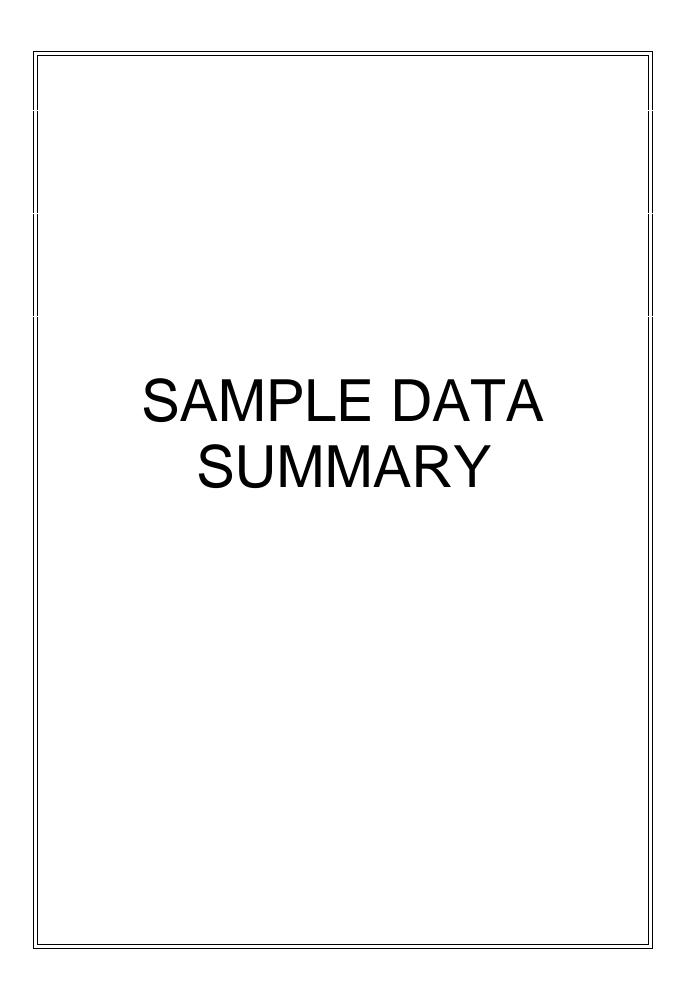
NCR Documentation

Nonconformance reports are generated to document any procedural anomalies that may deviate from referenced SOP or contractual documents. An NCR was not generated for this SDG.

Qualifier information

Qualifier	Reason	Analyte	Sample
UI	Data rejected due to low abundance.	Lead-210	144814011
		Thorium-234	1200936879
			144814011
		Uranium-238	1200936879
			144814011
UI	Data rejected due to no valid peak.	Bismuth-214	1200936879
		Thorium-230	1200936879
			144814011

Certification Statement


Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

 $\label{lem:condition} The following \ data \ validator \ verified \ the \ information \ presented \ in \ this \ case \ narrative:$

Reviewer: 10/4/06

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for for WPIA002 WPI

Client SDG: 144814 GEL Work Order: 144814

Sample(s) Contained within this report:

Lab Sample ID	Client Sample ID	Sample Description	Collected
144814001	NST - Lead	N/A	09/01/2005 12:00
144814002	NST - OD Inner Wall	N/A	09/01/2005 12:00
144814003	NST - ID-1	N/A	09/01/2005 12:00
144814004	RPV Insulation-1	N/A	09/01/2005 12:00
144814005	RPV OD-1	N/A	09/01/2005 12:00
144814006	RPV ID-1	N/A	09/01/2005 12:00
144814007	OTS ID/OD	N/A	09/01/2005 12:00
144814008	MTS OD-1	N/A	09/01/2005 12:00
144814009	MTS ID-1	N/A	09/01/2005 12:00
144814010	Starboard Secondary Steam Gene	N/A	09/01/2005 12:00
144814011	Port Secondary Steam Generator	N/A	09/01/2005 12:00

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Cheryl Jones.

Paviawad by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814001 Client: WPI

Client Sample ID: NST - Lead Collect Date: September 01, 2005

Matrix: Misc Solid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

	Aliquot		2		1			
Analyte	(g)	Run Date	Activity	Uncertainty	MDA	RL	Units	Qualifier
Gamma Sp	ec							
Be-7	2.52E+00	10/01/05	9.54E-07	5.29E-06	9.09E-06		uCi/g	U
Na-22	2.52E+00	10/01/05	-7.74E-08	6.59E-07	1.18E-06		uCi/g	U
K-40	2.52E+00	10/01/05	0.00E+00	1.02E-05	7.79E-06		uCi/g	UUI
Cr-51	2.52E+00	10/01/05	3.15E-06	7.01E-06	1.14E-05		uCi/g	U
Mn-54	2.52E+00	10/01/05	2.44E-09	4.27E-07	7.58E-07		uCi/g	U
Fe-59	2.52E+00	10/01/05	4.89E-07	1.59E-06	3.06E-06		uCi/g	U
Co-56	2.52E+00	10/01/05	-3.80E-07	7.09E-07	1.10E-06		uCi/g	U
Co-57	2.52E+00	10/01/05	-6.68E-08	2.68E-07	4.00E-07		uCi/g	U
Co-58	2.52E+00	10/01/05	-1.09E-07	6.51E-07	1.09E-06		uCi/g	U
Co-60	2.52E+00	10/01/05	0.00E+00	1.00E-06	8.90E-07	7.00E-01	uCi/g	UUI
Zn-65	2.52E+00	10/01/05	-3.17E-07	1.13E-06	1.99E-06		uCi/g	U
Y-88	2.52E+00	10/01/05	4.02E-07	7.33E-07	1.64E-06		uCi/g	U
Zr-95	2.52E+00	10/01/05	3.28E-07	1.19E-06	1.92E-06		uCi/g	U
Nb-94	2.52E+00	10/01/05	-3.37E-08	4.75E-07	7.99E-07	2.00E-04	uCi/g	U
Nb-95	2.52E+00	10/01/05	5.01E-07	7.07E-07	1.78E-06		uCi/g	U
Ru-106	2.52E+00	10/01/05	2.69E-07	3.94E-06	6.89E-06		uCi/g	U
Ag-110m	2.52E+00	10/01/05	-3.52E-07	4.95E-07	7.52E-07		uCi/g	U
Sn-113	2.52E+00	10/01/05	3.15E-08	5.63E-07	9.57E-07		uCi/g	U
Sb-124	2.52E+00	10/01/05	1.18E-06	1.78E-06	3.76E-06		uCi/g	U
Sb-125	2.52E+00	10/01/05	4.85E-07	1.20E-06	1.93E-06		uCi/g	U
Cs-134	2.52E+00	10/01/05	1.40E-07	4.82E-07	8.95E-07		uCi/g	U
Cs-136	2.52E+00	10/01/05	-1.67E-06	3.09E-06	5.15E-06		uCi/g	U
Cs-137	2.52E+00	10/01/05	7.26E-08	5.24E-07	9.09E-07	1.00E-03	uCi/g	U
Ba-133	2.52E+00	10/01/05	9.31E-08	5.88E-07	9.27E-07		uCi/g	U
3a-140	2.52E+00	10/01/05	6.97E-06	7.76E-06	1.46E-05		uCi/g	U
Ce-139	2.52E+00	10/01/05	-4.68E-08	3.90E-07	5.25E-07		uCi/g	U
Ce-141	2.52E+00	10/01/05	4.53E-07	8.84E-07	1.40E-06		uCi/g	U
Ce-144	2.52E+00	10/01/05	-4.96E-08	2.15E-06	3.26E-06		uCi/g	U
Nd-147	2.52E+00	10/01/05	4.29E-06	1.71E-05	3.05E-05		uCi/g	U
Pm-144	2.52E+00	10/01/05	2.06E-07	5.25E-07	9.33E-07		uCi/g	U
Pm-146	2.52E+00	10/01/05	3.65E-07	5.04E-07	9.36E-07		uCi/g	U
Eu-152	2.52E+00	10/01/05	1.82E-07	1.20E-06	1.90E-06		uCi/g	U
Eu-154	2.52E+00	10/01/05	-4.17E-07	1.86E-06	3.26E-06		uCi/g	U
Eu-155	2.52E+00	10/01/05	2.26E-07	1.02E-06	1.57E-06		uCi/g	U
r-192	2.52E+00	10/01/05	-3.21E-07	5.81E-07	8.41E-07		uCi/g	U
Hg-203	2.52E+00	10/01/05	3.27E-07	6.97E-07	1.11E-06		uCi/g	U
Γ1-208	2.52E+00	10/01/05	1.91E-07	8.94E-07	1.11E-06		uCi/g	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814001 Client: WPI

Client Sample ID: NST - Lead Collect Date: September 01, 2005

Matrix: Misc Solid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Analyte	Aliquot (g)	Run Date	Activity	Uncertainty	MDA	RL	Units	Qualifier
Pb-210	2.52E+00	10/01/05	6.99E-05	5.18E-05	7.37E-05		uCi/g	U
Pb-212	2.52E+00	10/01/05	6.20E-07	1.18E-06	1.24E-06		uCi/g	U
Pb-214	2.52E+00	10/01/05	6.86E-07	1.48E-06	1.77E-06		uCi/g	U
Bi-212	2.52E+00	10/01/05	4.15E-06	3.49E-06	7.21E-06		uCi/g	U
Bi-214	2.52E+00	10/01/05	1.11E-06	1.28E-06	2.06E-06		uCi/g	U
Ra-228	2.52E+00	10/01/05	1.88E-06	3.79E-06	4.79E-06		uCi/g	U
Ac-228	2.52E+00	10/01/05	1.88E-06	3.79E-06	4.79E-06		uCi/g	U
Th-230	2.52E+00	10/01/05	1.11E-06	1.28E-06	1.84E-06		uCi/g	U
Th-234	2.52E+00	10/01/05	5.39E-06	1.48E-05	1.92E-05		uCi/g	U
U-235	2.52E+00	10/01/05	2.08E-06	2.12E-06	3.47E-06		uCi/g	U
U-238	2.52E+00	10/01/05	5.39E-06	1.48E-05	1.92E-05		uCi/g	U
Np-239	2.52E+00	10/01/05	-7.88E-07	1.85E-06	2.71E-06		uCi/g	U
Am-241	2.52E+00	10/01/05	7.17E-07	1.83E-06	2.39E-06		uCi/g	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814002 Client: WPI

Client Sample ID: NST - OD Inner Wall Collect Date: September 01, 2005

Matrix: Misc Solid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

A 1.4	Aliquot	D D (A a4::4 2	Uncertainty	MD 4	DI	T I • 4	O 116
Analyte	(g)	Run Date	Activity	Uncertainty	MDA	RL	Units	Qualifier
Н-3	3.55E-02	09/26/05	-5.79E-05	4.22E-04	7.55E-04	4.00E-02	uCi/g	U
C-14	3.07E-02	09/22/05	-6.28E-06	5.45E-05	9.63E-05	8.00E-03	uCi/g	U
Fe-55	1.37E-03	09/23/05	1.38E-03	1.06E-02	1.46E-02	7.00E-01	uCi/g	U
Ni-63	1.37E-03	09/30/05	-2.54E-04	1.21E-03	2.11E-03	3.50E-03	uCi/g	U
r-90	2.10E-02	10/01/05	1.98E-05	1.59E-05	2.66E-05	4.00E-05	uCi/g	U
c-99	4.18E-02	09/25/05	-5.60E-05	4.91E-05	8.88E-05	3.00E-03	uCi/g	U
u-241	1.37E-02	09/26/05	6.83E-05	3.61E-04	6.26E-04	3.50E-03	uCi/g	U
Alpha Spec							C	
1-238	1.37E-02	10/01/05	7.27E-08	2.28E-06	6.60E-06	1.00E-04	uCi/g	U
u-239/240	1.37E-02	10/01/05	6.30E-07	1.77E-06	4.58E-06	1.00E-04	uCi/g	U
m-241	1.37E-02	10/01/05	6.08E-07	1.79E-06	4.45E-06	1.00E-04	uCi/g	U
m-242	1.37E-02	10/01/05	-8.06E-07	5.97E-07	4.33E-06	2.00E-02	uCi/g	U
m-243/244	1.37E-02	10/01/05	1.81E-12	2.26E-06	6.08E-06	2.00E-02	uCi/g	U
Gamma Spec	e							
e-7	2.73E-01	09/22/05	1.28E-04	1.22E-04	2.28E-04		uCi/g	U
a-22	2.73E-01	09/22/05	6.12E-06	1.29E-05	2.63E-05		uCi/g	U
-40	2.73E-01	09/22/05	1.76E-04	1.73E-04	3.58E-04		uCi/g	U
r-51	2.73E-01	09/22/05	-8.09E-05	1.36E-04	1.97E-04		uCi/g	U
In-54	2.73E-01	09/22/05	-1.62E-06	1.00E-05	1.72E-05		uCi/g	U
e-59	2.73E-01	09/22/05	3.34E-05	4.67E-05	6.82E-05		uCi/g	U
o-56	2.73E-01	09/22/05	-7.98E-06	1.28E-05	1.96E-05		uCi/g	U
o-57	2.73E-01	09/22/05	1.53E-06	7.98E-06	1.24E-05		uCi/g	U
0-58	2.73E-01	09/22/05	-1.18E-05	1.23E-05	1.72E-05		uCi/g	U
o-60	2.73E-01	09/22/05	3.24E-06	1.05E-05	2.03E-05	7.00E-01	uCi/g	U
i-59	6.83E-03	09/22/05	1.29E-04	3.79E-04	3.75E-04	2.20E-01	uCi/g	U
n-65	2.73E-01	09/22/05	-3.84E-07	2.41E-05	4.49E-05		uCi/g	U
-88	2.73E-01	09/22/05	-6.99E-07	8.77E-06	1.72E-05		uCi/g	U
r-95	2.73E-01	09/22/05	-1.56E-05	2.36E-05	3.61E-05		uCi/g	U
b-94	2.73E-01	09/22/05	6.13E-07	1.14E-05	1.96E-05	2.00E-04	uCi/g	U
b-95	2.73E-01	09/22/05	1.12E-06	1.85E-05	3.19E-05		uCi/g	U
u-106	2.73E-01	09/22/05	6.61E-05	1.06E-04	1.97E-04		uCi/g	U
g-110m	2.73E-01	09/22/05	-4.03E-08	9.79E-06	1.72E-05		uCi/g	U
n-113	2.73E-01	09/22/05	1.07E-05	2.61E-05	2.24E-05		uCi/g	U
o-124	2.73E-01	09/22/05	1.76E-05	2.23E-05	5.86E-05		uCi/g	U
p-125	2.73E-01	09/22/05	-3.05E-06	2.87E-05	4.83E-05		uCi/g	U
129	4.10E-02	09/22/05	-1.32E-06	6.02E-05	8.56E-05	8.00E-05	uCi/g	U
s-134	2.73E-01	09/22/05	6.93E-06	1.26E-05	2.39E-05		uCi/g	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814002 Client: WPI

Client Sample ID: NST - OD Inner Wall Collect Date: September 01, 2005

Matrix: Misc Solid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Analyte	Aliquot (g)	Run Date	Activity	Uncertainty	MDA	RL	Units	Qualifier
Cs-136	2.73E-01	09/22/05	-1.97E-05	3.38E-05	5.66E-05		uCi/g	U
Cs-137	2.73E-01	09/22/05	-3.97E-06	1.11E-05	1.82E-05	1.00E-03	uCi/g	U
Ba-133	2.73E-01	09/22/05	8.86E-07	1.49E-05	2.35E-05		uCi/g	U
Ba-140	2.73E-01	09/22/05	-4.86E-06	1.07E-04	1.84E-04		uCi/g	U
Ce-139	2.73E-01	09/22/05	-5.44E-06	1.05E-05	1.36E-05		uCi/g	U
Ce-141	2.73E-01	09/22/05	5.09E-06	2.39E-05	3.70E-05		uCi/g	U
Ce-144	2.73E-01	09/22/05	-4.91E-05	6.44E-05	9.16E-05		uCi/g	U
Nd-147	2.73E-01	09/22/05	8.43E-05	2.48E-04	4.48E-04		uCi/g	U
Pm-144	2.73E-01	09/22/05	1.26E-05	1.19E-05	2.31E-05		uCi/g	U
Pm-146	2.73E-01	09/22/05	5.46E-06	1.43E-05	2.54E-05		uCi/g	U
Eu-152	2.73E-01	09/22/05	2.44E-05	3.14E-05	5.40E-05		uCi/g	U
Eu-154	2.73E-01	09/22/05	1.70E-05	3.60E-05	7.33E-05		uCi/g	U
Eu-155	2.73E-01	09/22/05	1.36E-05	3.60E-05	5.62E-05		uCi/g	U
r-192	2.73E-01	09/22/05	4.37E-06	1.30E-05	2.10E-05		uCi/g	U
Hg-203	2.73E-01	09/22/05	-2.33E-07	1.36E-05	2.13E-05		uCi/g	U
Γ1-208	2.73E-01	09/22/05	4.30E-06	1.98E-05	2.54E-05		uCi/g	U
Pb-210	2.73E-01	09/22/05	1.68E-03	3.12E-03	4.15E-03		uCi/g	U
Pb-212	2.73E-01	09/22/05	2.09E-05	3.15E-05	3.70E-05		uCi/g	U
Pb-214	2.73E-01	09/22/05	1.72E-05	2.47E-05	4.16E-05		uCi/g	U
Bi-212	2.73E-01	09/22/05	1.37E-05	8.33E-05	1.50E-04		uCi/g	U
Bi-214	2.73E-01	09/22/05	1.39E-05	3.87E-05	4.72E-05		uCi/g	U
Ra-228	2.73E-01	09/22/05	1.17E-06	3.78E-05	6.73E-05		uCi/g	U
Ac-228	2.73E-01	09/22/05	1.17E-06	3.78E-05	6.73E-05		uCi/g	U
Γh-230	2.73E-01	09/22/05	1.39E-05	3.87E-05	4.72E-05		uCi/g	U
Γh-234	2.73E-01	09/22/05	2.59E-04	7.54E-04	9.57E-04		uCi/g	U
J-235	2.73E-01	09/22/05	3.26E-05	7.04E-05	1.10E-04		uCi/g	U
J-238	2.73E-01	09/22/05	2.59E-04	7.54E-04	7.43E-04		uCi/g	U
Np-239	2.73E-01	09/22/05	2.99E-06	6.20E-05	9.48E-05		uCi/g	U
Am-241	2.73E-01	09/22/05	-5.69E-06	7.59E-05	9.48E-05		uCi/g	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814003 Client: WPI

Client Sample ID: NST - ID-1 Collect Date: September 01, 2005

Matrix: Misc Solid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Analyte	Aliquot (g)	Run Date	Activity 2	Uncertainty	\mathbf{MDA}^{1}	RL	Units	Qualifier
	8/							
H-3	3.51E-02	09/26/05	1.48E-04	4.80E-04	8.34E-04	4.00E-02	uCi/g	U
C-14	3.86E-02	09/22/05	2.32E-05	4.47E-05	7.62E-05	8.00E-03	uCi/g	U
Fe-55	1.87E-03	09/23/05	2.24E-03	7.35E-03	1.01E-02	7.00E-01	uCi/g	U
Ni-63	1.87E-03	09/30/05	9.13E-04	9.12E-04	1.52E-03	3.50E-03	uCi/g	U
Sr-90	2.80E-02	10/01/05	1.14E-05	9.05E-06	1.56E-05	4.00E-05	uCi/g	U
Cc-99	7.06E-02	09/25/05	-5.91E-06	3.72E-05	6.48E-05	3.00E-03	uCi/g	U
Pu-241	1.87E-02	09/26/05	-7.85E-05	2.84E-04	5.05E-04	3.50E-03	uCi/g	U
Alpha Spec							J	
u-238	1.87E-02	10/01/05	-6.11E-07	1.55E-06	5.07E-06	1.00E-04	uCi/g	U
Pu-239/240	1.87E-02	10/01/05	6.27E-07	1.64E-06	4.00E-06	1.00E-04	uCi/g	U
Am-241	1.87E-02	10/01/05	-4.36E-07	4.95E-07	2.98E-06	1.00E-04	uCi/g	U
Cm-242	1.87E-02	10/01/05	0.00E+00	7.74E-07	1.19E-06	2.00E-02	uCi/g	U
Cm-243/244	1.87E-02	10/01/05	-2.51E-07	2.84E-07	2.42E-06	2.00E-02	uCi/g	U
Gamma Spec							C	
8e-7	3.74E-01	09/22/05	1.78E-04	1.78E-04	2.98E-04		uCi/g	U
Ja-22	3.74E-01	09/22/05	8.59E-06	1.47E-05	2.79E-05		uCi/g	U
C-40	3.74E-01	09/22/05	9.30E-06	1.16E-04	2.14E-04		uCi/g	U
Cr-51	3.74E-01	09/22/05	1.52E-04	1.87E-04	3.06E-04		uCi/g	U
/In-54	3.74E-01	09/22/05	-1.31E-05	2.28E-05	3.62E-05		uCi/g	U
'e-59	3.74E-01	09/22/05	1.31E-05	7.07E-05	1.18E-04		uCi/g	U
Co-56	3.74E-01	09/22/05	3.09E-05	2.75E-05	4.83E-05		uCi/g	U
Co-57	3.74E-01	09/22/05	-4.73E-06	9.91E-06	1.38E-05		uCi/g	U
Co-58	3.74E-01	09/22/05	9.67E-06	2.54E-05	4.31E-05		uCi/g	U
Co-60	3.74E-01	09/22/05	1.84E-03	1.51E-04	3.42E-05	7.00E-01	uCi/g	3
Ni-59	9.35E-03	09/22/05	4.34E-04	3.14E-04	3.32E-04	2.20E-01	uCi/g	UI
Zn-65	3.74E-01	09/22/05	1.72E-05	5.72E-05	9.65E-05		uCi/g	U
7-88	3.74E-01	09/22/05	-3.72E-06	1.34E-05	2.46E-05		uCi/g	U
Zr-95	3.74E-01	09/22/05	-2.43E-05	4.44E-05	7.07E-05		uCi/g	U
Nb-94	3.74E-01	09/22/05	1.55E-05	1.94E-05	3.22E-05	2.00E-04	uCi/g	U
Nb-95	3.74E-01	09/22/05	-1.97E-05	2.88E-05	4.54E-05		uCi/g	U
Ru-106	3.74E-01	09/22/05	9.92E-07	1.74E-04	2.75E-04		uCi/g	U
g-110m	3.74E-01	09/22/05	-1.99E-06	2.21E-05	2.99E-05		uCi/g	U
n-113	3.74E-01	09/22/05	1.19E-05	2.15E-05	3.49E-05		uCi/g	U
b-124	3.74E-01	09/22/05	8.54E-06	3.33E-05	5.98E-05		uCi/g	U
b-125	3.74E-01	09/22/05	-1.06E-05	4.13E-05	6.40E-05		uCi/g	U
-129	5.57E-02	09/27/05	1.17E-05	7.00E-05	8.74E-05	8.00E-05	uCi/g	U
Cs-134	3.74E-01	09/22/05	3.80E-06	2.38E-05	3.98E-05		uCi/g	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814003 Client: WPI

Client Sample ID: NST - ID-1 Collect Date: September 01, 2005

Matrix: Misc Solid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Analyte	Aliquot (g)	Run Date	Activity	Uncertainty	MDA	RL	Units	Qualifier
				<u>-</u>				
Cs-136	3.74E-01	09/22/05	-1.13E-05	9.28E-05	1.53E-04		uCi/g	U
Cs-137	3.74E-01	09/22/05	6.51E-06	1.95E-05	3.17E-05	1.00E-03	uCi/g	U
Ba-133	3.74E-01	09/22/05	-3.55E-06	1.97E-05	3.05E-05		uCi/g	U
Ba-140	3.74E-01	09/22/05	4.43E-05	1.82E-04	2.93E-04		uCi/g	U
Ce-139	3.74E-01	09/22/05	1.89E-06	1.18E-05	1.72E-05		uCi/g	U
Ce-141	3.74E-01	09/22/05	-1.91E-05	2.66E-05	3.66E-05		uCi/g	U
Ce-144	3.74E-01	09/22/05	-3.47E-05	7.91E-05	1.10E-04		uCi/g	U
Nd-147	3.74E-01	09/22/05	1.61E-04	4.82E-04	6.81E-04		uCi/g	U
Pm-144	3.74E-01	09/22/05	1.15E-05	2.18E-05	3.14E-05		uCi/g	U
Pm-146	3.74E-01	09/22/05	-7.08E-06	2.23E-05	3.43E-05		uCi/g	U
Eu-152	3.74E-01	09/22/05	-2.21E-06	4.31E-05	6.72E-05		uCi/g	U
Eu-154	3.74E-01	09/22/05	2.35E-05	4.08E-05	7.75E-05		uCi/g	U
Eu-155	3.74E-01	09/22/05	2.27E-05	4.00E-05	5.69E-05		uCi/g	U
Ir-192	3.74E-01	09/22/05	-1.19E-05	1.66E-05	2.47E-05		uCi/g	U
Hg-203	3.74E-01	09/22/05	2.56E-05	1.85E-05	3.07E-05		uCi/g	U
Tl-208	3.74E-01	09/22/05	1.14E-05	1.89E-05	3.12E-05		uCi/g	U
Pb-210	3.74E-01	09/22/05	5.65E-04	1.93E-03	2.38E-03		uCi/g	U
Pb-212	3.74E-01	09/22/05	0.00E+00	2.58E-05	4.11E-05		uCi/g	UUI
Pb-214	3.74E-01	09/22/05	3.50E-05	3.15E-05	5.23E-05		uCi/g	U
Bi-212	3.74E-01	09/22/05	1.08E-05	1.60E-04	2.54E-04		uCi/g	U
Bi-214	3.74E-01	09/22/05	-1.80E-05	3.62E-05	5.51E-05		uCi/g	U
Ra-228	3.74E-01	09/22/05	-2.00E-06	1.12E-04	1.58E-04		uCi/g	U
Ac-228	3.74E-01	09/22/05	-2.00E-06	1.12E-04	1.58E-04		uCi/g	U
Th-230	3.74E-01	09/22/05	-1.80E-05	3.62E-05	5.51E-05		uCi/g	U
Th-234	3.74E-01	09/22/05	9.08E-05	5.38E-04	6.64E-04		uCi/g	U
U-235	3.74E-01	09/22/05	4.30E-05	7.54E-05	1.11E-04		uCi/g	U
U-238	3.74E-01	09/22/05	9.08E-05	5.38E-04	6.64E-04		uCi/g	U
Np-239	3.74E-01	09/22/05	-4.16E-05	7.00E-05	9.64E-05		uCi/g	U
Am-241	3.74E-01	09/22/05	5.17E-05	1.19E-04	8.83E-05		uCi/g	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814004 Client: WPI

Client Sample ID: RPV Insulation-1 Collect Date: September 01, 2005

Matrix: Misc Solid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Analyte	Aliquot (g)	Run Date	Activity 2	Uncertainty	\mathbf{MDA}^{1}	RL	Units	Qualifier
Analyte	(g)	Kuli Date	Activity	Checitality	NIDA	KL.	Ullits	Quannici
Gamma S _l	pec							
Be-7	2.87E+00	10/01/05	-4.30E-06	1.16E-05	1.82E-05		uCi/g	U
Na-22	2.87E+00	10/01/05	0.00E+00	3.17E-06	4.98E-06		uCi/g	UUI
K-40	2.87E+00	10/01/05	0.00E+00	1.42E-05	1.44E-05		uCi/g	UUI
Cr-51	2.87E+00	10/01/05	-3.78E-07	1.32E-05	1.96E-05		uCi/g	U
Mn-54	2.87E+00	10/01/05	1.46E-06	1.68E-06	2.69E-06		uCi/g	U
Fe-59	2.87E+00	10/01/05	6.24E-07	3.85E-06	6.43E-06		uCi/g	U
Co-56	2.87E+00	10/01/05	-4.05E-07	2.07E-06	3.18E-06		uCi/g	U
Co-57	2.87E+00	10/01/05	0.00E+00	4.54E-06	7.44E-07		uCi/g	UUI
Co-58	2.87E+00	10/01/05	4.26E-06	2.62E-06	3.02E-06		uCi/g	3
Co-60	2.87E+00	10/01/05	2.94E-05	3.56E-06	1.55E-06	7.00E-01	uCi/g	3
Zn-65	2.87E+00	10/01/05	0.00E+00	3.91E-06	6.18E-06		uCi/g	UUI
Y-88	2.87E+00	10/01/05	1.80E-07	5.70E-07	1.23E-06		uCi/g	U
Zr-95	2.87E+00	10/01/05	0.00E+00	6.93E-06	6.38E-06		uCi/g	UUI
Nb-94	2.87E+00	10/01/05	1.27E-06	1.31E-06	2.12E-06	2.00E-04	uCi/g	U
Nb-95	2.87E+00	10/01/05	0.00E+00	5.06E-06	3.95E-06		uCi/g	UUI
Ru-106	2.87E+00	10/01/05	5.94E-06	1.17E-05	1.87E-05		uCi/g	U
Ag-110m	2.87E+00	10/01/05	1.80E-06	1.60E-06	2.32E-06		uCi/g	U
Sn-113	2.87E+00	10/01/05	5.12E-07	1.38E-06	2.08E-06		uCi/g	U
Sb-124	2.87E+00	10/01/05	8.91E-07	1.95E-06	3.92E-06		uCi/g	U
Sb-125	2.87E+00	10/01/05	3.79E-07	2.60E-06	4.15E-06		uCi/g	U
Cs-134	2.87E+00	10/01/05	-2.68E-07	2.01E-06	2.70E-06		uCi/g	U
Cs-136	2.87E+00	10/01/05	1.09E-05	9.30E-06	1.61E-05		uCi/g	U
Cs-137	2.87E+00	10/01/05	1.09E-06	1.79E-06	2.08E-06	1.00E-03	uCi/g	U
3a-133	2.87E+00	10/01/05	0.00E+00	2.65E-06	2.08E-06		uCi/g	UUI
3a-140	2.87E+00	10/01/05	5.08E-06	2.22E-05	3.11E-05		uCi/g	U
Ce-139	2.87E+00	10/01/05	0.00E+00	2.04E-06	1.04E-06		uCi/g	UUI
Ce-141	2.87E+00	10/01/05	-4.76E-07	1.65E-06	2.44E-06		uCi/g	U
Ce-144	2.87E+00	10/01/05	5.56E-07	3.76E-06	5.63E-06		uCi/g	U
Nd-147	2.87E+00	10/01/05	-2.64E-05	4.89E-05	7.51E-05		uCi/g	U
Pm-144	2.87E+00	10/01/05	3.14E-07	1.38E-06	2.17E-06		uCi/g	U
Pm-146	2.87E+00	10/01/05	-4.58E-07	1.23E-06	1.93E-06		uCi/g	U
Eu-152	2.87E+00	10/01/05	4.84E-04	4.88E-05	3.75E-06		uCi/g	3
Eu-154	2.87E+00	10/01/05	5.50E-05	9.66E-06	6.96E-06		uCi/g	3
Eu-155	2.87E+00	10/01/05	-1.07E-06	1.90E-06	2.49E-06		uCi/g	U
r-192	2.87E+00	10/01/05	-6.25E-07	9.70E-07	1.40E-06		uCi/g	U
Hg-203	2.87E+00	10/01/05	-4.24E-07	1.24E-06	1.81E-06		uCi/g	U
Γ1-208	2.87E+00	10/01/05	-1.33E-06	1.63E-06	2.13E-06		uCi/g	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814004 Client: WPI

Client Sample ID: RPV Insulation-1 Collect Date: September 01, 2005

Matrix: Misc Solid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Analyte	Aliquot (g)	Run Date	Activity	Uncertainty	MDA	RL	Units	Qualifier
Pb-210	2.87E+00	10/01/05	-4.82E-04	4.93E-05	2.99E-05		uCi/g	U
Pb-212	2.87E+00	10/01/05	2.71E-07	1.55E-06	1.88E-06		uCi/g	U
Pb-214	2.87E+00	10/01/05	1.94E-06	2.05E-06	2.84E-06		uCi/g	U
Bi-212	2.87E+00	10/01/05	2.44E-05	1.61E-05	1.84E-05		uCi/g	
Bi-214	2.87E+00	10/01/05	-1.15E-06	2.35E-06	3.61E-06		uCi/g	U
Ra-228	2.87E+00	10/01/05	-2.55E-06	6.58E-06	9.14E-06		uCi/g	U
Ac-228	2.87E+00	10/01/05	-2.55E-06	6.58E-06	9.14E-06		uCi/g	U
Th-230	2.87E+00	10/01/05	-1.15E-06	2.35E-06	3.61E-06		uCi/g	U
Th-234	2.87E+00	10/01/05	0.00E+00	1.38E-05	1.03E-05		uCi/g	UUI
U-235	2.87E+00	10/01/05	1.12E-06	3.92E-06	5.89E-06		uCi/g	U
U-238	2.87E+00	10/01/05	0.00E+00	1.38E-05	1.03E-05		uCi/g	UUI
Np-239	2.87E+00	10/01/05	3.14E-07	3.90E-06	5.25E-06		uCi/g	U
Am-241	2.87E+00	10/01/05	-1.16E-07	8.29E-07	1.03E-06		uCi/g	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814005 Client: WPI

Client Sample ID: RPV OD-1 Collect Date: September 01, 2005

Matrix: Misc Solid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

A 1 4	Aliquot	n n	A a4:2	Uncertainty	MD 4	DI	WT *4	O 120 -
Analyte	(g)	Run Date	Activity	Uncertainty	MDA	RL	Units	Qualifier
H-3	7.86E-02	09/26/05	-7.64E-05	1.95E-04	3.55E-04	4.00E-02	uCi/g	U
C-14	7.84E-02	09/22/05	3.06E-05	2.33E-05	3.80E-05	8.00E-03	uCi/g	U
Fe-55	1.80E-03	09/23/05	-3.67E-03	7.04E-03	9.86E-03	7.00E-01	uCi/g	U
Ni-63	1.80E-03	09/30/05	2.61E-03	1.05E-03	1.65E-03	3.50E-03	uCi/g	3
Sr-90	2.70E-02	10/01/05	2.96E-06	7.26E-06	1.80E-05	4.00E-05	uCi/g	U
`c-99	4.96E-02	09/25/05	-5.67E-05	7.70E-05	1.37E-04	3.00E-03	uCi/g	U
u-241	1.80E-02	09/26/05	9.13E-06	3.21E-04	5.62E-04	3.50E-03	uCi/g	U
Alpha Spec								
u-238	1.80E-02	10/01/05	7.27E-07	1.43E-06	3.27E-06	1.00E-04	uCi/g	U
Pu-239/240	1.80E-02	10/01/05	-4.84E-07	4.24E-07	3.26E-06	1.00E-04	uCi/g	U
Am-241	1.80E-02	10/01/05	9.18E-07	1.12E-06	1.70E-06	1.00E-04	uCi/g	U
Cm-242	1.80E-02	10/01/05	-1.76E-07	7.60E-07	2.28E-06	2.00E-02	uCi/g	U
Cm-243/244	1.80E-02	10/01/05	3.36E-07	9.46E-07	2.44E-06	2.00E-02	uCi/g	U
Gamma Spec	e						_	
Be-7	3.59E-01	10/01/05	-4.94E-05	1.51E-04	2.30E-04		uCi/g	U
Na-22	3.59E-01	10/01/05	-7.50E-06	1.15E-05	1.82E-05		uCi/g	U
ζ-40	3.59E-01	10/01/05	1.71E-04	2.05E-04	1.79E-04		uCi/g	U
Cr-51	3.59E-01	10/01/05	-7.54E-05	2.17E-04	3.25E-04		uCi/g	U
/In-54	3.59E-01	10/01/05	-2.48E-06	1.67E-05	2.78E-05		uCi/g	U
e-59	3.59E-01	10/01/05	2.57E-05	6.09E-05	1.07E-04		uCi/g	U
Co-56	3.59E-01	10/01/05	3.66E-06	2.42E-05	4.11E-05		uCi/g	U
Co-57	3.59E-01	10/01/05	-4.08E-06	1.00E-05	1.44E-05		uCi/g	U
Co-58	3.59E-01	10/01/05	-8.77E-06	2.20E-05	3.56E-05		uCi/g	U
Co-60	3.59E-01	10/01/05	8.48E-04	8.99E-05	2.64E-05	7.00E-01	uCi/g	3
Ni-59	8.98E-03	09/22/05	3.43E-04	2.71E-04	2.88E-04	2.20E-01	uCi/g	UI
Zn-65	3.59E-01	10/01/05	-5.69E-08	4.04E-05	6.90E-05		uCi/g	U
7-88	3.59E-01	10/01/05	-2.96E-06	1.13E-05	2.20E-05		uCi/g	U
Zr-95	3.59E-01	10/01/05	-1.41E-05	4.25E-05	5.93E-05		uCi/g	U
Nb-94	3.59E-01	10/01/05	-2.16E-07	1.36E-05	2.30E-05	2.00E-04	uCi/g	U
Nb-95	3.59E-01	10/01/05	3.04E-06	2.57E-05	4.42E-05		uCi/g	U
tu-106	3.59E-01	10/01/05	-1.02E-04	1.35E-04	2.08E-04		uCi/g	U
g-110m	3.59E-01	10/01/05	5.02E-06	1.45E-05	2.53E-05		uCi/g	U
n-113	3.59E-01	10/01/05	-1.49E-05	1.93E-05	2.79E-05		uCi/g	U
b-124	3.59E-01	10/01/05	1.08E-05	3.56E-05	6.77E-05		uCi/g	Ü
b-125	3.59E-01	10/01/05	6.40E-07	3.84E-05	6.03E-05		uCi/g	Ü
-129	6.78E-02	09/27/05	3.03E-05	4.58E-05	6.34E-05	8.00E-05	uCi/g	U
Cs-134	3.59E-01	10/01/05	2.86E-06	1.78E-05	3.06E-05	2.2.2.2.00	uCi/g	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814005 Client: WPI

Client Sample ID: RPV OD-1 Collect Date: September 01, 2005

Matrix: Misc Solid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Analyte	Aliquot (g)	Run Date	Activity	Uncertainty	MDA	RL	Units	Qualifier
Cs-136	3.59E-01	10/01/05	-3.79E-05	1.42E-04	1.99E-04		uCi/g	U
Cs-137	3.59E-01	10/01/05	1.01E-05	9.61E-06	2.60E-05	1.00E-03	uCi/g	U
Ba-133	3.59E-01	10/01/05	-5.52E-06	1.82E-05	2.75E-05		uCi/g	U
Ba-140	3.59E-01	10/01/05	-7.77E-05	2.68E-04	4.07E-04		uCi/g	U
Ce-139	3.59E-01	10/01/05	-6.77E-06	1.23E-05	1.77E-05		uCi/g	U
Ce-141	3.59E-01	10/01/05	-3.86E-06	3.43E-05	5.04E-05		uCi/g	U
Ce-144	3.59E-01	10/01/05	7.07E-05	8.33E-05	1.28E-04		uCi/g	U
Nd-147	3.59E-01	10/01/05	-8.47E-05	6.32E-04	9.84E-04		uCi/g	U
Pm-144	3.59E-01	10/01/05	6.55E-06	1.47E-05	2.57E-05		uCi/g	U
Pm-146	3.59E-01	10/01/05	-5.64E-06	2.04E-05	3.10E-05		uCi/g	U
Eu-152	3.59E-01	10/01/05	2.20E-05	4.33E-05	6.93E-05		uCi/g	U
Eu-154	3.59E-01	10/01/05	-2.08E-05	3.20E-05	5.03E-05		uCi/g	U
Eu-155	3.59E-01	10/01/05	-5.36E-06	4.14E-05	6.00E-05		uCi/g	U
r-192	3.59E-01	10/01/05	-3.29E-06	1.66E-05	2.52E-05		uCi/g	U
Hg-203	3.59E-01	10/01/05	8.65E-06	2.09E-05	3.28E-05		uCi/g	U
Γ1-208	3.59E-01	10/01/05	5.92E-06	1.97E-05	2.61E-05		uCi/g	U
Pb-210	3.59E-01	10/01/05	1.32E-04	3.81E-03	4.75E-03		uCi/g	U
Pb-212	3.59E-01	10/01/05	1.60E-05	4.48E-05	4.17E-05		uCi/g	U
Pb-214	3.59E-01	10/01/05	1.34E-05	2.83E-05	4.56E-05		uCi/g	U
Bi-212	3.59E-01	10/01/05	-4.82E-05	1.25E-04	2.03E-04		uCi/g	U
Bi-214	3.59E-01	10/01/05	3.48E-05	3.13E-05	5.63E-05		uCi/g	U
Ra-228	3.59E-01	10/01/05	4.32E-06	6.96E-05	1.17E-04		uCi/g	U
Ac-228	3.59E-01	10/01/05	4.32E-06	6.96E-05	1.17E-04		uCi/g	U
Γh-230	3.59E-01	10/01/05	3.48E-05	3.13E-05	5.63E-05		uCi/g	U
Γh-234	3.59E-01	10/01/05	-6.85E-05	7.32E-04	9.13E-04		uCi/g	U
J-235	3.59E-01	10/01/05	-3.82E-05	8.19E-05	1.17E-04		uCi/g	U
J-238	3.59E-01	10/01/05	-6.85E-05	7.32E-04	9.13E-04		uCi/g	U
Np-239	3.59E-01	10/01/05	5.42E-05	7.67E-05	1.17E-04		uCi/g	U
Am-241	3.59E-01	10/01/05	-4.40E-05	1.02E-04	1.24E-04		uCi/g	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814006 Client: WPI

Client Sample ID: RPV ID-1 Collect Date: September 01, 2005

Matrix: Misc Solid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Analyte	Aliquot (g)	Run Date	Activity ²	Uncertainty	MDA	RL	Units	Qualifier
Allalyte	(g)	Kull Date	Activity	Officertainty	MIDA	KL	Ullus	Qualifier
H-3	5.76E-02	09/26/05	-8.56E-05	2.67E-04	4.83E-04	4.00E-02	uCi/g	U
C-14	3.73E-02	09/22/05	1.17E-04	5.16E-05	8.01E-05	8.00E-03	uCi/g	3
Fe-55	1.67E-03	09/23/05	7.47E-04	7.55E-03	1.04E-02	7.00E-01	uCi/g	U
Ni-63	1.67E-03	09/30/05	6.77E-02	2.40E-03	1.67E-03	3.50E-03	uCi/g	3
Sr-90	2.50E-02	10/01/05	1.09E-05	1.07E-05	2.07E-05	4.00E-05	uCi/g	U
Гс-99	4.70E-02	09/24/05	-6.64E-05	6.44E-05	1.16E-04	3.00E-03	uCi/g	U
Pu-241	1.67E-02	09/26/05	9.87E-05	2.84E-04	4.89E-04	3.50E-03	uCi/g	U
Alpha Spec							J	
ru-238	1.67E-02	10/01/05	-1.16E-06	1.04E-06	4.67E-06	1.00E-04	uCi/g	U
Pu-239/240	1.67E-02	10/01/05	1.05E-07	7.99E-07	2.61E-06	1.00E-04	uCi/g	U
Am-241	1.67E-02	10/01/05	1.05E-06	1.38E-06	2.42E-06	1.00E-04	uCi/g	U
Cm-242	1.67E-02	10/01/05	4.42E-07	8.67E-07	1.33E-06	2.00E-02	uCi/g	U
Cm-243/244	1.67E-02	10/01/05	-1.87E-07	8.06E-07	2.42E-06	2.00E-02	uCi/g	U
Gamma Spe	c							
se-7	3.34E-01	10/01/05	1.81E-04	4.70E-04	7.09E-04		uCi/g	U
Va-22	3.34E-01	10/01/05	-8.30E-06	3.46E-05	5.64E-05		uCi/g	U
C-40	3.34E-01	10/01/05	1.67E-04	2.37E-04	4.27E-04		uCi/g	U
Cr-51	3.34E-01	10/01/05	-2.06E-04	5.70E-04	8.43E-04		uCi/g	U
/In-54	3.34E-01	10/01/05	-5.83E-05	6.59E-05	9.94E-05		uCi/g	U
'e-59	3.34E-01	10/01/05	9.24E-05	2.22E-04	3.60E-04		uCi/g	U
Co-56	3.34E-01	10/01/05	5.19E-05	8.31E-05	1.31E-04		uCi/g	U
Co-57	3.34E-01	10/01/05	4.10E-06	2.10E-05	2.93E-05		uCi/g	U
Co-58	3.34E-01	10/01/05	1.81E-05	9.01E-05	1.22E-04		uCi/g	U
Co-60	3.34E-01	10/01/05	1.70E-02	1.01E-03	5.70E-05	7.00E-01	uCi/g	3
li-59	8.35E-03	09/22/05	1.36E-04	2.48E-04	2.96E-04	2.20E-01	uCi/g	U
Zn-65	3.34E-01	10/01/05	-3.27E-05	1.58E-04	2.52E-04		uCi/g	U
7-88	3.34E-01	10/01/05	2.16E-05	2.93E-05	5.59E-05		uCi/g	U
Zr-95	3.34E-01	10/01/05	1.10E-04	1.23E-04	2.01E-04		uCi/g	U
Nb-94	3.34E-01	10/01/05	-1.98E-05	4.74E-05	7.31E-05	2.00E-04	uCi/g	U
Nb-95	3.34E-01	10/01/05	6.31E-05	9.64E-05	1.53E-04		uCi/g	U
u-106	3.34E-01	10/01/05	-4.78E-04	4.44E-04	6.68E-04		uCi/g	U
g-110m	3.34E-01	10/01/05	2.80E-05	4.84E-05	7.70E-05		uCi/g	U
n-113	3.34E-01	10/01/05	-3.31E-05	5.31E-05	7.76E-05		uCi/g	U
b-124	3.34E-01	10/01/05	8.13E-06	6.15E-05	1.11E-04		uCi/g	U
3b-125	3.34E-01	10/01/05	-2.40E-05	1.06E-04	1.57E-04		uCi/g	U
-129	4.92E-02	09/27/05	3.25E-05	8.72E-05	1.10E-04	8.00E-05	uCi/g	U
Cs-134	3.34E-01	10/01/05	-1.05E-05	6.87E-05	1.06E-04		uCi/g	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814006 Client: WPI

Client Sample ID: RPV ID-1 Collect Date: September 01, 2005

Matrix: Misc Solid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Analyte	Aliquot (g)	Run Date	Activity	Uncertainty	MDA	RL	Units	Qualifier
Cs-136	3.34E-01	10/01/05	3.14E-06	4.33E-04	6.98E-04		uCi/g	U
Cs-137	3.34E-01	10/01/05	-4.99E-05	5.11E-05	7.74E-05	1.00E-03	uCi/g	U
Ba-133	3.34E-01	10/01/05	-5.62E-06	4.51E-05	6.72E-05		uCi/g	U
Ba-140	3.34E-01	10/01/05	-5.21E-04	7.30E-04	1.09E-03		uCi/g	U
Ce-139	3.34E-01	10/01/05	2.25E-05	2.97E-05	3.77E-05		uCi/g	U
Ce-141	3.34E-01	10/01/05	1.16E-05	7.24E-05	1.01E-04		uCi/g	U
Ce-144	3.34E-01	10/01/05	-8.98E-05	1.74E-04	2.36E-04		uCi/g	U
Nd-147	3.34E-01	10/01/05	-9.20E-04	1.78E-03	2.74E-03		uCi/g	U
Pm-144	3.34E-01	10/01/05	4.67E-06	4.88E-05	7.65E-05		uCi/g	U
Pm-146	3.34E-01	10/01/05	3.31E-05	5.25E-05	7.97E-05		uCi/g	U
Eu-152	3.34E-01	10/01/05	-3.26E-05	1.00E-04	1.48E-04		uCi/g	U
Eu-154	3.34E-01	10/01/05	-2.30E-05	9.60E-05	1.56E-04		uCi/g	U
Eu-155	3.34E-01	10/01/05	1.57E-05	8.36E-05	1.16E-04		uCi/g	U
Ir-192	3.34E-01	10/01/05	3.86E-07	4.17E-05	6.23E-05		uCi/g	U
Hg-203	3.34E-01	10/01/05	3.88E-06	5.09E-05	7.62E-05		uCi/g	U
Tl-208	3.34E-01	10/01/05	-3.33E-05	4.67E-05	7.17E-05		uCi/g	U
Pb-210	3.34E-01	10/01/05	3.05E-03	4.14E-03	3.81E-03		uCi/g	U
Pb-212	3.34E-01	10/01/05	-4.17E-05	5.36E-05	7.82E-05		uCi/g	U
Pb-214	3.34E-01	10/01/05	4.22E-05	7.34E-05	1.11E-04		uCi/g	U
Bi-212	3.34E-01	10/01/05	-1.82E-06	4.25E-04	6.62E-04		uCi/g	U
Bi-214	3.34E-01	10/01/05	1.92E-05	8.75E-05	1.38E-04		uCi/g	U
Ra-228	3.34E-01	10/01/05	1.03E-04	2.72E-04	4.24E-04		uCi/g	U
Ac-228	3.34E-01	10/01/05	1.03E-04	2.72E-04	4.24E-04		uCi/g	U
Th-230	3.34E-01	10/01/05	1.92E-05	8.75E-05	1.38E-04		uCi/g	U
Th-234	3.34E-01	10/01/05	9.62E-05	1.10E-03	1.18E-03		uCi/g	U
U-235	3.34E-01	10/01/05	1.08E-04	1.74E-04	2.44E-04		uCi/g	U
U-238	3.34E-01	10/01/05	9.62E-05	1.10E-03	1.18E-03		uCi/g	U
Np-239	3.34E-01	10/01/05	7.59E-05	1.61E-04	2.13E-04		uCi/g	U
Am-241	3.34E-01	10/01/05	1.36E-05	1.08E-04	1.48E-04		uCi/g	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814007 Client: WPI

Client Sample ID: OTS ID/OD Collect Date: September 01, 2005

Matrix: Misc Solid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Analyte	Aliquot (g)	Run Date	Activity 2	Uncertainty	\mathbf{MDA}^{1}	RL	Units	Qualifier
	8/							
H-3	6.12E-02	09/26/05	0.00E+00	2.55E-04	4.53E-04	4.00E-02	uCi/g	U
C-14	4.25E-02	09/22/05	1.24E-05	4.07E-05	7.02E-05	8.00E-03	uCi/g	U
Fe-55	1.62E-03	09/23/05	1.51E-02	8.65E-03	1.14E-02	7.00E-01	uCi/g	3
Ni-63	1.62E-03	09/30/05	2.42E+00	4.75E-02	6.62E-03	3.50E-03	uCi/g	3
Sr-90	2.40E-02	10/01/05	9.06E-06	1.03E-05	2.11E-05	4.00E-05	uCi/g	U
Tc-99	4.32E-02	09/24/05	-3.95E-05	6.72E-05	1.19E-04	3.00E-03	uCi/g	U
Pu-241	1.62E-02	09/26/05	1.99E-04	3.29E-04	5.59E-04	3.50E-03	uCi/g	U
Alpha Spec							C	
u-238	1.62E-02	10/01/05	-4.05E-07	1.74E-06	5.23E-06	1.00E-04	uCi/g	U
Pu-239/240	1.62E-02	10/01/05	4.05E-07	1.14E-06	2.94E-06	1.00E-04	uCi/g	U
Am-241	1.62E-02	10/01/05	-4.19E-07	7.68E-07	2.01E-06	1.00E-04	uCi/g	U
Cm-242	1.62E-02	10/01/05	-1.04E-07	8.75E-07	2.29E-06	2.00E-02	uCi/g	U
Cm-243/244	1.62E-02	10/01/05	-9.17E-08	7.70E-07	2.02E-06	2.00E-02	uCi/g	U
Gamma Spec	e						C	
Se-7	3.23E-01	10/01/05	1.53E-03	3.84E-03	5.81E-03		uCi/g	U
Ja-22	3.23E-01	10/01/05	6.14E-05	3.18E-04	5.04E-04		uCi/g	U
C-40	3.23E-01	10/01/05	6.95E-04	2.75E-03	3.44E-03		uCi/g	U
r-51	3.23E-01	10/01/05	-1.35E-03	4.98E-03	6.98E-03		uCi/g	U
⁄In-54	3.23E-01	10/01/05	-8.41E-05	5.55E-04	8.34E-04		uCi/g	U
'e-59	3.23E-01	10/01/05	3.63E-04	1.82E-03	2.88E-03		uCi/g	U
Co-56	3.23E-01	10/01/05	-2.88E-04	6.95E-04	1.04E-03		uCi/g	U
Co-57	3.23E-01	10/01/05	-8.63E-05	1.83E-04	2.53E-04		uCi/g	U
Co-58	3.23E-01	10/01/05	-2.60E-04	6.63E-04	9.95E-04		uCi/g	U
Co-60	3.23E-01	10/01/05	1.44E+00	8.60E-02	4.96E-04	7.00E-01	uCi/g	3
Ii-59	8.08E-03	09/22/05	2.19E-02	1.81E-03	3.75E-04	2.20E-01	uCi/g	3
Ľn-65	3.23E-01	10/01/05	0.00E+00	1.36E-03	2.14E-03		uCi/g	UUI
7-88	3.23E-01	10/01/05	-6.84E-05	2.55E-04	4.18E-04		uCi/g	U
′r-95	3.23E-01	10/01/05	-1.86E-04	1.10E-03	1.65E-03		uCi/g	U
Nb-94	3.23E-01	10/01/05	8.52E-05	3.96E-04	5.97E-04	2.00E-04	uCi/g	U
Nb-95	3.23E-01	10/01/05	2.91E-04	8.13E-04	1.22E-03		uCi/g	U
tu-106	3.23E-01	10/01/05	1.66E-03	3.71E-03	5.60E-03		uCi/g	U
Ag-110m	3.23E-01	10/01/05	-3.52E-04	4.22E-04	6.33E-04		uCi/g	U
n-113	3.23E-01	10/01/05	9.22E-05	4.37E-04	6.62E-04		uCi/g	U
b-124	3.23E-01	10/01/05	5.90E-05	6.39E-04	1.01E-03		uCi/g	U
b-125	3.23E-01	10/01/05	-2.17E-04	8.68E-04	1.31E-03		uCi/g	U
-129	5.20E-02	10/01/05	-2.52E-04	6.96E-04	7.71E-04	8.00E-05	uCi/g	U
Cs-134	3.23E-01	10/01/05	1.12E-04	5.72E-04	8.60E-04		uCi/g	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814007 Client: WPI

Client Sample ID: OTS ID/OD Collect Date: September 01, 2005

Matrix: Misc Solid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Analyte	Aliquot (g)	Run Date	Activity	Uncertainty	MDA	RL	Units	Qualifier
Cs-136	3.23E-01	10/01/05	7.10E-04	3.69E-03	5.84E-03		uCi/g	U
Cs-137	3.23E-01	10/01/05	0.00E+00	4.36E-04	6.58E-04	1.00E-03	uCi/g	UUI
Ba-133	3.23E-01	10/01/05	-4.09E-04	3.79E-04	5.66E-04		uCi/g	U
Ba-140	3.23E-01	10/01/05	7.52E-03	6.59E-03	9.29E-03		uCi/g	U
Ce-139	3.23E-01	10/01/05	2.50E-04	2.24E-04	3.13E-04		uCi/g	U
Ce-141	3.23E-01	10/01/05	-2.22E-04	5.86E-04	8.15E-04		uCi/g	U
Ce-144	3.23E-01	10/01/05	-6.91E-05	1.47E-03	2.04E-03		uCi/g	U
Nd-147	3.23E-01	10/01/05	5.17E-03	1.52E-02	2.29E-02		uCi/g	U
Pm-144	3.23E-01	10/01/05	-2.61E-04	4.17E-04	6.26E-04		uCi/g	U
Pm-146	3.23E-01	10/01/05	2.92E-04	4.21E-04	6.38E-04		uCi/g	U
Eu-152	3.23E-01	10/01/05	-5.96E-04	8.41E-04	1.27E-03		uCi/g	U
Eu-154	3.23E-01	10/01/05	1.61E-04	8.81E-04	1.40E-03		uCi/g	U
Eu-155	3.23E-01	10/01/05	5.62E-04	7.23E-04	1.00E-03		uCi/g	U
Ir-192	3.23E-01	10/01/05	-1.05E-04	3.66E-04	5.14E-04		uCi/g	U
Hg-203	3.23E-01	10/01/05	-3.08E-04	4.41E-04	6.17E-04		uCi/g	U
Т1-208	3.23E-01	10/01/05	-8.17E-05	3.93E-04	5.93E-04		uCi/g	U
Pb-210	3.23E-01	10/01/05	-1.24E-02	5.71E-02	6.88E-02		uCi/g	U
Pb-212	3.23E-01	10/01/05	-2.21E-04	4.82E-04	6.75E-04		uCi/g	U
Pb-214	3.23E-01	10/01/05	7.37E-04	6.03E-04	9.10E-04		uCi/g	U
Bi-212	3.23E-01	10/01/05	-4.67E-03	3.62E-03	5.40E-03		uCi/g	U
Bi-214	3.23E-01	10/01/05	-5.03E-04	7.25E-04	1.09E-03		uCi/g	U
Ra-228	3.23E-01	10/01/05	9.60E-04	2.30E-03	3.45E-03		uCi/g	U
Ac-228	3.23E-01	10/01/05	9.60E-04	2.30E-03	3.45E-03		uCi/g	U
Th-230	3.23E-01	10/01/05	-5.03E-04	7.25E-04	1.09E-03		uCi/g	U
Th-234	3.23E-01	10/01/05	4.21E-03	1.13E-02	1.38E-02		uCi/g	U
U-235	3.23E-01	10/01/05	6.40E-04	1.42E-03	1.98E-03		uCi/g	U
U-238	3.23E-01	10/01/05	4.21E-03	1.13E-02	1.38E-02		uCi/g	U
Np-239	3.23E-01	10/01/05	-6.06E-04	1.29E-03	1.78E-03		uCi/g	U
Am-241	3.23E-01	10/01/05	-2.29E-04	1.53E-03	1.86E-03		uCi/g	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814008 Client: WPI

Client Sample ID: MTS OD-1 Collect Date: September 01, 2005

Matrix: Misc Solid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Analyte	Aliquot (g)	Run Date	Activity 2	Uncertainty	MDA	RL	Units	Qualifier
Allalyte	(g)	Kull Date	Activity	Officertainty	MDA	KL.	Ullus	Qualifier
Н-3	3.21E-02	09/26/05	-1.42E-04	5.02E-04	9.07E-04	4.00E-02	uCi/g	U
C-14	4.55E-02	09/22/05	7.17E-04	6.57E-05	6.57E-05	8.00E-03	uCi/g	3
Fe-55	1.63E-03	09/23/05	6.49E-02	1.00E-02	1.16E-02	7.00E-01	uCi/g	3
Ni-63	1.63E-03	09/30/05	9.92E+00	1.89E-01	1.46E-02	3.50E-03	uCi/g	3
Sr-90	2.50E-02	10/01/05	2.62E-05	1.49E-05	2.22E-05	4.00E-05	uCi/g	3
Гс-99	6.55E-02	09/24/05	-1.87E-05	3.86E-05	6.80E-05	3.00E-03	uCi/g	U
Pu-241	1.63E-02	09/26/05	9.11E-05	3.11E-04	5.37E-04	3.50E-03	uCi/g	U
Alpha Spec							J	
Pu-238	1.63E-02	10/01/05	-8.60E-07	1.40E-06	5.13E-06	1.00E-04	uCi/g	U
Pu-239/240	1.63E-02	10/01/05	4.46E-07	1.51E-06	3.90E-06	1.00E-04	uCi/g	U
Am-241	1.63E-02	10/01/05	-4.04E-07	5.26E-07	3.19E-06	1.00E-04	uCi/g	U
Cm-242	1.63E-02	10/01/05	0.00E+00	8.80E-07	1.35E-06	2.00E-02	uCi/g	U
Cm-243/244	1.63E-02	10/01/05	-1.90E-07	8.18E-07	2.46E-06	2.00E-02	uCi/g	U
Gamma Spec	c							
Be-7	3.27E-01	10/01/05	-1.05E-03	5.72E-03	8.40E-03		uCi/g	U
Na-22	3.27E-01	10/01/05	-2.88E-04	5.43E-04	7.40E-04		uCi/g	U
K-40	3.27E-01	10/01/05	-9.01E-04	3.32E-03	5.25E-03		uCi/g	U
Cr-51	3.27E-01	10/01/05	-1.08E-04	6.53E-03	9.63E-03		uCi/g	U
Mn-54	3.27E-01	10/01/05	1.10E-04	8.33E-04	1.28E-03		uCi/g	U
Fe-59	3.27E-01	10/01/05	-7.02E-04	2.84E-03	4.32E-03		uCi/g	U
Co-56	3.27E-01	10/01/05	3.12E-04	1.05E-03	1.61E-03		uCi/g	U
Co-57	3.27E-01	10/01/05	-5.74E-05	2.27E-04	3.09E-04		uCi/g	U
Co-58	3.27E-01	10/01/05	-9.81E-05	9.99E-04	1.53E-03		uCi/g	U
Co-60	3.27E-01	10/01/05	2.27E+00	1.21E-01	1.26E-03	7.00E-01	uCi/g	3
Ni-59	8.17E-03	09/22/05	1.02E-01	6.68E-03	5.07E-04	2.20E-01	uCi/g	3
Zn-65	3.27E-01	10/01/05	0.00E+00	2.12E-03	3.22E-03		uCi/g	UUI
Y-88	3.27E-01	10/01/05	-4.57E-05	4.19E-04	6.59E-04		uCi/g	U
Zr-95	3.27E-01	10/01/05	-1.47E-03	1.65E-03	2.52E-03		uCi/g	U
Nb-94	3.27E-01	10/01/05	2.98E-04	5.88E-04	9.06E-04	2.00E-04	uCi/g	U
Nb-95	3.27E-01	10/01/05	-1.46E-04	1.22E-03	1.87E-03		uCi/g	U
Ru-106	3.27E-01	10/01/05	-8.52E-04	5.42E-03	8.37E-03		uCi/g	U
Ag-110m	3.27E-01	10/01/05	-8.11E-04	6.26E-04	9.54E-04		uCi/g	U
Sn-113	3.27E-01	10/01/05	1.33E-04	7.22E-04	9.32E-04		uCi/g	U
Sb-124	3.27E-01	10/01/05	-4.57E-04	9.87E-04	1.55E-03		uCi/g	U
Sb-125	3.27E-01	10/01/05	4.26E-05	1.28E-03	1.88E-03		uCi/g	U
I-129	4.95E-02	10/02/05	-5.34E-04	9.93E-04	1.25E-03	8.00E-05	uCi/g	U
Cs-134	3.27E-01	10/01/05	-6.32E-04	8.60E-04	1.32E-03		uCi/g	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814008 Client: WPI

Client Sample ID: MTS OD-1 Collect Date: September 01, 2005

Matrix: Misc Solid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Analyte	Aliquot (g)	Run Date	Activity	Uncertainty	MDA	RL	Units	Qualifier
Cs-136	3.27E-01	10/01/05	8.87E-04	5.87E-03	8.96E-03		uCi/g	U
Cs-137	3.27E-01	10/01/05	8.58E-04	6.46E-04	9.92E-04	1.00E-03	uCi/g	U
Ba-133	3.27E-01	10/01/05	2.30E-04	5.38E-04	7.93E-04		uCi/g	U
Ba-140	3.27E-01	10/01/05	-5.89E-03	9.47E-03	1.36E-02		uCi/g	U
Ce-139	3.27E-01	10/01/05	4.89E-06	3.02E-04	4.14E-04		uCi/g	U
Ce-141	3.27E-01	10/01/05	-1.33E-04	7.81E-04	1.07E-03		uCi/g	U
Ce-144	3.27E-01	10/01/05	5.26E-04	1.91E-03	2.60E-03		uCi/g	U
Nd-147	3.27E-01	10/01/05	-1.06E-02	2.30E-02	3.36E-02		uCi/g	U
Pm-144	3.27E-01	10/01/05	-6.29E-04	6.19E-04	9.48E-04		uCi/g	U
Pm-146	3.27E-01	10/01/05	-2.62E-04	6.22E-04	9.12E-04		uCi/g	U
Eu-152	3.27E-01	10/01/05	-2.17E-03	1.21E-03	1.75E-03		uCi/g	U
Eu-154	3.27E-01	10/01/05	-7.90E-04	1.51E-03	2.05E-03		uCi/g	U
Eu-155	3.27E-01	10/01/05	1.56E-04	8.16E-04	1.11E-03		uCi/g	U
r-192	3.27E-01	10/01/05	-4.27E-04	4.85E-04	7.10E-04		uCi/g	U
Hg-203	3.27E-01	10/01/05	4.02E-04	6.64E-04	8.52E-04		uCi/g	U
ΓΙ-208	3.27E-01	10/01/05	-7.16E-04	5.75E-04	8.81E-04		uCi/g	U
Pb-210	3.27E-01	10/01/05	6.63E-04	3.98E-03	4.75E-03		uCi/g	U
Pb-212	3.27E-01	10/01/05	1.57E-04	6.38E-04	9.39E-04		uCi/g	U
Pb-214	3.27E-01	10/01/05	-5.63E-04	8.60E-04	1.26E-03		uCi/g	U
Bi-212	3.27E-01	10/01/05	5.88E-03	5.42E-03	8.32E-03		uCi/g	U
Bi-214	3.27E-01	10/01/05	8.76E-04	1.24E-03	1.64E-03		uCi/g	U
Ra-228	3.27E-01	10/01/05	-4.60E-04	3.46E-03	5.30E-03		uCi/g	U
Ac-228	3.27E-01	10/01/05	-4.60E-04	3.46E-03	5.30E-03		uCi/g	U
Γh-230	3.27E-01	10/01/05	8.76E-04	1.24E-03	1.64E-03		uCi/g	U
Γh-234	3.27E-01	10/01/05	-2.10E-03	3.86E-03	5.14E-03		uCi/g	U
J-235	3.27E-01	10/01/05	3.27E-04	1.88E-03	2.57E-03		uCi/g	U
J-238	3.27E-01	10/01/05	-2.10E-03	3.86E-03	5.14E-03		uCi/g	U
Np-239	3.27E-01	10/01/05	2.54E-04	1.57E-03	2.14E-03		uCi/g	U
Am-241	3.27E-01	10/01/05	1.29E-04	4.05E-04	5.43E-04		uCi/g	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814009 Client: WPI

Client Sample ID: MTS ID-1 Collect Date: September 01, 2005

Matrix: Misc Solid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Analyte	Aliquot (g)	Run Date	Activity 2	Uncertainty	\mathbf{MDA}^{1}	RL	Units	Qualifier
Allalyte	(g)	Kuii Date	Activity	Officer tainty	WIDA	KL	UIIIIS	Quainiei
		00/2/07			0.007.04	4 007 04	GI.	
H-3	3.37E-02	09/26/05	-6.36E-05	4.63E-04	8.28E-04	4.00E-02	uCi/g	U
C-14	4.17E-02	09/22/05	6.96E-05	4.47E-05	7.20E-05	8.00E-03	uCi/g	3,U
Fe-55	1.61E-03	09/23/05	1.21E-01	1.13E-02	1.17E-02	7.00E-01	uCi/g	3
Ni-63	1.61E-03	09/30/05	1.83E+01	3.59E-01	2.22E-02	3.50E-03	uCi/g	3
Sr-90	2.40E-02	10/01/05	1.99E-05	1.40E-05	2.41E-05	4.00E-05	uCi/g	U
Гс-99	3.81E-02	09/24/05	-5.23E-05	7.34E-05	1.31E-04	3.00E-03	uCi/g	U
Pu-241	1.61E-02	09/26/05	1.76E-04	3.17E-04	5.40E-04	3.50E-03	uCi/g	U
Alpha Spec								
Pu-238	1.61E-02	10/01/05	1.02E-07	7.70E-07	2.52E-06	1.00E-04	uCi/g	U
Pu-239/240	1.61E-02	10/01/05	-4.20E-07	8.75E-07	3.56E-06	1.00E-04	uCi/g	U
Am-241	1.61E-02	10/01/05	-5.95E-07	7.83E-07	2.56E-06	1.00E-04	uCi/g	U
Cm-242	1.61E-02	10/01/05	4.20E-07	8.23E-07	1.26E-06	2.00E-02	uCi/g	U
Cm-243/244	1.61E-02	10/01/05	1.14E-06	1.69E-06	3.49E-06	2.00E-02	uCi/g	U
Gamma Spec							_	
Be-7	3.22E-01	10/02/05	4.43E-03	7.27E-03	1.09E-02		uCi/g	U
Na-22	3.22E-01	10/02/05	2.09E-04	5.99E-04	9.48E-04		uCi/g	U
ζ-40	3.22E-01	10/02/05	2.53E-03	4.55E-03	7.22E-03		uCi/g	U
Cr-51	3.22E-01	10/02/05	-2.78E-03	8.86E-03	1.31E-02		uCi/g	U
Mn-54	3.22E-01	10/02/05	-1.67E-04	1.03E-03	1.54E-03		uCi/g	U
Fe-59	3.22E-01	10/02/05	-3.32E-04	3.90E-03	5.35E-03		uCi/g	U
Co-56	3.22E-01	10/02/05	1.68E-04	1.31E-03	1.96E-03		uCi/g	U
Co-57	3.22E-01	10/02/05	1.82E-04	4.41E-04	4.53E-04		uCi/g	U
Co-58	3.22E-01	10/02/05	-7.29E-04	1.25E-03	1.86E-03		uCi/g	Ü
Co-60	3.22E-01	10/02/05	4.05E+00	4.98E-03	9.86E-04	7.00E-01	uCi/g	3
Ni-59	8.05E-03	09/23/05	1.90E-01	1.20E-02	5.55E-04	2.20E-01	uCi/g	3
Zn-65	3.22E-01	10/02/05	0.00E+00	2.88E-03	3.73E-03		uCi/g	UUI
Y-88	3.22E-01	10/02/05	4.37E-04	5.44E-04	8.63E-04		uCi/g	U
Zr-95	3.22E-01	10/02/05	1.04E-03	2.07E-03	3.10E-03		uCi/g	U
Nb-94	3.22E-01	10/02/05	-1.28E-04	7.36E-04	1.10E-03	2.00E-04	uCi/g	U
Nb-95	3.22E-01	10/02/05	-9.83E-04	1.55E-03	2.32E-03	2.002 07	uCi/g	U
Ru-106	3.22E-01 3.22E-01	10/02/05	-6.38E-03	7.94E-03	1.04E-02		uCi/g	U
Ag-110m	3.22E-01	10/02/05	-0.56E-03	9.01E-04	1.17E-03		uCi/g	U
5n-113	3.22E-01 3.22E-01	10/02/05	1.45E-04	8.20E-04	1.22E-03		uCi/g	U
5b-124	3.22E-01 3.22E-01	10/02/05	-1.55E-04	1.34E-03	2.12E-03		uCi/g uCi/g	U
Sb-125	3.22E-01 3.22E-01	10/02/05	-1.11E-03	1.62E-03	2.12E-03 2.42E-03		uCi/g uCi/g	U
-129	4.77E-02	10/02/05	3.96E-04	1.02E-03 1.40E-03	2.42E-03 1.56E-03	8.00E-05	uCi/g uCi/g	U
Cs-134	3.22E-01	10/02/05	-1.48E-04	1.40E-03 1.22E-03	1.50E-03 1.59E-03	0.00E-03	uCi/g uCi/g	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814009 Client: WPI

Client Sample ID: MTS ID-1 Collect Date: September 01, 2005

Matrix: Misc Solid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Analyte	Aliquot (g)	Run Date	Activity	Uncertainty	MDA	RL	Units	Qualifier
Cs-136	3.22E-01	10/02/05	-3.09E-03	7.28E-03	1.15E-02		uCi/g	U
Cs-137	3.22E-01	10/02/05	0.00E+00	9.25E-04	1.22E-03	1.00E-03	uCi/g	UUI
Ba-133	3.22E-01	10/02/05	6.85E-04	7.95E-04	1.04E-03		uCi/g	U
Ba-140	3.22E-01	10/02/05	-3.57E-03	1.22E-02	1.82E-02		uCi/g	U
Ce-139	3.22E-01	10/02/05	-8.45E-05	4.21E-04	5.71E-04		uCi/g	U
Ce-141	3.22E-01	10/02/05	7.85E-04	1.12E-03	1.52E-03		uCi/g	U
Ce-144	3.22E-01	10/02/05	-5.49E-04	2.71E-03	3.66E-03		uCi/g	U
Nd-147	3.22E-01	10/02/05	7.71E-04	3.03E-02	4.53E-02		uCi/g	U
Pm-144	3.22E-01	10/02/05	-5.04E-05	7.78E-04	1.16E-03		uCi/g	U
Pm-146	3.22E-01	10/02/05	-5.58E-05	7.82E-04	1.17E-03		uCi/g	U
Eu-152	3.22E-01	10/02/05	-2.17E-03	1.77E-03	2.31E-03		uCi/g	U
Eu-154	3.22E-01	10/02/05	5.77E-04	1.66E-03	2.63E-03		uCi/g	U
Eu-155	3.22E-01	10/02/05	1.71E-04	1.29E-03	1.73E-03		uCi/g	U
Ir-192	3.22E-01	10/02/05	3.62E-04	6.41E-04	9.52E-04		uCi/g	U
Hg-203	3.22E-01	10/02/05	1.08E-04	7.80E-04	1.16E-03		uCi/g	U
T1-208	3.22E-01	10/02/05	7.56E-07	7.32E-04	1.09E-03		uCi/g	U
Pb-210	3.22E-01	10/02/05	4.17E-02	5.76E-02	6.65E-02		uCi/g	U
Pb-212	3.22E-01	10/02/05	7.85E-04	1.01E-03	1.23E-03		uCi/g	U
Pb-214	3.22E-01	10/02/05	-2.15E-03	1.27E-03	1.66E-03		uCi/g	U
Bi-212	3.22E-01	10/02/05	-3.38E-03	6.75E-03	1.01E-02		uCi/g	U
Bi-214	3.22E-01	10/02/05	-8.25E-04	1.35E-03	2.02E-03		uCi/g	U
Ra-228	3.22E-01	10/02/05	-3.06E-03	4.03E-03	6.36E-03		uCi/g	U
Ac-228	3.22E-01	10/02/05	-3.06E-03	4.03E-03	6.36E-03		uCi/g	U
Th-230	3.22E-01	10/02/05	-8.25E-04	1.35E-03	2.02E-03		uCi/g	U
Th-234	3.22E-01	10/02/05	4.69E-03	1.61E-02	1.88E-02		uCi/g	U
U-235	3.22E-01	10/02/05	1.10E-03	2.64E-03	3.57E-03		uCi/g	U
U-238	3.22E-01	10/02/05	4.69E-03	1.61E-02	1.88E-02		uCi/g	U
Np-239	3.22E-01	10/02/05	-1.94E-04	2.35E-03	3.15E-03		uCi/g	U
Am-241	3.22E-01	10/02/05	-1.47E-04	2.07E-03	2.41E-03		uCi/g	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814010 Client: WPI

Client Sample ID: Starboard Secondary Steam Gen Collect Date: September 01, 2005

Matrix: Misc Liquid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Aliquot Activity ² Uncertainty **MDA** RL **Run Date** Units Qualifier Analyte (L) Gamma Spec uCi/L U Be-7 3.85E-01 09/26/05 4.33E-05 2.04E-04 1.20E-04 U Na-22 3.85E-01 09/26/05 7.77E-08 5.07E-06 1.09E-05 uCi/L K-40 3.85E-01 U 09/26/05 5.50E-05 9.17E-05 1.93E-04 uCi/L 09/26/05 -2.07E-05 8.43E-05 uCi/L U Cr-51 3.85E-01 1.51E-04 uCi/L U Mn-54 3.85E-01 09/26/05 -2.98E-06 6.26E-06 1.06E-05 U Fe-59 3.85E-01 09/26/05 -7.41E-06 1.25E-05 2.21E-05 uCi/L U Co-56 3.85E-01 09/26/05 9.82E-07 8.72E-06 1.63E-05 uCi/L U Co-57 3.85E-01 09/26/05 6.13E-06 5.77E-06 1.01E-05 uCi/L Co-58 3.85E-01 09/26/05 4.27E-06 1.11E-05 1.33E-05 uCi/L U Co-60 3.85E-01 09/26/05 6.46E-06 7.17E-06 1.68E-05 7.00E+02uCi/L U U Zn-65 3.85E-01 09/26/05 4.75E-06 1.11E-05 2.36E-05 uCi/L U Y-88 3.85E-01 09/26/05 1.09E-06 7.55E-06 1.66E-05 uCi/L Zr-95 09/26/05 -2.59E-06 1.40E-05 2.52E-05 uCi/L U 3.85E-01 Nb-94 -3.04E-06 7.20E-06 1.23E-05 2.00E-01 uCi/L U 3.85E-01 09/26/05 uCi/L Nb-95 1.17E-05 U 3.85E-01 09/26/05 -5.94E-06 1.96E-05 U Ru-106 3.85E-01 09/26/05 -2.04E-05 5.53E-05 9.69E-05 uCi/L U Ag-110m 3.85E-01 09/26/05 -3.80E-06 5.46E-06 8.90E-06 uCi/L U Sn-113 09/26/05 2.30E-06 8.07E-06 uCi/L 3.85E-01 1.55E-05 U Sb-124 3.85E-01 09/26/05 2.24E-06 2.05E-05 4.27E-05 uCi/L Sb-125 3.85E-01 09/26/05 7.55E-06 1.94E-05 3.35E-05 uCi/L U Cs-134 3.85E-01 09/26/05 -2.52E-06 7.50E-06 1.31E-05 uCi/L U Cs-136 3.85E-01 09/26/05 -1.16E-05 3.37E-05 6.20E-05 uCi/L U Cs-137 1.00E+00uCi/L U 3.85E-01 09/26/05 8.06E-06 7.38E-06 1.55E-05 U Ba-133 3.85E-01 09/26/05 1.04E-06 8.36E-06 1.39E-05 uCi/L U Ba-140 09/26/05 3.22E-05 7.38E-05 1.48E-04 uCi/L 3.85E-01 U Ce-139 3.85E-01 09/26/05 1.08E-06 6.00E-06 1.04E-05 uCi/L U Ce-141 3.85E-01 09/26/05 9.32E-07 1.50E-05 2.58E-05 uCi/L U Ce-144 09/26/05 3.31E-05 3.95E-05 7.29E-05 uCi/L 3.85E-01 Nd-147 3.85E-01 09/26/05 8.37E-06 2.01E-04 3.73E-04 uCi/L U Pm-144 3.85E-01 09/26/05 4.16E-06 5.93E-06 1.31E-05 uCi/L U Pm-146 3.85E-01 09/26/05 2.58E-06 8.00E-06 1.54E-05 uCi/L U Eu-152 3.85E-01 09/26/05 -6.51E-07 1.84E-05 3.36E-05 uCi/L U Eu-154 U 3.85E-01 09/26/05 2.16E-07 1.41E-05 3.02E-05 uCi/L Eu-155 3.85E-01 09/26/05 -1.00E-05 2.28E-05 3.78E-05 uCi/L U Ir-192 09/26/05 -1.35E-07 6.66E-06 1.22E-05 uCi/L U 3.85E-01 U Hg-203 3.85E-01 09/26/05 3.72E-06 9.10E-06 1.71E-05 uCi/L T1-208 U 3.85E-01 09/26/05 4.81E-07 7.87E-06 1.47E-05 uCi/L

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814010 Client: WPI

Client Sample ID: Starboard Secondary Steam Gen Collect Date: September 01, 2005

Matrix: Misc Liquid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Aliquot **Activity Uncertainty** RL Units Qualifier Analyte **(L) Run Date** MDA Pb-210 09/26/05 uCi/L U 3.85E-01 1.43E-04 1.05E-03 1.70E-03 Pb-212 U 3.85E-01 09/26/05 1.46E-06 2.17E-05 2.24E-05 uCi/L 09/26/05 uCi/L U Pb-214 3.85E-01 1.19E-05 2.47E-05 2.78E-05 Bi-212 3.85E-01 09/26/05 7.29E-05 5.42E-05 1.20E-04 uCi/L U Bi-214 09/26/05 1.82E-05 1.32E-05 2.84E-05 uCi/L U 3.85E-01 U Ra-228 3.85E-01 09/26/05 3.06E-05 2.47E-05 5.64E-05 uCi/L 2.47E-05 U Ac-228 3.85E-01 09/26/05 3.06E-05 5.64E-05 uCi/L U Th-230 3.85E-01 09/26/05 1.82E-05 1.32E-05 2.84E-05 uCi/L Th-234 3.85E-01 09/26/05 4.09E-04 7.02E-04 5.28E-04 uCi/L U U-235 3.85E-01 09/26/05 8.38E-06 4.03E-05 7.02E-05 uCi/L U U U-238 3.85E-01 09/26/05 4.09E-04 7.02E-04 4.82E-04 uCi/L U Np-239 3.85E-01 09/26/05 -1.62E-05 4.08E-05 6.77E-05 uCi/L U Am-241 3.85E-01 09/26/05 -7.63E-06 4.65E-05 5.60E-05 uCi/L

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814011 Client: WPI

Client Sample ID: Port Secondary Steam Generato Collect Date: September 01, 2005

Matrix: Misc Liquid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Aliquot Activity ² Uncertainty **MDA** RL **Run Date** Units Qualifier Analyte (L) Gamma Spec uCi/L U Be-7 4.48E-01 09/26/05 -5.61E-05 7.28E-05 1.16E-04 U Na-22 4.48E-01 09/26/05 1.15E-07 8.72E-06 1.64E-05 uCi/L K-40 4.48E-01 1.78E-04 U 09/26/05 4.78E-05 8.18E-05 uCi/L 4.48E-01 09/26/05 -2.37E-05 8.19E-05 1.44E-04 uCi/L U Cr-51 1.47E-05 uCi/L U Mn-54 4.48E-01 09/26/05 3.66E-06 7.16E-06 U Fe-59 4.48E-01 09/26/05 6.67E-06 2.13E-05 4.23E-05 uCi/L U Co-56 4.48E-01 09/26/05 1.69E-06 8.37E-06 1.65E-05 uCi/L U Co-57 4.48E-01 09/26/05 8.24E-07 3.84E-06 6.63E-06 uCi/L Co-58 4.48E-01 09/26/05 1.84E-06 9.02E-06 1.76E-05 uCi/L U Co-60 4.48E-01 09/26/05 -1.86E-06 7.18E-06 1.39E-05 7.00E+02uCi/L U U Zn-65 4.48E-01 09/26/05 -7.27E-06 1.92E-05 3.33E-05 uCi/L U Y-88 4.48E-01 09/26/05 -1.50E-06 9.48E-06 1.86E-05 uCi/L Zr-95 4.48E-01 09/26/05 8.86E-06 1.51E-05 3.12E-05 uCi/L U Nb-94 4.48E-01 6.37E-06 2.00E-01 uCi/L U 09/26/05 1.91E-06 1.26E-05 Nb-95 uCi/L U 4.48E-01 09/26/05 -5.01E-06 1.17E-05 2.07E-05 U Ru-106 4.48E-01 09/26/05 1.19E-05 6.75E-05 1.31E-04 uCi/L U Ag-110m 4.48E-01 09/26/05 -3.36E-06 6.62E-06 1.18E-05 uCi/L U Sn-113 4.48E-01 09/26/05 1.34E-05 1.15E-05 uCi/L 1.63E-05 U Sb-124 4.48E-01 09/26/05 1.52E-05 2.25E-05 4.90E-05 uCi/L Sb-125 4.48E-01 09/26/05 1.07E-05 1.54E-05 3.05E-05 uCi/L U Cs-134 4.48E-01 09/26/05 -8.37E-07 8.00E-06 1.50E-05 uCi/L U Cs-136 4.48E-01 09/26/05 1.39E-05 3.74E-05 7.49E-05 uCi/L U Cs-137 1.00E+00uCi/L U 4.48E-01 09/26/05 9.12E-07 6.34E-06 1.14E-05 U Ba-133 4.48E-01 09/26/05 3.96E-06 7.27E-06 1.40E-05 uCi/L U Ba-140 4.48E-01 09/26/05 2.70E-05 8.89E-05 1.65E-04 uCi/L U Ce-139 4.48E-01 09/26/05 1.45E-06 4.37E-06 8.28E-06 uCi/L U Ce-141 4.48E-01 09/26/05 2.08E-06 1.25E-05 2.13E-05 uCi/L U Ce-144 09/26/05 3.05E-06 3.12E-05 uCi/L 4.48E-01 5.31E-05 Nd-147 4.48E-01 09/26/05 -7.60E-05 2.35E-04 3.97E-04 uCi/L U Pm-144 4.48E-01 09/26/05 -9.51E-07 6.15E-06 1.16E-05 uCi/L U Pm-146 4.48E-01 09/26/05 1.34E-06 7.94E-06 1.46E-05 uCi/L U Eu-152 4.48E-01 09/26/05 -7.87E-07 1.66E-05 2.99E-05 uCi/L U Eu-154 U 4.48E-01 09/26/05 1.18E-07 2.42E-05 4.55E-05 uCi/L Eu-155 4.48E-01 09/26/05 3.28E-06 1.28E-05 2.26E-05 uCi/L U 4.62E-06 Ir-192 4.48E-01 09/26/05 6.78E-06 1.30E-05 uCi/L U U Hg-203 4.48E-01 09/26/05 -5.26E-07 6.94E-06 1.26E-05 uCi/L T1-208 U 4.48E-01 09/26/05 7.66E-06 7.90E-06 1.57E-05 uCi/L

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

10 CFR Part 50/61 Certificate of Analysis

GEL Sample ID: 144814011 Client: WPI

Client Sample ID: Port Secondary Steam Generato Collect Date: September 01, 2005

Matrix: Misc Liquid Receive Date: September 06, 2005

Amount of Sample Received: Report Date: October 04, 2005

Analyte	Aliquot (L)	Run Date	Activity	Uncertainty	MDA	RL	Units	Qualifier
Pb-210	4.48E-01	09/26/05	0.00E+00	1.13E-04	2.12E-04		uCi/L	UUI
Pb-212	4.48E-01	09/26/05	7.54E-06	1.27E-05	1.97E-05		uCi/L	U
Pb-214	4.48E-01	09/26/05	7.79E-06	1.99E-05	2.85E-05		uCi/L	U
Bi-212	4.48E-01	09/26/05	2.40E-05	4.84E-05	1.01E-04		uCi/L	U
Bi-214	4.48E-01	09/26/05	3.00E-05	2.42E-05	3.29E-05		uCi/L	U
Ra-228	4.48E-01	09/26/05	-1.91E-05	2.72E-05	4.53E-05		uCi/L	U
Ac-228	4.48E-01	09/26/05	-1.91E-05	2.72E-05	4.53E-05		uCi/L	U
Th-230	4.48E-01	09/26/05	0.00E+00	2.42E-05	2.15E-05		uCi/L	UUI
Th-234	4.48E-01	09/26/05	0.00E+00	1.43E-04	2.40E-04		uCi/L	UUI
U-235	4.48E-01	09/26/05	1.31E-05	3.26E-05	5.65E-05		uCi/L	U
U-238	4.48E-01	09/26/05	0.00E+00	1.43E-04	2.40E-04		uCi/L	UUI
Np-239	4.48E-01	09/26/05	-2.54E-05	2.88E-05	4.45E-05		uCi/L	U
Am-241	4.48E-01	09/26/05	1.57E-06	9.99E-06	1.63E-05		uCi/L	U

^{2.} Activity concentration net +/- 2 sigma overall on reference date.

^{3.} Results are statistically positive at the 99.9% confidence level (activity is greater than three times the one sigma uncertainty)

U Target analyte was analyzed for but not detected above the MDL or LOD.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: October 4, 2005

Page 1 of 19

WPI

2020 Kraft Drive Suite 2200

Blacksburg, Virginia

Contact: Jon Stouky

Workorder: 144814

Parmname			NOM	Sample	Qual QC	Units	RPD%	REC%	Range Anlst	Date Time
High Rad Testing Batch 461	1028									
QC1200931791 Carbon-14	144814002	DUP		U -6.280E-06 +/-5.450E-05	U 6.530E-05 +/-6.270E-05	uCi/g	0		(0%-20%) NXL1	09/22/05 22:47
QC1200931793 Carbon-14	LCS		0.000829		0.000831 ⊦/-4.890E-05	uCi/g		100	(75%-125%)	09/22/05 23:21
QC1200931790 Carbon-14	MB				U 2.350E-05 +/-2.320E-05	uCi/g				09/22/05 22:30
QC1200931792 Carbon-14	144814002	MS	0.005	U -6.280E-06 +/-5.450E-05	0.0053 +/-0.000307	uCi/g		106	(75%-125%)	09/22/05 23:04
Batch 461	1039									
QC1200931828 Technetium-99	144814002	DUP		U -5.600E-05 +/-4.910E-05	U -3.210E-05 +/-5.860E-05	uCi/g	0		(0%-20%) NXL1	09/24/05 22:19
QC1200931830 Technetium-99	LCS		0.00167		0.00143 +/-7.630E-05	uCi/g		86	(75%-125%)	09/24/05 21:45
QC1200931827 Technetium-99	MB				U -8.110E-07 +/-3.890E-05	uCi/g				09/24/05 22:36
QC1200931829 Technetium-99	144814002	MS	0.00499	U -5.600E-05 +/-4.910E-05	0.00414 +/-0.000213	uCi/g		83	(75%-125%)	09/24/05 22:02
Batch 461	1073									
QC1200931908 Iron-55	144814003	DUP		U 0.00224 +/-0.00735	U 0.003 +/-0.00742	uCi/g	0		(0%-30%) AAK	09/23/05 08:30
QC1200931910 Iron-55	LCS		0.192		0.182 +/-0.011	uCi/g		95	(75%-125%)	09/23/05 09:04
QC1200931907 Iron-55	MB				U -0.00259 +/-0.00726	uCi/g				09/23/05 08:14
QC1200931909 Iron-55	144814003	MS	0.195	U 0.00224 +/-0.00735	0.190 +/-0.0114	uCi/g		98	(75%-125%)	09/23/05 08:47
Batch 461	1078									
QC1200931923 Plutonium-241	144814005	DUP		U 9.130E-06 +/-0.000321	U 6.210E-05 +/-0.000291	uCi/g	0		(0%-20%) RDD	09/26/05 17:27
QC1200931925	LCS									

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 144814 Page 2 of 19

Parmname			NOM	Sample	Qual Q	C Units	RPD%	REC%	Range	Anlst	Date Tin	—
High Rad Testing			NOM	Sample	Quai Q	C UIIIIS	M D 70	AEC 70	Kange	Amst	Date III	10
	1078											
Plutonium-241			0.00358		0.00 +/-0.0004			86	(75%-125%))	09/26/05 18:	01
QC1200931922 Plutonium-241	MB				U 3.660E +/-0.0002					RDD	09/26/05 17:	.10
QC1200931924 Plutonium-241	144814005	MS	0.00372	U 9.130E-06 +/-0.000321	0.0 +/-0.0004	035 uCi/g 454		94	(75%-125%))	09/26/05 17:	.44
Batch 461	1082											
QC1200931937 Iodine-129	144814002	DUP		U -1.310E-06 +/-6.020E-05	U 3.650E		215*		(0%-20%)	ADD	10/03/05 09:	:08
QC1200931938 Iodine-129	LCS		0.00149		0.00			117	(75%-125%)	1	10/04/05 08:	:53
QC1200931936 Iodine-129	MB				U 4.030E ⊦/-5.170E-						10/03/05 08:	.18
Batch 461	1085											
QC1200931948 Actinium-228	144814001	DUP		U 1.880E-06	U 3.320E		56			ADD	10/03/05 07:	:55
Americium-241				+/-3.790E-06 U 7.170E-07 +/-1.830E-06	+/-3.400E- U 1.790E- +/-8.410E-	-08 uCi/g	190					
Antimony-124				U 1.180E-06 +/-1.780E-06	U 6.720E +/-2.560E-	-07 uCi/g	55					
Antimony-125				U 4.850E-07 +/-1.200E-06	U 1.210E +/-2.170E-	-						
Barium-133				U 9.310E-08 +/-5.880E-07	U -1.080E- +/-1.120E-	-06						
Barium-140				U 6.970E-06 +/-7.760E-06	U 1.500E +/-3.760E-	-05						
Beryllium-7 Bismuth-212				U 9.540E-07 +/-5.290E-06	U 1.930E +/-9.850E-	-06						
				U 4.150E-06 +/-3.490E-06	U -2.220E- +/-7.780E-	-06						
Bismuth-214				U 1.110E-06 +/-1.280E-06	U 1.190E ⊦/-1.870E-	-06						
Cerium-139				U -4.680E-08 +/-3.900E-07	U -2.230E- ⊦/-5.790E-							
Cerium-141				U 4.530E-07 +/-8.840E-07	U 5.280E- +/-1.690E-							
Cerium-144				U -4.960E-08 +/-2.150E-06	U 1.030E ⊦/-3.470E-		220					
Cesium-134				U 1.400E-07 +/-4.820E-07	U -6.750E- +/-1.080E-		305					
Cesium-136				U -1.670E-06 ⊦/-3.090E-06	U 1.950E ⊦/-6.290E-	-06 uCi/g	2610					

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

OC

Units

RPD%

100*

38

3

198

99

244

380

292

45

111*

1850

55

56*

uCi/g

REC%

Page 3 of 19

Anlst

Date Time

Range

(0%-20%)

(0%-20%)

(0%-20%)

QC Summary

Sample Qual

⊦/-1.590E-06

+/-5.180E-05

⊦/-1.180E-06

⊦/-1.480E-06

U 6.200E-07

U 6.860E-07

U 2.440E-09

⊦/-4.270E-07

⊦/-6.970E-07

U 3.270E-07

U 4.290E-06

⊦/-1.710E-05

+/-1.850E-06

+/-4.750E-07

U 5.010E-07

UUI

⊦/-7.070E-07

⊦/-1.020E-05

U 2.060E-07

U 3.650E-07

⊦/-5.250E-07

⊦/-5.040E-07

U 1.880E-06

⊦/-3.790E-06

0.00

U -7.880E-07

U -3.370E-08

U 6.990E-05

Workorder:

Parmname

Lead-210

Lead-212

Lead-214

Manganese-54

Mercury-203

Neodymium-147

Neptunium-239

Niobium-94

Niobium-95

Potassium-40

Promethium-144

Promethium-146

Radium-228

144814

NOM

High Rad Testing Batch 461085 Cesium-137 (0%-20%)U 7.260E-08 86* U 1.820E-07 uCi/g ⊦/-5.240E-07 +/-8.810E-07 Chromium-51 U 3.150E-06 479 ADD 10/03/05 07:55 U -7.670E-06 uCi/g ⊦/-7.010E-06 ⊦/-1.080E-05 Cobalt-56 U -3.800E-07 71 U -1.800E-07 uCi/g +/-7.090E-07 ⊦/-1.250E-06 Cobalt-57 U -6.680E-08 376 U 2.180E-07 uCi/g ⊦/-2.680E-07 ⊦/-4.130E-07 Cobalt-58 U -1.090E-07 U -9.110E-07 157 uCi/g ⊦/-6.510E-07 ⊦/-1.090E-06 Cobalt-60 UUI 34* (0%-20%)0.00 U 2.550E-06 uCi/g +/-1.000E-06⊦/-1.500E-06 Europium-152 U 1.820E-07 U -4.350E-07 487 uCi/g ⊦/-1.200E-06 +/-2.300E-06 Europium-154 U -4.170E-07 532 U 9.190E-07 uCi/g ⊦/-1.860E-06 ⊦/-2.980E-06 Europium-155 134 U 2.260E-07 U 1.140E-06 uCi/g ⊦/-1.020E-06 ⊦/-1.710E-06 Iridium-192 U -3.210E-07 1.100E-06 365 uCi/g ⊦/-5.810E-07 ⊦/-1.240E-06 Iron-59 U 4.890E-07 437 U -1.310E-06 uCi/g

⊦/-3.020E-06

⊦/-9.800E-06

+/-1.650E-06 U 7.050E-07

⊦/-1.990E-06

U 4.600E-07

U 9.730E-07

U -4.330E-05

+/-9.580E-07

⊦/-1.030E-06

+/-5.170E-05

U 2.540E-06

U 1.810E-07

U 7.900E-07

UUI

⊦/-2.980E-06

⊦/-8.060E-07

⊦/-1.620E-06

⊦/-2.290E-05

+/-9.350E-07

⊦/-1.030E-06

⊦/-3.400E-06

U 2.090E-07

U 3.320E-06

U -1.660E-07

0.00

U 9.090E-07

0.00

UUI

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

			Y	C Suili	mar y						
Workorder:	144814								Page 4	of 19	
Parmname		NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
High Rad Testing Batch	g 461085										
Ruthenium-106			U 2.690E-07 +/-3.940E-06	U 4.08 ⊦/-8.37	80E-06 70E-06	uCi/g	175				
Silver-110m			U -3.520E-07 +/-4.950E-07	U -2.16 ⊦/-8.78	50E-07 80E-07	uCi/g	48			ADD	10/03/05 07:55
Sodium-22			U -7.740E-08 +/-6.590E-07	U 3.29		uCi/g	323				
Thallium-208			U 1.910E-07 +/-8.940E-07	U 9.1		uCi/g	131				
Thorium-230			U 1.110E-06 +/-1.280E-06	U 1.19		uCi/g	7		(0%-20%)		
Thorium-234			U 5.390E-06 +/-1.480E-05	U 1.33	20E-05 10E-05	uCi/g	84				
Tin-113			U 3.150E-08 +/-5.630E-07	U -7.10		uCi/g	219				
Uranium-235			U 2.080E-06 +/-2.120E-06	UUI	0.00 80E-06	uCi/g	104*		(0%-20%)		
Uranium-238			U 5.390E-06 +/-1.480E-05	UUI ⊦/-1.71	0.00 10E-05	uCi/g	84*		(0%-20%)		
Yttrium-88			U 4.020E-07 +/-7.330E-07	U 2.53 ⊦/-1.26	30E-07 60E-06	uCi/g	45				
Zinc-65			U -3.170E-07 +/-1.130E-06	U 1.83 ⊦/-2.27	30E-07 70E-06	uCi/g	745				
Zirconium-95			U 3.280E-07 +/-1.190E-06	U -1.22 ⊦/-2.14	20E-06 40E-06	uCi/g	347				
QC120093194 Actinium-228	49 LCS				20E-07 30E-05	uCi/g					10/04/05 13:57
Americium-241		0.00122			0.00116 10E-05	uCi/g		95	(75%-125%)		
Antimony-124				U 4.83 ⊦/-1.34	30E-06 40E-05	uCi/g					
Antimony-125				U -4.63 ⊦/-1.61	30E-07 10E-05	uCi/g					
Barium-133				U 5.40 ⊦/-5.37	60E-06 70E-06	uCi/g					
Barium-140				U -1.22 ⊦/-6.03	20E-05 30E-05	uCi/g					
Beryllium-7					60E-06 50E-05	uCi/g					
Bismuth-212				U 6.68 ⊦/-6.68	30E-05 80E-05	uCi/g					
Bismuth-214					60E-06 50E-05	uCi/g					
Cerium-139					.000225 20E-06	uCi/g					
Cerium-141				U -1.61		uCi/g					
Cerium-144				U -6.79		uCi/g					

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

		7	CBu	iiiiiai <u>y</u>						
Workorder: 144814								Page 5	of 19	
Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
High Rad Testing Batch 461085										
Cesium-134			U 4	2.220E-05 4.170E-06	uCi/g				ADD	10/04/05 13:57
Cesium-136			U	7.120E-06 1.060E-05	uCi/g					
Cesium-137	0.00047			2.770E-05 0.000443	uCi/g		94	(75%-125%)		
Chromium-51			U	2.320E-05 1.170E-05	uCi/g					
Cobalt-56			U 3	1.920E-05 3.710E-07	uCi/g					
Cobalt-57				7.570E-06 0.00024	uCi/g					
Cobalt-58			U -8	3.420E-06 3.940E-06	uCi/g					
Cobalt-60	0.000714			0.000663	uCi/g		93	(75%-125%)		
Europium-152			U	3.170E-05 2.540E-06	uCi/g					
Europium-154			U	210E-05 5.310E-06	uCi/g					
Europium-155			U :	.450E-05 5.060E-06	uCi/g					
Iridium-192			U -1	.080E-05	uCi/g					
Iron-59			U	1.190E-06 2.310E-05 3.110E-05	uCi/g					
Lead-210			U s	5.380E-05 5-0.000124	uCi/g					
Lead-212			U 4	4.520E-06 5.810E-06	uCi/g					
Lead-214			U -1	.840E-06 0.100E-06	uCi/g					
Manganese-54			U -8	5.070E-07 7.340E-06	uCi/g					
Mercury-203			3	3.030E-05 0.540E-06	uCi/g					
Neodymium-147			U	5.960E-05 -0.000135	uCi/g					
Neptunium-239			U	2.200E-06 2.150E-05	uCi/g					
Niobium-94			U -3	5.990E-06 5.310E-06	uCi/g					
Niobium-95			U	1.520E-06 0.080E-06	uCi/g					
Potassium-40			U 3	3.370E-05 5.200E-05	uCi/g					
			17-0	2002 03						

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 144814				<i>)</i>				Page 6	of 10		
Parmname	NOM	Sample	Onal	QC	Units	RPD%	REC%	Range		Date	Time
High Rad Testing	110111	Битріс	Quui	- Qc	Cints	IXI D / 0	REC 70	Runge	7 THIST	Date	Time
Batch 461085											
Promethium-144				3.960E-06 5.620E-06	uCi/g						
Promethium-146			U -3	3.890E-06 5.910E-06	uCi/g				ADD	10/04/05	3 13:57
Radium-228			U	9.620E-07 2.630E-05	uCi/g			(75%-125%))		
Ruthenium-106			U -2	2.760E-05 5.960E-05	uCi/g						
Silver-110m			U	5.560E-06 3.360E-06	uCi/g						
Sodium-22			U	1.900E-06 5.210E-06	uCi/g						
Thallium-208			U	2.070E-06 4.770E-06	uCi/g						
Thorium-230				2.860E-06 1.150E-05	uCi/g						
Thorium-234				5.610E-05 3.780E-05	uCi/g		1	(75%-125%))		
Tin-113			⊦/- :	0.000307 1.980E-05	uCi/g						
Uranium-235				1.240E-05 1.990E-05	uCi/g		1	(75%-125%))		
Uranium-238				5.610E-05 3.780E-05	uCi/g						
Yttrium-88			⊦/ -3	0.000515 3.360E-05	uCi/g						
Zinc-65				6.800E-06 1.700E-05	uCi/g						
Zirconium-95				5.550E-07 1.280E-05	uCi/g						
QC1200931947 MB										10/00/0	
Actinium-228			+/-3	2.250E-06 3.930E-06	uCi/g					10/02/05	19:53
Americium-241			⊢/ -5	3.990E-06 5.200E-06	uCi/g						
Antimony-124			+/-2	2.680E-07 2.960E-06	uCi/g						
Antimony-125			+/-2	1.350E-07 2.970E-06	uCi/g						
Barium-133			+/-2	1.690E-06 2.410E-06	uCi/g						
Barium-140				.350E-06 9.850E-06	uCi/g						
Beryllium-7				6.010E-07 1.180E-05	uCi/g						
Bismuth-212				2.190E-06 3.310E-06	uCi/g						
Bismuth-214				1.320E-06	uCi/g						

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

NOM Sample Qual QC Units RPD% REC% Range Anix Date Time Right Rad Testing Sample Sample Qual QC Units RPD% REC% Range Anix Date Time Right Rad Testing Sample			\boldsymbol{Z}	C Bui	<u> </u>	•					
	Workorder: 144814								Page 7	7 of 19	
	Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Cartium-139	High Rad Testing Batch 461085										
Certum-141	Cerium-139			U -1.	250E-06	uCi/g				ADD	10/02/05 19:53
Cerium-144	Cerium-141			U 8	.150E-07	uCi/g					
1	Cerium-144			U -2.	250E-06	uCi/g					
U - 1,460F-06 UCi/g	Cesium-134			U 4	.920E-07	uCi/g					
U	Cesium-136			U -1.	460E-06	uCi/g					
U 6.840E-06 UCi/g	Cesium-137			U 4	.020E-07	uCi/g					
Cobalt-56	Chromium-51			U 6	.840E-06	uCi/g					
Cobalt-57	Cobalt-56			U -1.	050E-06	uCi/g					
Cobalt-58	Cobalt-57			U -2.	290E-07	uCi/g					
Cobalt-60	Cobalt-58			U 3	.800E-08	uCi/g					
Europium-152 U 1.060E-06 H/-3.290E-06 U -7.630E-07 UCi/g H/-3.060E-06 Europium-155 U 1.520E-06 UCi/g H/-3.520E-06 UCi/g H/-3.520E-06 UCi/g H/-3.300E-07 UCi/g H/-1.310E-06 UCi/g H/-3.300E-06 UCi/g H/-3.300E-06 UCi/g H/-3.300E-06 UCi/g H/-3.300E-06 UCi/g H/-3.00E-06 UCi/g H/-3.00E-06 UCi/g H/-3.00E-06 UCi/g H/-3.00E-06 UCi/g H/-0.000137 UCi/g H/-0.000137 UCi/g UCi/g H/-0.000137 UCi/g UCi/g H/-0.000137 UCi/g UCi/g H/-1.150E-06 UCi/g UCi/g H/-1.150E-06 UCi/g	Cobalt-60			U -1.	550E-07	uCi/g					
U -7.630E-07 UCi/g	Europium-152			U 1	.060E-06	uCi/g					
+/-3.520E-06	Europium-154			U -7.	630E-07	uCi/g					
H-1.310E-06 U 1.990E-06 uCi/g	Europium-155					uCi/g					
H/-3.300E-06	Iridium-192					uCi/g					
H-0.000137 H-0.000108 H-0	Iron-59					uCi/g					
H-2.010E-06	Lead-210					uCi/g					
H-2.800E-06	Lead-212			⊦/-2	.010E-06	uCi/g					
H-1.150E-06 U 9.230E-07 uCi/g H-1.260E-06 U 2.110E-05 uCi/g H-2.270E-05 U -1.240E-06 uCi/g U -1.240E-06 uCi/g uCi/g U -1.240E-06 uCi/g u	Lead-214					uCi/g					
+/-1.260E-06 U 2.110E-05 uCi/g +/-2.270E-05 U -1.240E-06 uCi/g U -1.240E-06 uCi/g U -1.240E-06 uCi/g U -1.240E-06 uCi/g uCi/	_			⊦/-1	.150E-06						
H-/-2.270E-05 Neptunium-239 U -1.240E-06 uCi/g				⊦/-1	.260E-06						
				⊦/-2	.270E-05						
	Neptunium-239					uCi/g					

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 144814								Page 8	3 of 19	
Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
High Rad Testing Batch 461085										
Niobium-94				3.390E-07 1.230E-06	uCi/g					
Niobium-95			U	5.380E-07 1.600E-06	uCi/g				ADD	10/02/05 19:53
Potassium-40			U	2.360E-06 2.570E-05	uCi/g					
Promethium-144			U	1.520E-06 1.430E-06	uCi/g					
Promethium-146			U -4	4.240E-07 1.370E-06	uCi/g					
Radium-228			U	2.250E-06 3.930E-06	uCi/g					
Ruthenium-106			U	9.010E-06 1.180E-05	uCi/g					
Silver-110m			U -	1.250E-07 1.090E-06	uCi/g					
Sodium-22			U -2	2.730E-07 1.100E-06	uCi/g					
Thallium-208			U	2.910E-07 1.930E-06	uCi/g					
Thorium-230			U	1.320E-06 2.470E-06	uCi/g					
Thorium-234			UUI	0.00 4.570E-05	uCi/g					
Tin-113			U	9.800E-07 1.740E-06	uCi/g					
Uranium-235			U	6.360E-07 6.760E-06	uCi/g					
Uranium-238			UUI	0.00 4.570E-05	uCi/g					
Yttrium-88			U	5.070E-07 1.380E-06	uCi/g					
Zinc-65			U -2	2.010E-06 2.890E-06	uCi/g					
Zirconium-95			U	1.150E-06 2.430E-06	uCi/g					
Batch 461105			F/ =.	2.430L-00						
QC1200932017 144814003 DUP Nickel-59	1	UI 0.000434 +/-0.000314		0.000233	uCi/g	61*		(0%-20%)) AAK	09/23/05 12:46
QC1200932019 LCS Nickel-59	0.0102			0.00814 +/-0.00109	uCi/g		80	(75%-125%))	09/23/05 16:25
QC1200932016 MB Nickel-59			U	0.000186	uCi/g					09/23/05 10:17
Batch 461107				, 0.000303						
QC1200932021 144814003 DUP										

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 144814 Page 9 of 19

							Page 9	UI 17	
Parmname	NOM	Sample	Qual QC	Units	RPD%	REC%	Range	Anlst	Date Time
High Rad Testing Batch 461107									
Strontium-90		U 1.140E-05 +/-9.040E-06	U 5.480E-06 +/-7.970E-06	uCi/g	0		(0%-20%)	AAK	10/01/05 17:39
QC1200932023 LCS Strontium-90	0.000558		0.000564 +/-5.500E-05	uCi/g		101	(75%-125%)		10/01/05 18:11
QC1200932020 MB Strontium-90			U 6.140E-07 ⊦/-7.310E-06	uCi/g					10/01/05 17:39
QC1200932022 144814003 MS Strontium-90	0.00167	U 1.140E-05 +/-9.040E-06	0.00153 +/-0.000154	uCi/g		92	(75%-125%)		10/01/05 18:11
Batch 461109									
QC1200932032 144814005 DUP Plutonium-238		U 7.270E-07 +/-1.430E-06	U 8.600E-07 ⊦/-1.180E-06	uCi/g	17		(0%-20%)	RDD	10/01/05 10:51
Plutonium-239/240		U -4.840E-07 +/-4.240E-07	U 6.140E-07 +/-1.210E-06	uCi/g	1690*		(0%-20%)		
QC1200932034 LCS Plutonium-238			U 7.220E-07 +/-1.280E-06	uCi/g			(75%-125%)		
Plutonium-239/240	0.000128		0.000145 ⊦/-1.320E-05	uCi/g		113	(75%-125%)		
QC1200932031 MB Plutonium-238			U 9.920E-07 +/-1.750E-06	uCi/g					
Plutonium-239/240			U -5.510E-07 +/-1.140E-06	uCi/g					
QC1200932033 144814005 MS Plutonium-238		U 7.270E-07 +/-1.430E-06	U 1.720E-06 +/-2.020E-06	uCi/g			(75%-125%)		
Plutonium-239/240	0.000133	U -4.840E-07 +/-4.240E-07	0.000131 +/-1.380E-05	uCi/g		99	(75%-125%)		
Batch 461113									
QC1200932036 144814005 DUP Americium-241		U 9.180E-07 +/-1.120E-06	U 1.360E-06 +/-1.640E-06	uCi/g	39*		(0%-20%)	RDD	10/01/05 10:51
Curium-242		U -1.760E-07 +/-7.600E-07	U -1.780E-07 +/-7.690E-07	uCi/g	1		(0%-20%)		
Curium-243/244		U 3.360E-07 +/-9.460E-07	U -1.570E-07 +/-6.770E-07	uCi/g	551*		(0%-20%)		
QC1200932038 LCS Americium-241	0.000151		0.000143 +/-1.340E-05	uCi/g		90	(75%-125%)		
Curium-242			U -8.160E-08 +/-6.850E-07	uCi/g					
Curium-243/244	0.000186		0.000197 ⊦/-1.570E-05	uCi/g		100	(75%-125%)		
QC1200932035 MB									

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 144814 Page 10 of 19 Sample Qual Parmname NOM OCUnits RPD% REC% Range Date Time Anlst **High Rad Testing** Batch 461113 Americium-241 U -3.750E-07 uCi/g +/-6.760E-07 Curium-242 RDD 10/01/05 10:51 0.00 uCi/g ⊦/-6.930E-07 Curium-243/244 U 6.710E-07 uCi/g ⊦/-9.300E-07 QC1200932037 144814005 MS 0.000151 Americium-241 U 9.180E-07 90 (75% - 125%)0.00016 uCi/g +/-1.120E-06 ⊦/-1.380E-05 Curium-242 U -1.760E-07 U 3.550E-07 uCi/g ⊦/-7.600E-07 +/-6.960E-07 Curium-243/244 0.000186 U 3.360E-07 100 (75% - 125%)0.000185uCi/g +/-9.460E-07 ⊦/-1.490E-05 465649 QC1200943142 144814002 DUP Tritium U -5.790E-05 1.810E-05 0 (0%-20%) NXL1 09/26/05 15:38 uCi/2 +/-0.000422 +/-0.000495 QC1200943144 LCS Tritium 0.00193 09/26/05 16:11 79 (75%-125%) 0.00152 uCi/g +/-0.000293 QC1200943141 MB 09/26/05 15:21 Tritium U -6.070E-06 uCi/g +/-0.000193 QC1200943143 144814002 MS 0.00933 Tritium (75% - 125%)09/26/05 15:54 U -5.790E-05 0.009 uCi/g +/-0.000422 +/-0.00151 Batch 467200 QC1200946696 144814002 DUP -0.000253 Nickel-63 U 0 (0%-20%) AAK 09/30/05 07:41 0.000276 uCi/g +/-0.00121 +/-0.0013 QC1200946698 LCS Nickel-63 0.0799 83 (75% - 125%)09/30/05 08:45 0.0666 uCi/g +/-0.00228 QC1200946695 MB 09/30/05 07:09 Nickel-63 -0.000166 uCi/g +/-0.000865 QC1200946697 144814002 MS 0.109 Nickel-63 -0.000253 84 (75% - 125%)09/30/05 08:13 0.0916 uCi/g +/-0.00121 +/-0.0033 Rad Gamma Spec Batch 463088 QC1200936879 145401002 DUP Actinium-228 U -4.150E-06 223 MJH1 09/27/05 08:04 U 2.270E-07 uCi/L +/-1.060E-05⊦/-1.180E-05 Americium-241 U 4.040E-07 1.490E-07 92 uCi/L ⊦/-4.740E-06 ⊦/-3.760E-06 Antimony-124 259 U 6.850E-06 U -8.750E-07 uCi/L +/-7.400E-06 +/-5.090E-06

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 144814 Page 11 of 19 Parmname NOM OCUnits RPD% REC% Date Time Sample Qual Range **Anlst** Rad Gamma Spec Batch 463088 195 Antimony-125 U 5.430E-08 U 4.140E-06 uCi/L ⊦/-7.330E-06 ⊦/-5.670E-06 Barium-133 U 1.480E-06 281 MJH1 09/27/05 08:04 U -2.490E-07 uCi/L ⊦/-2.740E-06 +/-3.560E-06 Barium-140 242 U -1.110E-05 U 1.040E-06 uCi/L $+\!/\text{-}2.550E\text{-}05$ ⊦/-2.060E-05 Beryllium-7 U 7.940E-06 2020 U -6.510E-06 uCi/L +/-2.490E-05+/-2.130E-05 Bismuth-212 U 2.040E-05 U 9.570E-06 72 uCi/L ⊦/-1.850E-05 ⊦/-2.440E-05 Bismuth-214 28 U 9.030E-06 UUI 0.00 uCi/L ⊦/-1.130E-05 ⊦/-9.550E-06 Cerium-139 U -6.780E-07 U -1.740E-06 88 uCi/L ⊦/-2.110E-06 +/-1.790E-06 Cerium-141 U 2.890E-06 738 U -1.660E-06 uCi/L ⊦/-4.790E-06 ⊦/-4.110E-06 Cerium-144 1460 U -3.040E-06 U 2.300E-06 uCi/L +/-1.440E-05⊦/-1.170E-05 Cesium-134 U 1.300E-06 U 6.310E-07 70 uCi/L ⊦/-3.060E-06 ⊦/-2.590E-06 Cesium-136 222 U -3.990E-06 U 2.120E-07 uCi/L ⊦/-1.020E-05 +/-7.200E-06Cesium-137 U 3.260E-06 219 U -1.440E-07 uCi/L ⊦/-5.430E-06 ⊦/-2.330E-06 Chromium-51 U 9.030E-06 U 5.480E-07 177 uCi/L ⊦/-3.230E-05 +/-2.200E-05 Cobalt-56 U 5.520E-06 U 1.010E-06 138 uCi/L ⊦/-3.070E-06 ⊦/-2.710E-06 Cobalt-57 U -2.130E-07 100 U -7.080E-08 uCi/L ⊦/-1.900E-06 ⊦/-1.530E-06 Cobalt-58 U -1.150E-06 30 U -8.460E-07 uCi/L ⊦/-2.670E-06 ⊦/-2.910E-06 Cobalt-60 U 7.180E-06 176 U 4.670E-07 uCi/L ⊦/-9.940E-06 ⊦/-2.150E-06 Europium-152 U 2.580E-07 78 U 5.870E-07 uCi/L +/-7.770E-06 ⊦/-5.860E-06 Europium-154 U -1.470E-07 178 U -2.580E-06 uCi/L ⊦/-5.190E-06 ⊦/-8.450E-06 Europium-155 U -6.430E-06 334 U 1.610E-06 uCi/L ⊦/-7.770E-06 ⊦/-5.760E-06 Iridium-192 U 1.220E-06 6 U 1.150E-06 uCi/L ⊦/-2.670E-06 ⊦/-1.950E-06 Iron-59 U 5.680E-06 1.950E-06 98 uCi/L ⊦/-6.240E-06 ⊦/-5.990E-06 U 3.980E-05 Lead-210 19 U 4.810E-05 uCi/L ⊦/-7.500E-05 ⊦/-8.020E-05 Lead-212 U 3.190E-06 U 3.320E-06 uCi/L 4 ⊦/-4.610E-06 ⊦/-6.120E-06

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

	<u>×</u>	<u>C Summar y</u>	•					
Workorder: 144814						Page	12 of 19	
Parmname	NOM Sample	Qual QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Gamma Spec Batch 463088								
Lead-214	U 4.450E-06 ⊬/-5.820E-06	U 1.120E-06 +/-8.130E-06	uCi/L	120				
Manganese-54	U -1.350E-06 +/-2.860E-06	U 2.460E-06 +/-2.330E-06	uCi/L	689			MJH1	09/27/05 08:04
Mercury-203	U -5.240E-08 +/-3.100E-06	U 7.020E-07 +/-2.420E-06	uCi/L	232				
Neodymium-147	U -3.880E-05 +/-5.210E-05	U 3.230E-05 +/-3.990E-05	uCi/L	2180				
Neptunium-239	U 4.530E-06 +/-1.570E-05	U 3.250E-06 +/-1.110E-05	uCi/L	33				
Niobium-94	U 9.640E-07 +/-3.000E-06	U -1.630E-06 +/-2.140E-06	uCi/L	776				
Niobium-95	U 9.180E-07 +/-3.620E-06	U 4.500E-07 +/-3.030E-06	uCi/L	68				
Potassium-40	UUI 0.00 +/-5.890E-05		uCi/L	138				
Promethium-144	U -8.570E-08 +/-3.110E-06	U -1.110E-06 +/-2.190E-06	uCi/L	171				
Promethium-146	U 3.390E-06 +/-3.650E-06	U 8.720E-07 +/-2.590E-06	uCi/L	118				
Radium-228	U -4.150E-06 +/-1.060E-05	U 2.270E-07 +/-1.180E-05	uCi/L	223				
Ruthenium-106	U -1.540E-06 +/-2.560E-05	U 2.760E-06 +/-1.950E-05	uCi/L	705				
Silver-110m	U -4.470E-08 +/-2.700E-06	U 8.050E-07 +/-2.130E-06	uCi/L	224				
Sodium-22	U -5.290E-08 +/-1.860E-06	U -9.480E-07 +/-3.020E-06	uCi/L	179				
Thallium-208	U 2.080E-06 +/-3.050E-06	U 8.080E-07 +/-5.710E-06	uCi/L	88				
Thorium-230	U 9.030E-06 +/-9.550E-06	UUI 0.00 +/-1.130E-05	uCi/L	28				
Thorium-234		UUI 0.00 +/-6.230E-05	uCi/L	48				
Tin-113	U -3.190E-07 +/-3.410E-06	U -2.340E-06 +/-2.820E-06	uCi/L	152				
Uranium-235	U 1.450E-05 +/-1.630E-05	U 1.730E-05 +/-1.330E-05	uCi/L	17				
Uranium-238	UUI 0.00 +/-6.030E-05		uCi/L	48				
Yttrium-88	U -3.320E-08 +/-3.860E-06	U -1.090E-06 +/-2.460E-06	uCi/L	188				
Zinc-65	U 2.190E-06 +/-5.760E-06	U 2.290E-06 +/-5.900E-06	uCi/L	4				
Zirconium-95	U -3.950E-06 +/-6.260E-06	U 8.250E-06 +/-7.940E-06	uCi/L	567				
QC1200936881 LCS Actinium-228	17 0.2001-00	U 0.000271	uCi/L					09/26/05 21:57

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

Workorder:	1 4 4 0 1 4		7	CBu	<u>ıııııaı y</u>						
workorder:	144814								Page 1	3 of 19	
Parmname		NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Gamma Spe Batch	e c 463088										
				+	-/-0.000332						
Americium-24	1	0.00488			0.00585 +/-0.00088	uCi/L		120	(75%-125%)	MJH1	09/26/05 21:57
Antimony-124					1.560E-05 6.900E-05	uCi/L					
Antimony-125					2.580E-05 9.210E-05	uCi/L					
Barium-133				U -	2.160E-05 4.240E-05	uCi/L					
Barium-140				U -	2.110E-05 -/-0.000172	uCi/L					
Beryllium-7				U	-0.000322 +/-0.0003	uCi/L					
Bismuth-212				U	-0.00013 -/-0.000296	uCi/L					
Bismuth-214				U -	6.570E-06 7.180E-05	uCi/L					
Cerium-139					0.00112	uCi/L					
Cerium-141				U	5.190E-05 4.990E-05	uCi/L					
Cerium-144				U	0.000162	uCi/L					
Cesium-134				U	1.440E-05 4.270E-05	uCi/L					
Cesium-136				U	2.510E-05 7.640E-05	uCi/L					
Cesium-137		0.00188			0.00201	uCi/L		107	(75%-125%))	
Chromium-51				U	-0.000215 -/-0.000282	uCi/L					
Cobalt-56				U -	5.650E-06 4.000E-05	uCi/L					
Cobalt-57					0.00107 9.760E-05	uCi/L					
Cobalt-58				U -	1.500E-05 4.020E-05	uCi/L					
Cobalt-60		0.00285			0.0031	uCi/L		109	(75%-125%))	
Europium-152				U -	2.710E-05 -/-0.000106	uCi/L					
Europium-154				U	3.720E-06 8.720E-05	uCi/L					
Europium-155				U	4.940E-05 -/-0.000114	uCi/L					
Iridium-192				U	1.920E-05 -2.970E-05	uCi/L					

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

144814 Page 14 of 19 NOM Parmname Sample Qual QC Units RPD% REC% Range Date Time Anlst Rad Gamma Spec Batch 463088 Iron-59 U -6.090E-06 uCi/L +/-9.250E-05 Lead-210 MJH1 09/26/05 21:57 -0.00609 uCi/L +/-0.00756 Lead-212 U -3.060E-05 uCi/L ⊦/-5.550E-05 Lead-214 U -1.640E-05 uCi/L +/-6.710E-05 Manganese-54 1.670E-05 uCi/L ⊦/-3.750E-05 Mercury-203 0.000309 uCi/L ⊦/-6.090E-05 Neodymium-147 U 4.490E-05 uCi/L +/-0.000344 Neptunium-239 -0.000198 uCi/L +/-0.000248 Niobium-94 U 2.480E-05 uCi/L ⊦/-3.590E-05 Niobium-95 U -4.650E-06 uCi/L +/-3.770E-05 Potassium-40 1.850E-05 uCi/L +/-0.000338Promethium-144 U 9.530E-07 uCi/L +/-3.750E-05 Promethium-146 U 2.790E-05 uCi/L +/-4.550E-05 Radium-228 0.000271uCi/L +/-0.000332 Ruthenium-106 U -2.080E-06 uCi/L +/-0.00034 Silver-110m U 4.620E-05 uCi/L ⊦/-6.700E-05 Sodium-22 1.510E-06 uCi/L ⊦/-3.110E-05 Thallium-208 U 3.510E-05 uCi/L +/-3.750E-05 Thorium-230 U -6.570E-06 uCi/L ⊦/-7.180E-05 Thorium-234 -0.00148 uCi/L +/-0.00193 Tin-113 0.0015uCi/L +/-0.000138Uranium-235 6.060E-05 uCi/L +/-0.000196 Uranium-238 -0.00148 uCi/L +/-0.00193Yttrium-88 0.00211 uCi/L +/-0.000199

Workorder:

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 144814 Page 15 of 19 NOM Parmname Sample Qual QC Units RPD% REC% Range Date Time Anlst Rad Gamma Spec Batch 463088 Zinc-65 U 3.390E-05 uCi/L +/-0.000114Zirconium-95 MJH1 09/26/05 21:57 2.420E-05 uCi/L ⊦/-6.630E-05 OC1200936878 MB 09/26/05 21:01 Actinium-228 U 4.630E-06 uCi/L ⊦/-1.180E-05 Americium-241 U 4.330E-06 uCi/L ⊦/-1.620E-05 Antimony-124 U -1.180E-07 uCi/L +/-4.680E-06Antimony-125 2.090E-06 uCi/L ⊦/-9.280E-06 Barium-133 U -2.730E-06 uCi/L ⊦/-4.200E-06 Barium-140 U -1.000E-05 uCi/L ⊦/-1.410E-05 Beryllium-7 U 5.360E-06 uCi/L ⊦/-2.670E-05 Bismuth-212 U 1.990E-05 uCi/L ⊦/-2.210E-05 Bismuth-214 5.750E-06 uCi/L ⊦/-7.220E-06 Cerium-139 U 1.360E-06 uCi/L ⊦/-2.950E-06 Cerium-141 U 3.560E-06 uCi/L ⊦/-7.440E-06 Cerium-144 U -1.910E-05 uCi/L ⊦/-1.930E-05 Cesium-134 U -1.670E-06 uCi/L ⊦/-4.150E-06 Cesium-136 U 7.050E-07 uCi/L ⊦/-5.930E-06 Cesium-137 U -1.830E-06 uCi/L ⊦/-2.800E-06 Chromium-51 U 2.370E-05 uCi/L +/-3.010E-05 Cobalt-56 U 1.830E-06 uCi/L ⊦/-3.470E-06 Cobalt-57 U -2.300E-06 uCi/L ⊦/-2.230E-06 Cobalt-58 U -1.760E-06 uCi/L ⊦/-2.960E-06 Cobalt-60 U 7.130E-06 uCi/L ⊦/-5.740E-06 Europium-152 U -2.670E-07 uCi/L ⊦/-8.610E-06 Europium-154 U 1.380E-06 uCi/L

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 144814				.,						
									16 of 19	
Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Gamma Spec Batch 463088										
Europium-155				8.210E-06 4.590E-07	uCi/L				МЈН1	09/26/05 21:01
_			⊦/ -9	9.340E-06						
Iridium-192				3.260E-06 3.420E-06	uCi/L					
Iron-59				1.660E-06 5.370E-06	uCi/L					
Lead-210			U	7.280E-05 /-0.000795	uCi/L					
Lead-212			U	2.460E-06 5.750E-06	uCi/L					
Lead-214			U	1.280E-06 5.800E-06	uCi/L					
Manganese-54			U	9.800E-07 3.390E-06	uCi/L					
Mercury-203			U -5	5.660E-07	uCi/L					
Neodymium-147			U -1	3.690E-06 1.740E-05	uCi/L					
Neptunium-239			U -1	2.920E-05 1.310E-05	uCi/L					
Niobium-94			U -1	1.710E-05 1.880E-07	uCi/L					
Niobium-95			U	3.270E-06 1.350E-06	uCi/L					
Potassium-40			U	3.390E-06 4.650E-05	uCi/L					
Promethium-144				3.970E-05 1.260E-07	uCi/L					
Promethium-146				3.160E-06 4.980E-07	uCi/L					
Radium-228				4.070E-06 4.630E-06	uCi/L					
Ruthenium-106			+/-1	1.180E-05 3.710E-06	uCi/L					
			⊢/- 2	2.560E-05						
Silver-110m				8.720E-08 2.650E-06	uCi/L					
Sodium-22				1.770E-07 3.000E-06	uCi/L					
Thallium-208			U	2.490E-06 5.520E-06	uCi/L					
Thorium-230			U	5.750E-06 7.220E-06	uCi/L					
Thorium-234			U	0.000108	uCi/L					
Tin-113			U -8	3.740E-10 4.150E-06	uCi/L					
			F/ -2	T.130L2-00						

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 144814 Page 17 of 19 Parmname NOM Sample Qual OCUnits RPD% REC% Range Date Time Anlst Rad Gamma Spec Batch 463088 Uranium-235 U 1.870E-05 uCi/L +/-2.850E-05 Uranium-238 MJH1 09/26/05 21:01 0.000108 uCi/L +/-0.000132 Yttrium-88 U 3.000E-07 uCi/L ⊦/-3.200E-06 Zinc-65 U -2.280E-06 uCi/L +/-6.800E-06Zirconium-95 4.340E-07 uCi/L ⊦/-4.970E-06 QC1200936880 145401002 MS Actinium-228 U -4.150E-06 U 0.000174 09/26/05 21:54 uCi/L ⊦/-1.060E-05 +/-0.000804 Americium-241 0.00976 U 4.040E-07 116 0.0113 uCi/L ⊦/-4.740E-06 +/-0.00162 Antimony-124 U 6.850E-06 U 9.760E-05 uCi/L ⊦/-7.400E-06 +/-0.000456 Antimony-125 U 5.430E-08 0.000111 uCi/L +/-7.330E-06 +/-0.000492 Barium-133 U 1.480E-06 U 5.080E-06 uCi/L ⊦/-3.560E-06 +/-0.000188 Barium-140 U -1.110E-05 U -3.730E-05 uCi/L ⊦/-2.550E-05 +/-0.00156 Beryllium-7 U 7.940E-06 -0.00141 uCi/L ⊦/-2.490E-05 +/-0.0018 Bismuth-212 U 2.040E-05 -0.000392 uCi/L +/-2.440E-05 +/-0.0014Bismuth-214 U 9.030E-06 0.000439 uCi/L ⊦/-9.550E-06 +/-0.0005 Cerium-139 U -6.780E-07 0.00182 uCi/L ⊦/-2.110E-06 +/-0.000299 Cerium-141 U 2.890E-06 U -0.000204 uCi/L ⊦/-4.790E-06 +/-0.000316 Cerium-144 U -3.040E-06 0.000268 uCi/L ⊦/-1.440E-05 +/-0.00112 Cesium-134 U 1.300E-06 IJ -0.00016 uCi/L ⊦/-3.060E-06 +/-0.000206 Cesium-136 U -3.990E-06 U 0.000281 uCi/L +/-1.020E-05 +/-0.000626 0.00376 99 Cesium-137 U 3.260E-06 0.00373 uCi/L ⊦/-5.430E-06 +/-0.000643 Chromium-51 U 9.030E-06 -0.000251 uCi/L ⊦/-3.230E-05 +/-0.00214 Cobalt-56 U 5.520E-06 U -1.240E-05 uCi/L ⊦/-3.070E-06 +/-0.000249 Cobalt-57 U -2.130E-07 0.00207 uCi/L ⊦/-1.900E-06 +/-0.000278 Cobalt-58 U -1.150E-06 U -4.580E-05 uCi/L

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

	<u> </u>	C Bullillar y					
Workorder: 144814					Page	18 of 19	
Parmname	NOM Sample	Qual QC	Units	RPD% REC%	% Range	Anlst	Date Time
Rad Gamma Spec Batch 463088					V		
	⊦/-2.910E-06	+/-0.000213					
Cobalt-60	0.00572 U 7.180E-06 +/-9.940E-06	0.00602 +/-0.000744	uCi/L	105		MJH1	09/26/05 21:54
Europium-152	U 2.580E-07 +/-7.770E-06	U -6.180E-05 +/-0.000425	uCi/L				
Europium-154	U -1.470E-07 +/-5.190E-06	U -0.000318 +/-0.000431	uCi/L				
Europium-155	U -6.430E-06 +/-7.770E-06	U -0.000244 +/-0.000537	uCi/L				
Iridium-192	U 1.220E-06 +/-2.670E-06	U 2.230E-05 +/-0.000166	uCi/L				
Iron-59	U 5.680E-06 +/-6.240E-06	U -0.000299 +/-0.000459	uCi/L				
Lead-210	U 3.980E-05 +/-7.500E-05	U 0.00549 +/-0.014	uCi/L				
Lead-212	U 3.190E-06 +/-4.610E-06	U 8.400E-05 +/-0.00034	uCi/L				
Lead-214	U 4.450E-06 +/-5.820E-06	U 0.000423 +/-0.000358	uCi/L				
Manganese-54	U -1.350E-06 +/-2.860E-06	U 4.140E-06 +/-0.0002	uCi/L				
Mercury-203	U -5.240E-08 +/-3.100E-06	0.00121 +/-0.000267	uCi/L				
Neodymium-147	U -3.880E-05 +/-5.210E-05	U 0.000663 +/-0.0035	uCi/L				
Neptunium-239	U 4.530E-06 +/-1.570E-05	U 0.000175 +/-0.000969	uCi/L				
Niobium-94	U 9.640E-07 +/-3.000E-06	U -2.140E-05 +/-0.000176	uCi/L				
Niobium-95	U 9.180E-07 +/-3.620E-06	U -2.640E-05 +/-0.000263	uCi/L				
Potassium-40	UUI 0.00 +/-5.890E-05	U -0.000597 +/-0.00163	uCi/L				
Promethium-144	U -8.570E-08 +/-3.110E-06	U 0.000142 +/-0.000194	uCi/L				
Promethium-146	U 3.390E-06 +/-3.650E-06	U -0.000107 +/-0.000214	uCi/L				
Radium-228	U -4.150E-06 +/-1.060E-05	U 0.000174 +/-0.000804	uCi/L				
Ruthenium-106	U -1.540E-06 +/-2.560E-05	U -0.00148 +/-0.00177	uCi/L				
Silver-110m	U -4.470E-08 +/-2.700E-06	U 0.000151 +/-0.000251	uCi/L				
Sodium-22	U -5.290E-08 +/-1.860E-06	U -0.000115 +/-0.000154	uCi/L				
Thallium-208	U 2.080E-06 +/-3.050E-06	U 0.000106 +/-0.000251	uCi/L				

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 144814 Page 19 of 19

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Gamma Spec Batch 463088										
Thorium-230	U	9.030E-06 -9.550E-06	U	0.000439 +/-0.0005	uCi/L					
Thorium-234	UUI H	0.00 -6.030E-05	U	-0.00351 +/-0.00739	uCi/L				MJH1	09/26/05 21:54
Tin-113		-3.190E-07 /-3.410E-06		0.00295 +/-0.000622	uCi/L					
Uranium-235	U H	1.450E-05 /-1.630E-05	U	0.000321 +/-0.000949	uCi/L					
Uranium-238	UUI H	0.00 -6.030E-05	U	-0.00351 +/-0.00739	uCi/L					
Yttrium-88		-3.320E-08 /-3.860E-06		0.00531 +/-0.000749	uCi/L					
Zinc-65		2.190E-06 /-5.760E-06	U	-0.00049 +/-0.00048	uCi/L					
Zirconium-95		-3.950E-06 /-6.260E-06	U	0.000231 +/-0.000322	uCi/L					

Notes:

The Qualifiers in this report are defined as follows:

- ** Indicates the analyte is a surrogate compound.
- B Target analyte was detected in the sample as well as the associated blank.
- BD Results below the MDC or low tracer recovery.
- E Concentration of the target analyte exceeds the instrument calibration range.
- H Analytical holding time exceeded.
- J Indicates an estimated value.
- U Target analyte was analyzed for but not detected above the MDL or LOD.
- UI Uncertain identification for gamma spectroscopy.
- X Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details.
- d The 2:1 depletion requirement was not met for this sample
- h Sample preparation or preservation holding time exceeded.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

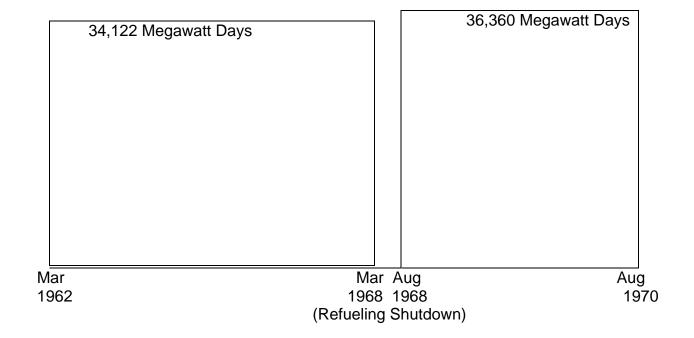
^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/-the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

N/S SAVANNAH RPV Drilling, Sampling, and Radiochemical Analysis Project Report

APPENDIX B


Explanation and Certification of Data Anomalies

N/S SAVANNAH RPV Drilling, Sampling, and Radiochemical Analysis Project Report

APPENDIX C

Reactor Power Profile & History Documentation

The following pages provide voyage history documentation and representative reactor power profiles for the NS SAVANNAH. The reactor plant operated from 1962 to 1970 at an average plant capacity factor of 30% resulting in 2.423 years of effective full power operation.

N. S. SAVANNAH

TABLE OF DISTANCES SINCE LAUNCHING

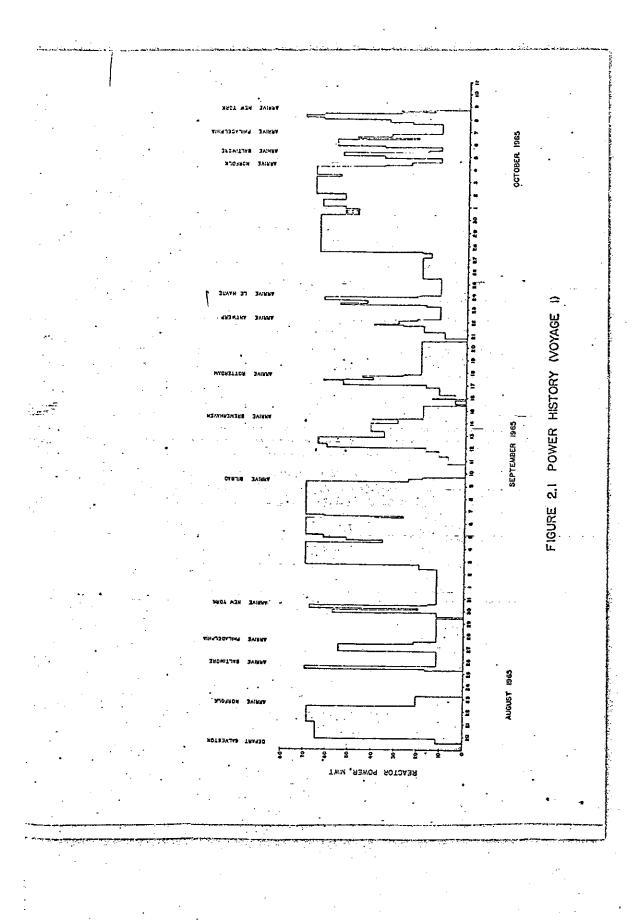
	i		. ,		
<u>PATTS</u>	PASSAGE		DISTANCE	VOYAGE DISTANCE	GRAND MOTEL
	Senton	Marine Lines		•	
1952 Jan. 31 - Feb		marins Lines to Yorktown	3 20	320	ian .
Mar. 23 - Mar	, 25 See Tria		790	1110	1113
797, 3 - Apr		1 / 2	1219	2329	2324
Fre, 13	Sea Trio		122	2451	2451
Apr. 24 - Apr - S+y 20 - May	° 26 Sea Tria ∙ 26 Sea Tria		807	3258	3259
ding 11 = dun	e 12 See Tris		2805 496 -	. 6063 6559	<i>น</i> ีนช่ว ชีวิธีร
5003 38		ation Run # 1	50	6509	6557
June. 21	Demonstr	ation Run # 2	103	6717	6712
Jana 21 - Jun	e 24 See Tria	1 # 7	1326	8038	8020
აქციოდ 20 🕶 აქცი		ation Run # 3	527	8588	8565
July 28 - Jul	y 29 - Domonatr	ation Run $\#$ 4 .	344	<u> 6909</u>	8704
•	V	oyaga g l			
Aug. 20 - Aug	, 22 Yorktown	to Savannah	698	698	9667
- Aug. 28 - Aug	. 30 Savenneh	to Horfolk	6 D4	1502	10411
_ isst. 12 = Sep			177	1579	10500
Soul, 13 - Sep		to Cristobal	1972	3551	12560
Scot. 13		l to Balboa	55	3706	12615
Thor, 10 - Ost		o Seattle ation Run	4241	7947	16056
hev. 10 - Hav	, 11 See Tria		85 321	6032 . 8353	16241 17252
1012 13 - Nav			604	8957	17865
Nov. 16 - Ace	. 19 - Sacttle	to San Francisco	875	9932	18741
Nav. 26 - Hav.	. 27 San Franc	cicco to Long Seac	th 379	10211	19120
3 av. 29	Damongtr	ation Run .	6.1		1920i
>-a=11		ch to Los Angales	9	10301	19210
ins. 17 - Dac.	, 22 Los Ange.	les to Honsielu	2316	12517	21575
194 20 - 1365	3 d Hopplulu	to Portland, Dre.	2670	16057	73206
Jan. 10 - Jan.	. 12 Parking	to Sen Francisco	700	15257 16987	24198 24098
100 a 12 e dao.	. lá San Erno:	siern in San Diede		16616	25925
Jan. 12 - Jan. Jan. 22 - Jan.	. 28 San Diego	to Unlbos	2691	79507-	20113
Jen. 31	Demonatra	stion Run	67	19574	28493
feb. 1	Balboa to	o Cristopel	-54	19623	20537
ofith.l = Fob.	. J Cristons	l to Galvaston 🗀 🤻		21167	
t'ey 1 - flay	3 See Irial	·	646	<u> 21913</u>	<u> 39722 -</u>
	- American Expo	ort - Isbrandteen	Lines		,
1754	•				
fab. 21 - Feb.			510	510	37533.
150. 29 - Har.			2576	3005	33603
The 15 w Mor.			337	3423	36145
""": 24 - Per. "Par. 18 - Apr.			345	3769	33491
THE DE CAPIT	7: 23H 15741	((g - 5) -)	369	4135	35553
	•	ime Administratio	n ·		
Apr. 28 - Apr.	. 29 - Som Trial	•	349	1345	25.750
•	•	•			N. P. W 344

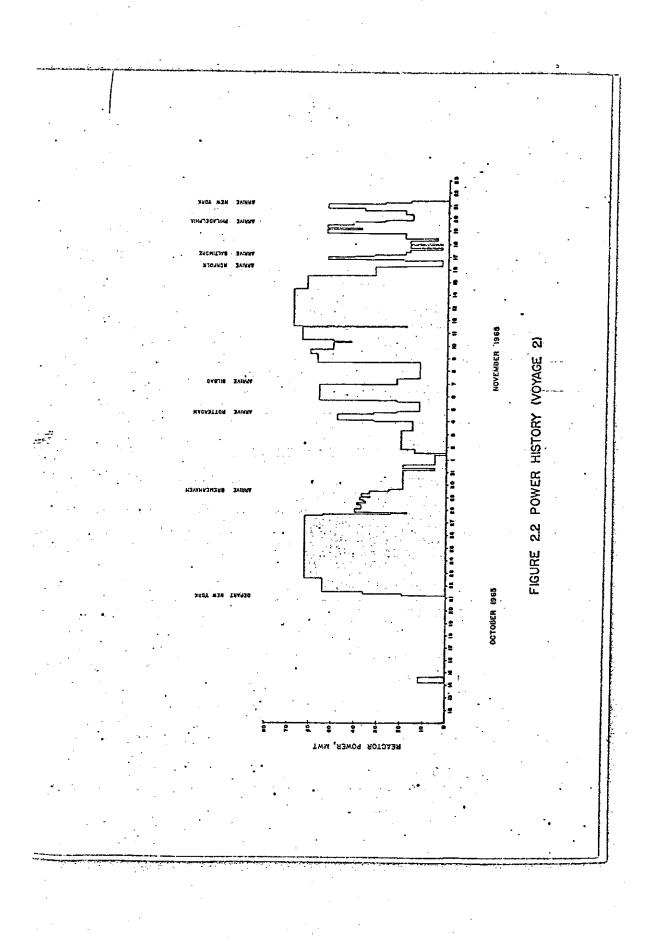
Minimons are these actually steemed dock to dock,

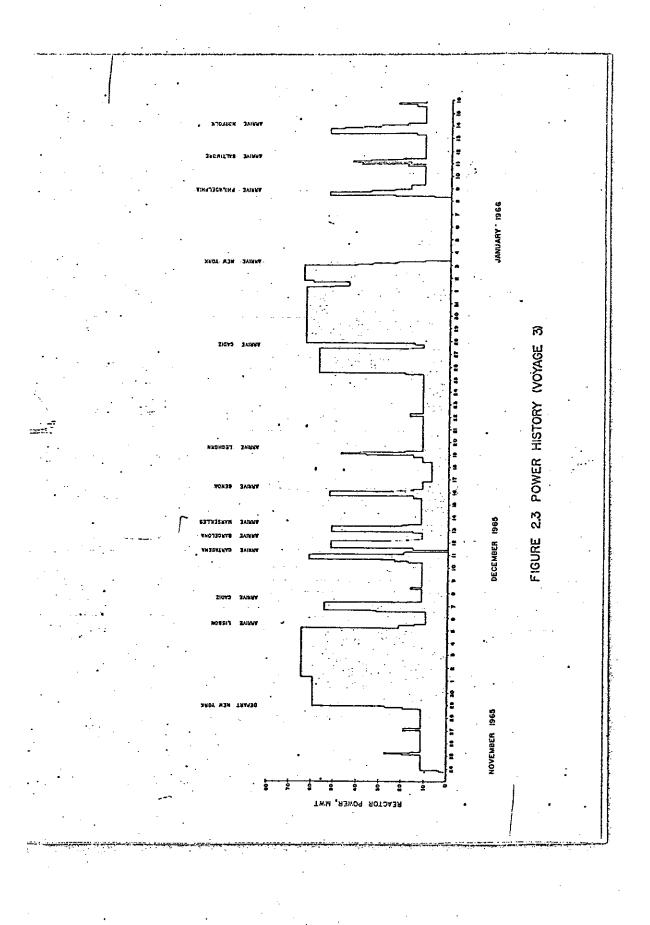
	Paragraph .	D155-WCE	DIST WOR	e iri
·	American Expert - Isbrandysen Line:			********
1964	Veyage # 1 - Causawise			
May 5	Galveston to Hausten	51	51.	35200
May 11 - Kay 14	Heuston to New Orleans	1335	1387	35390
Kay 17 - Tay 20	New Orleans to Baltimore	1674	3061	345%)
Kay 25 - Kay 26	Baltimore to Baston	688	3749	354350 35950
May 31 - June 2	Besten te New York	398	· 4 <u>147</u>	393 <u>55</u>
1 .	Voyage # 1 - Farelyn		Militar Survey	The Control of the Co
June 8 - June 14	New York to Brezaghavan	4031 •	2003	1 7 4 6 8
June 22	Demonstration Pun	44	4031 4075	47387
June 23	Bremerhaven to Hemburg	123	4198	43431 43554
June 29 - July 2	Harburg to Jublin	1050	5248	1,3794 1,4604
July 6 - July 7	Bublin to Southampton	460	5708	
July 9	Demanstration Run	47	5755	45064 45111
July 12 - July 20	Southempton to New York	3575	9330	18967
	Voyage # 2 - Fereign			
July 30 - Jely 31	New York to Providence	195	196	49083
Aug, 4 - Aug. 5	Providence to Portland, No.	33.5	33%	59217
Aug. 9 - Aug. 18	Fortland to Oale	3589	นโร๊ง	524(6
Aug. 24 - Aug. 25	Osle to Comenhagen	303	47,23	53109
Aug. 27	Dependention Hun	14	14,67	5315.1
Sapt. 1	Copeniusen to Walsingborn	23	41.95	533.93
Sapt. 5	Halsingborg to Malmo	<u>i.u</u>	4539	53225
Sept. 8 - Sept. 17	Malma to New York	4394	8933 8933	アンベルフ ムヤスキュ
ചടില് 21- Sept. 30	Veyage #3 - Pareign	3468	34.52	. (1107
Get. 6	Retterdam to Antwerp	144,	3632	51.253
Ont. 12 4.Oct. 13	Antwerp to Le Havre	. 261	3893	61512
Oct. 14	Demenstration Han	52	3945	
Oct. 18 - Oct 26	Le Euvre to New Yark	3565	27762	1.0
		7,507	7510	6156. 65147
	Voyaga " 4 - Pareign	,	<u>7510</u>	61504 65127
Ray. 3 - Kov. L			· · ·	65127
Nav. 3 - Nov. A Nav. 8 - Nov. 17	New York to Philadelphia	260	246	65369
Nav. 3 - Nov. h Nav. 8 - Nov. 17 Nov. 19	New York to Philadelphia Philadelphia to Lisban	260 34°5	240 3725	65129 65169 66164
Nav. A - Nav. 17 Nav. 19	New York to Philadelphia Philadelphia to Lisben Demonstration Run	260 36% 55	240 3725 3760	65169 65169 66151
Nev. A - Nev. 17 Nev. 19 Nev. 23 - Nev. 25	New York to Philadelphia Philadelphia to Lisben Demonstration Run- Lisben to Percelone	260 3625 55 832	240 3725 3790 4512	65129 65369 66951 66951 69213
Nev. 8 - Nev. 17 Nev. 19 Nev. 23 - Mev. 25 Nev. 26	New York to Philadelphia Philadelphia to Lisben Demonstration Run- Lisben to Percelone Demonstration Sun	260 3625 55 232 49	240 3725 3790 4512 4661	65129 65369 66951 66951 6971 6970
Nev. 8 - Nev. 17 Nev. 19 Nev. 23 - Mev. 25 Nev. 26 New. 30 - Dec. 2	New York to Philadelphia Philadelphia to Lisben Demonstration Run- Lisben to Parcelone Demonstration Sun Demonstration to Naples	260 3625 55 832 49 663	240 3725 3790 4512 4661 5324	65129 65369 66954 66954 669743 669743
Nev. 8 - Nev. 17 Nev. 19 Nev. 23 - Mev. 25 Nev. 26	New York to Philadelphia Philadelphia to Lisben Demonstration Run- Lisben to Percelone Demonstration Sun	260 3625 55 232 49	240 3725 3790 4512 4661	65129 65369 66951 66951 6971 6970
Nev. 8 - Nev. 17 Nev. 19 Nev. 23 - Mev. 25 Nev. 26 New. 30 - Dec. 2	New York to Philadelphia Philadelphia to Lisben Demonstration Run- Lisben to Percelone Demonstration Sun Descelone to Naples Demonstration Fun	260 3685 55 832 49 663 59	240 3725 3760 4512 4661 5324	65129 65169 66954 66954 66965 66965 70518
Nev. 8 - Nev. 17 Nev. 19 Nev. 23 - Nev. 25 Nev. 26 Nev. 30 - Pec. 2 Dec. 4 Rec. 7 - Onc. 17	New York to Philadelphia Philadelphia to Lisben Demonstration Run- Lisben to Percelona Demonstration Run Barcelona to Maples Demonstration Fun Noples to Yew York Voyage 2 5 - Tereign	260 3625 55 832 49 663 59 4674	240 3725 37°0 4612 4661 5324 53°3 10057	65129 65369 66954 66954 69743 89743 70538 70518
Nev. 8 - Nev. 17 Nev. 19 Nev. 23 - Nev. 25 Nev. 26 Nev. 30 - Dec. 2 Dec. 4 Rec. 7 - Onc. 17	New York to Philadelphia Philadelphia to Lisben Demonstration Run- Lisben to Parcelona Demonstration Sun Barcelona to Maples Demonstration Fun Naples to Man York Vayage 4 5 - Tereign New York Fhilt	260 3623 55 832 49 663 59 4674	240 3725 37°0 4612 4661 5324 53°3 10057	65129 65169 66151 66161 66161 70153 70153 75161
Nev. 8 - Nev. 17 Nev. 19 Nev. 23 - Nev. 25 Nev. 26 Nev. 30 - Dec. 2 Cec. 4 Rec. 7 - Dec. 17 Dec. 19 Dec. 21 - Pec. 23	New York to Philadelphia Philadelphia to Lisben Demonstration Run- Lisben to Parcelona Demonstration Sun Barcelona to Naples Demonstration Fun Naples to Man York Voyage 4 5 - Tereign New York Philit New York to Filmington	260 3683 55 832 49 663 59 4674	240 3725 37°0 4512 4661 5324 53°3 10057	65129 65169 66151 66151 66161 70153 70153 75161 75161
Nev. 8 - Nev. 17 Nev. 19 Nev. 23 - Nev. 25 Nev. 26 Nev. 30 - Dec. 2 Dec. 4 Rec. 7 - Onc. 17	New York to Philadelphia Philadelphia to Lisben Demonstration Run- Lisben to Parcelona Demonstration Sun Barcelona to Maples Demonstration Fun Naples to Man York Vayage 4 5 - Tereign New York Fhilt	260 3623 55 832 49 663 59 4674	240 3725 37°0 4612 4661 5324 53°3 10057	65129 65169 66151 66161 66161 70153 70153 75161
Nev. 8 - Nev. 17 Nev. 19 Nev. 23 - Mev. 25 Nev. 26 New. 30 - Dec. 2 Dec. 4 Rec. 7 - Onc. 17 Dec. 19 Dec. 21 - Pec. 23 Dec. 29 - Nec. 30	New York to Philadelphia Philadelphia to Lisben Demonstration Run- Lisben to Parcelona Demonstration Sun Barcelona to Maples Demonstration Fun Naples to Man York Vayage 4 5 - Tereign New York Philit Mew York to Filmington Filmington to Charleston	240 3423 55 832 47 663 59 4674	246 3725 37°0 4512 4661 5324 53°3 10057	65129 65369 68351 68351 68351 89353 7616 75164 75164 76361
Nev. 8 - Nev. 17 Nev. 19 Nev. 23 - Mev. 25 Nev. 26 Nev. 26 Nev. 30 - Dec. 2 Dec. 4 Rec. 7 - Dec. 17 Bec. 19 Dec. 21 - Dec. 23 Dec. 29 - Dec. 30 1765 Jun. 3 - Jun. 4	New York to Philadelphia Philadelphia to Lisben Demonstration Run- Lisben to Parcelona Demonstration Sun Barcelona to Naples Demonstration Fun Naples to Yew York Voyage 4 5 - Tereign New York Phila New York to Filmington Filmington to Charleston Charleston to Jacksonville	240 342 55 832 49 663 59 4674 3 582 247	240 3725 3790 4512 4661 5324 5393 10057	65129 65169 66151 66151 66151 86760 70153 70153 75161 75161 76001
Nev. 8 - Nev. 17 Nev. 19 Nev. 23 - Mev. 25 Nev. 26 Nev. 26 Nev. 30 - Dec. 2 Dec. 4 Rec. 7 - Dec. 17 Rec. 19 Rec. 21 - Nec. 23 Rec. 29 - Nec. 30 1765 Jun. 3 - Jun. 4 Jun. 12 - Jun. 13	New York to Philadelphia Philadelphia to Lisben Demonstration Run- Lisben to Parcelona Demonstration Sun Barcelona to Naples Demonstration Fun Kaples to Man York Vayage 4 5 - Tereign New York Fhiit Mew York to Filmington Filmington to Charleston Charleston to Jacksonville Jacksonville tom 6 Trial Hun	240 3483 55 832 49 663 59 4674 3 588 247	240 3725 3760 4612 4661 5324 5365 10057	65129 65169 66151 66151 66151 86760 70153 70153 75161 75161 76001
Nev. 8 - Nev. 17 Nev. 19 Nev. 23 - Mev. 25 Nev. 26 Nev. 26 Nev. 30 - Dec. 2 Dec. 4 Rec. 7 - Dec. 17 Bec. 19 Dec. 21 - Pec. 23 Dec. 29 - Rec. 30 1765 Jun. 3 - Jun. 4 Jun. 12 - Jen. 17	New York to Philadelphia Philadelphia to Lisben Demonstration Run Lisben to Parcelona Demonstration Sun Barcelona to Maples Demonstration Fun Naples to Man York Vayage # 5 - Tereign New York Fhiit Mew York to Filmington Filmington to Charleston Charleston to Jacksonville Jacksonville to San Juan	240 3483 55 832 49 663 59 4674 3 588 247 202 90	246 3725 37%0 4512 4661 5324 5325 10057 2389	65127 65369 66351 66351 66351 66353 75153 75154 75154 76336 76336 76336 76336
Nev. 8 - Nev. 17 Nev. 19 Nev. 23 - Mev. 25 Nev. 26 Nev. 30 - Dec. 2 Cec. 4 Gec. 7 - Dec. 17 Bec. 19 Dec. 21 - Dec. 23 Dec. 29 - Dec. 30 1965 Jun. 3 - Jun. 4 Jun. 12 - Jun. 13 Jun. 14 - Jen. 17 Jan. 21 - Feb. 2	New York to Philadelphia Philadelphia to Lisben Demonstration Run- Lisben to Parcelona Demonstration Sun Barcelona to Maples Demonstration Fun Naples to Man York Vayage # 5 - Tereign New York Fhilt Mew York to Filmington Filmington to Charleston Charleston to Jacksenville Jacksenville to San Juan San Juan to Fireess	240 3483 555 832 49 663 59 4674 3 588 247 202 90 1239 5048	246 3725 37°0 4612 4661 5324 5329 10057 10057 3 591 838 1030 1130 2369 7017	65129 65169 66151 66151 66151 66151 75151 75151 75151 75151 7610 7610 7610 7610 7610 7610
Nev. R - Nev. 17 Nev. 19 Nev. 23 - Mev. 25 Nev. 26 Nev. 26 Nev. 30 - Dec. 2 Cec. 4 Rec. 7 - Dec. 17 Bec. 19 Dec. 21 - Pec. 23 Dec. 29 - Nec. 30 1965 Jun. 3 - Jun. A Jun. 12 - Jen. 13 Jun. 14 - Jen. 17 Jen. 21 - Peb. 2 Feb. 3	New York to Philadelphia Philadelphia to Lisben Demonstration Run- Lisben to Parcelona Demonstration Sun Barcelona to Naples Demonstration Fun Kaples to Yew York Voyage 5 5 - Tereign New York Shift New York to Filmington Filmington to Charleston Charleston to Jacksonville Jacksonville to San Juan San Juan to Firens Piracus Demonstration Run	21.0 31.83 55 83.2 49 663 59 4674 3 588 247 202 90 1239 5048 64	240 3725 3760 4612 4661 5324 5385 10057 3 591 838 1008 1130 2369 7017 7491	65129 65169 66151 66151 66151 70153 70153 70153 75160 75160 76105 76105 76105 76105 76105 76105 76105
Nav. 8 - Nev. 17 Nev. 19 Nev. 23 - Mev. 25 Nev. 26 Nev. 26 Nev. 30 - Dec. 2 Cec. 4 Gec. 7 - Dec. 17 Bec. 19 Dec. 21 - Dec. 23 Dec. 29 - Dec. 30 1965 Jun. 3 - Jun. 4 Jun. 12 - Jun. 13 Jun. 14 - Jen. 17 Jan. 21 - Peb. 2	New York to Philadelphia Philadelphia to Lisben Demonstration Run- Lisben to Parcelona Demonstration Sun Barcelona to Maples Demonstration Fun Naples to Man York Vayage # 5 - Tereign New York Fhilt Mew York to Filmington Filmington to Charleston Charleston to Jacksenville Jacksenville to San Juan San Juan to Fireess	240 3483 555 832 49 663 59 4674 3 588 247 202 90 1239 5048	246 3725 37°0 4612 4661 5324 5329 10057 10057 3 591 838 1030 1130 2369 7017	65129 65169 66151 66151 66151 66151 75151 75151 75151 75151 7610 7610 7610 7610 7610 7610

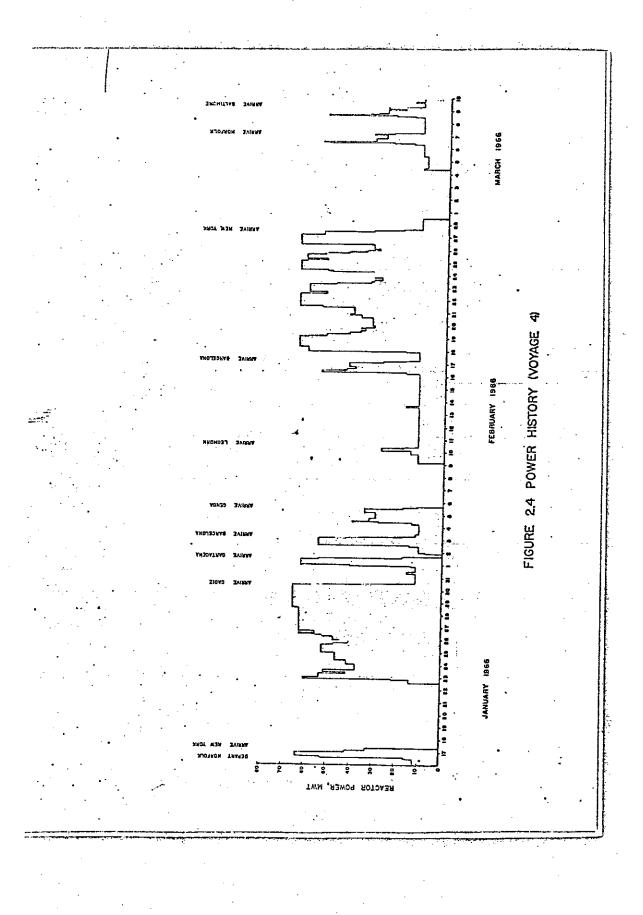
AMERICAN EXPORT ISBRANDTSEN LINES N/S SAVANNAH-VOY. #6 C/W

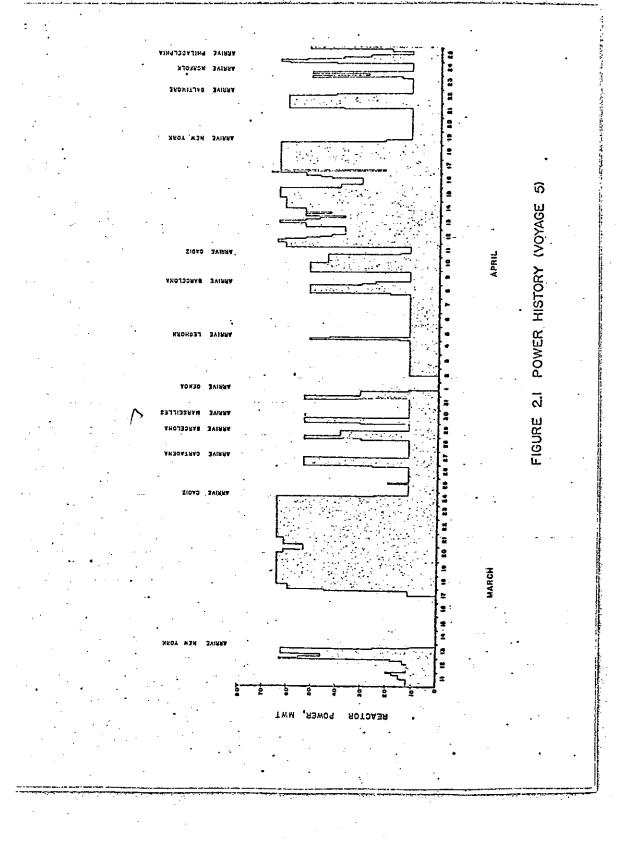
DATES	<i>.]</i> !	PASSAGE	DISTANCE	VOYAGE DISTANCE	GRAND <u>TOTAL</u>
Feb.23 -	Feb.25	Hoboken to Fort Everglades	965	965	88,574
Mar. 3 -	Mar. 5	Port Everglades to Mobile	7.76	1,741	89,350
Mar. 9 -	Mar.10	Mobile to Galveston	467	2,208	89,817
Mar.15		Shift to Todd Shipyard	1	2,209	89,818

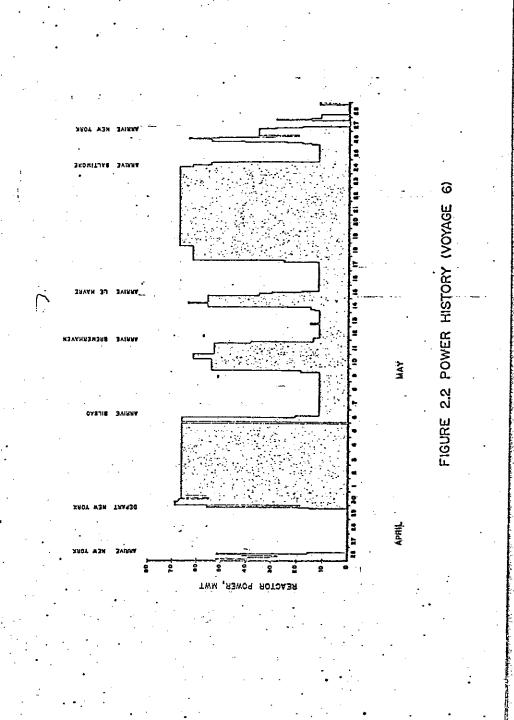

N.S. SAVANNAH PORT DEMONSTRATION VISITS 1962 - 1965

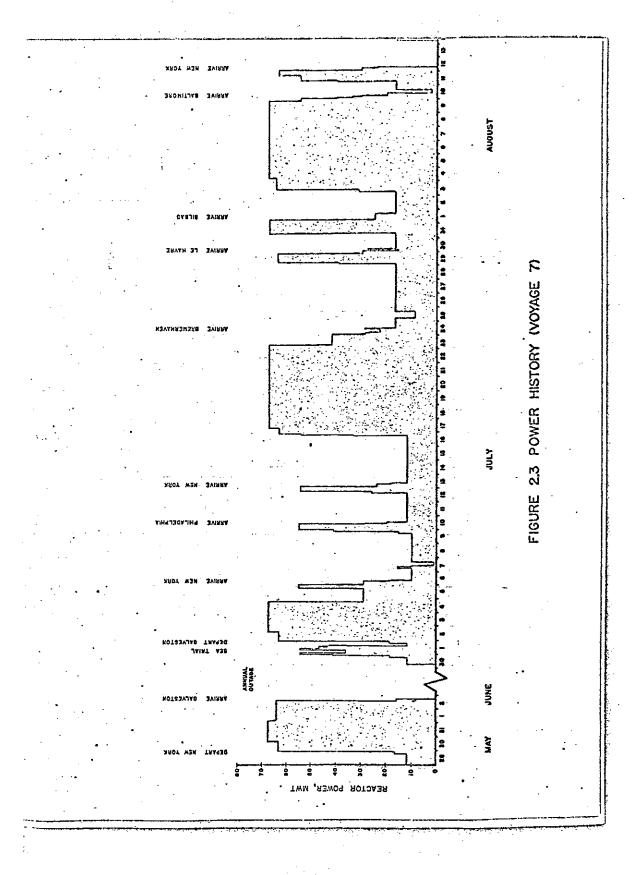

Port	Visitors Aboard	Date of Visit	Port	Visitors Aboard	Date of Visit		
States Marine Operation							
Yorktown Savenmah Norfolk Panama Canal Seattle San Francisco Long Beach Los Angeles Honolulu Portland San Diego	4,613* 38,268 18,394 134 55,999 39,957 25,867 16,494 21,581 34,915 42,378	2-1 to 8-20-62 8-22 to 8-28 8-30 to 9-4 9-18 10-1 to 10-21 11-18 to 11-26 11-27 to 12-10 12-11 to 12-17 12-22 to 12-28 1-4 to 1-10-63 1-14 to 1-22	Oslo Copenhagen Hälsingborg Malmö New York Rotterdam Antwerp LeHavre	30,874 44,956 22,964 30,401 3,106 50,929 50,578 11,090	8-18 to 8-24 8-25 to 9-1 9-1 to 9-4 9-4 to 9-8 9-17 to 9-22 9-30 to 10-6 10-6 to 10-12 10-13 to 10-19		
Balboa, C.Z. Galveston	8,292 37,736	1-29 to 1-31 2-5-63 to 5-17-63	Brooklyn Philadelphia	38,842 42,575	10-26 to 11-3 11-4 to 11-8		
Subtotal <u>AEIL</u>	344,628 Operation		Lisbon Barcelona Naples	35,389 25,454 22,616	11-17 to 11-23 11-25 to 12-1 12-2 to 12-8		
Galveston Houston New Orleans Baltimore Boston New York	7,342 40,894 14,883 28,792 21,286 36,030	3-21-64 to 5-4-64 5-5 to 5-10 5-14 to 5-16 5-20 to 5-24 5-26 to 6-1 6-1 to 6-8	New York Wilmington Charleston Jacksonville San Juan, P.R.	219 13,919 17,195 47,460 15,381	12-18 to 12-22 12-23 to 12-29 12-30 to 1-3-65 1-4 to 1-14 1-17 to 1-21		
Bremerhaven Hamburg Dublin Southampton	30,390 49,919 40,585 32,742	6-18 to 6-23 6-23 to 6-29 7-2 to 7-6 7-7 to 7-12	Piracus-Athens Hoboken Pt. Everglades Mobile Galveston	38,976 258 48,535 18,597 27,037	2-2 to 2-7 2-18 to 2-23 2-25 to 3-3 3-5 to 3-9 3-10 to 8-20-65		
Hoboken Providence Portland	33,001 38,871 33,066	7-20 to 7-30 7-31 to 8-4 8-5 to 8-9	Subtotal	1,045,152			

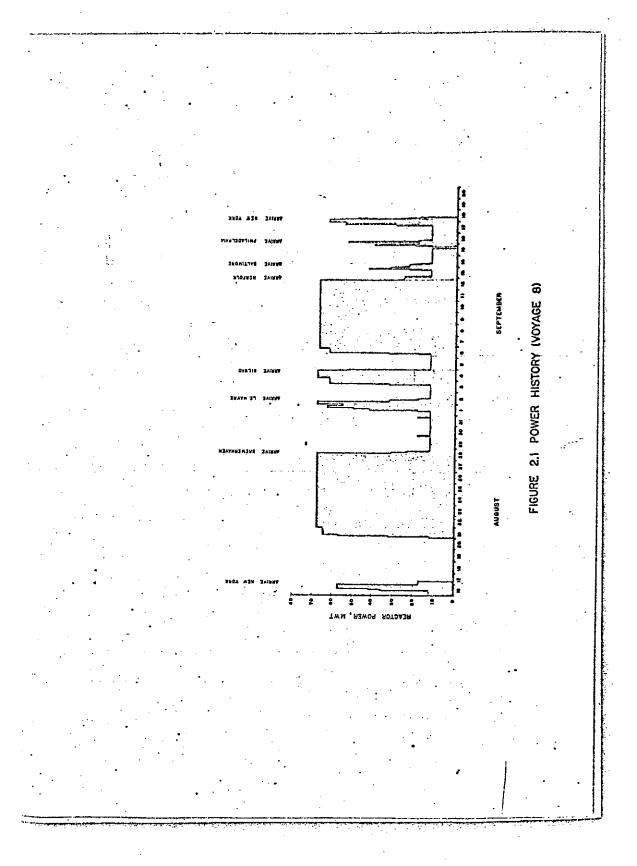

Total Visitors All Ports - 1,389,780

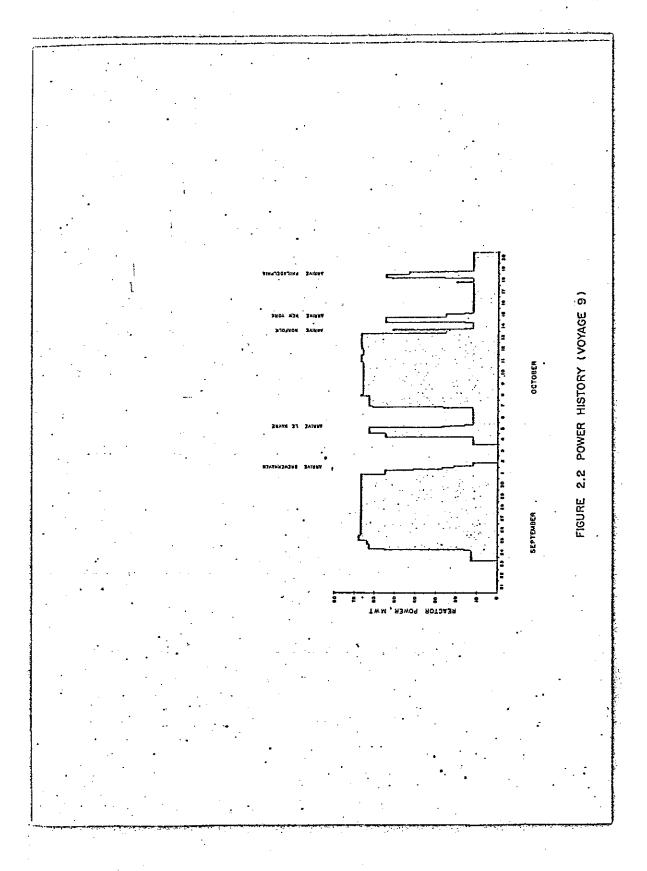

I

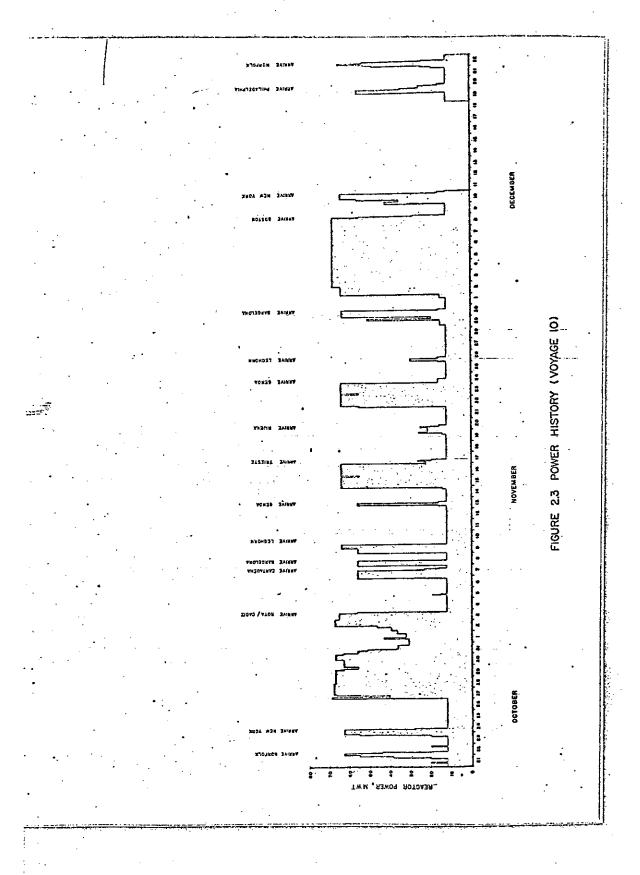

^{*}Includes Demonstration Run Passengers.

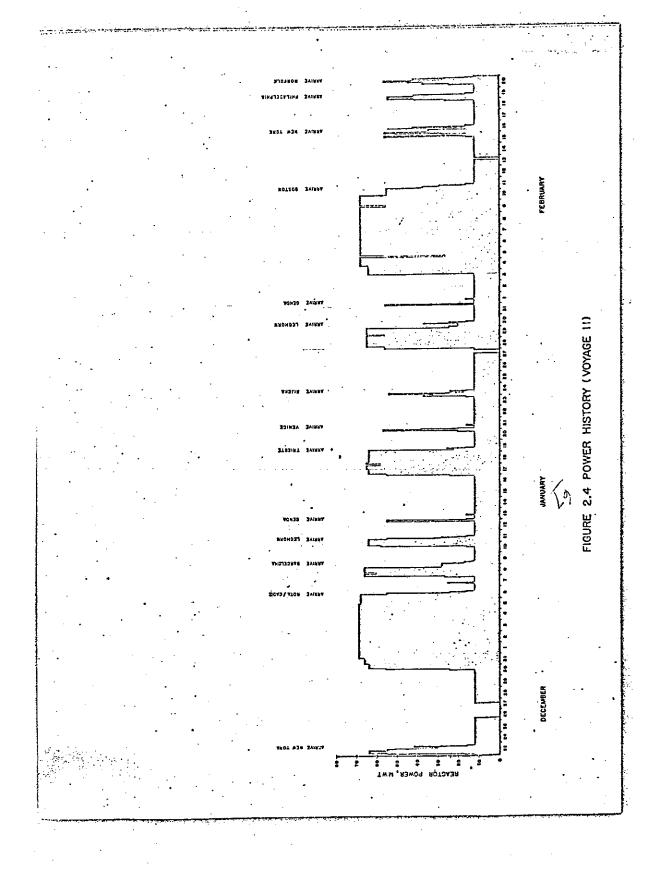


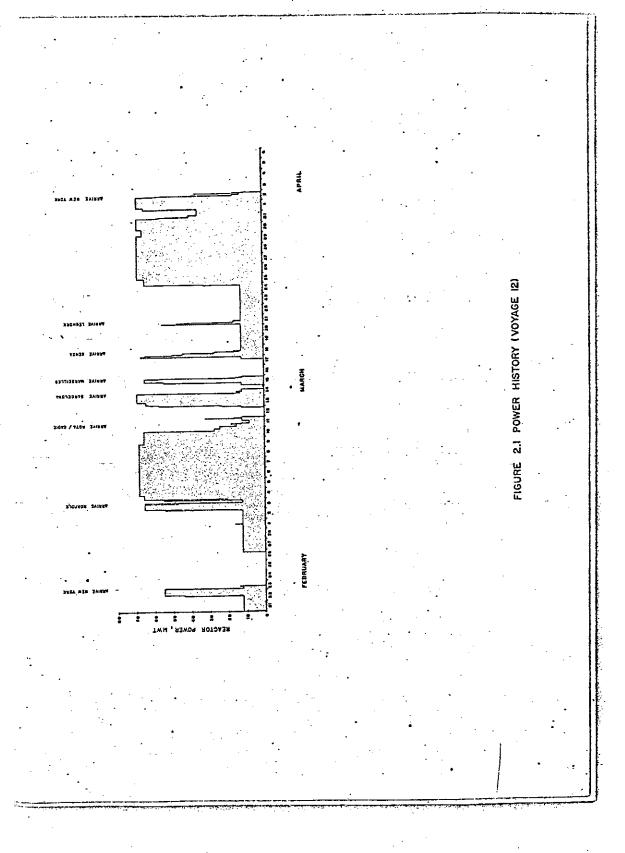


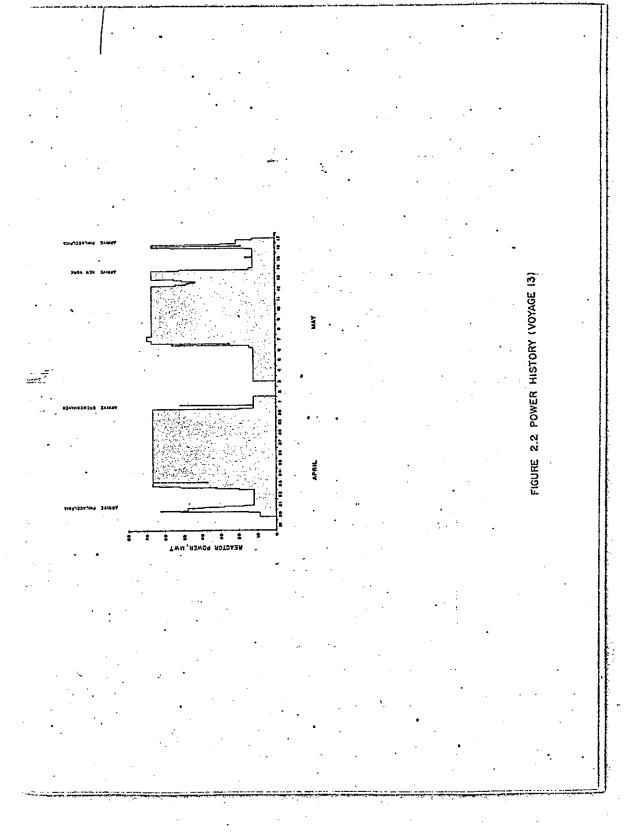


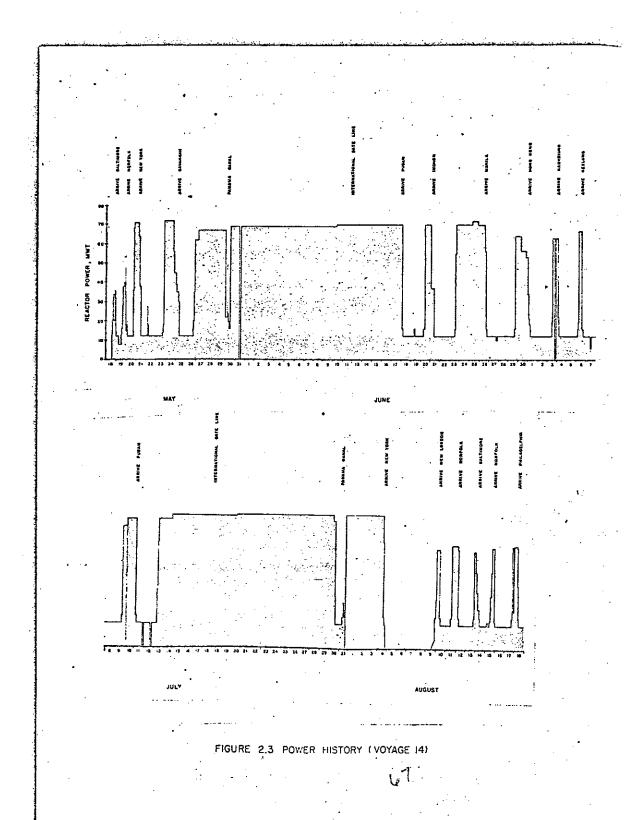


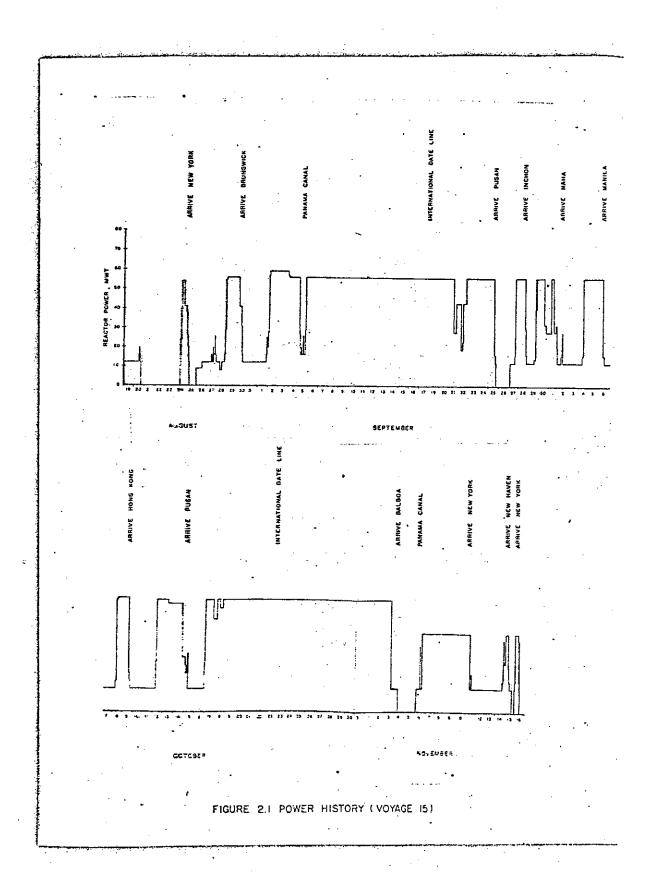


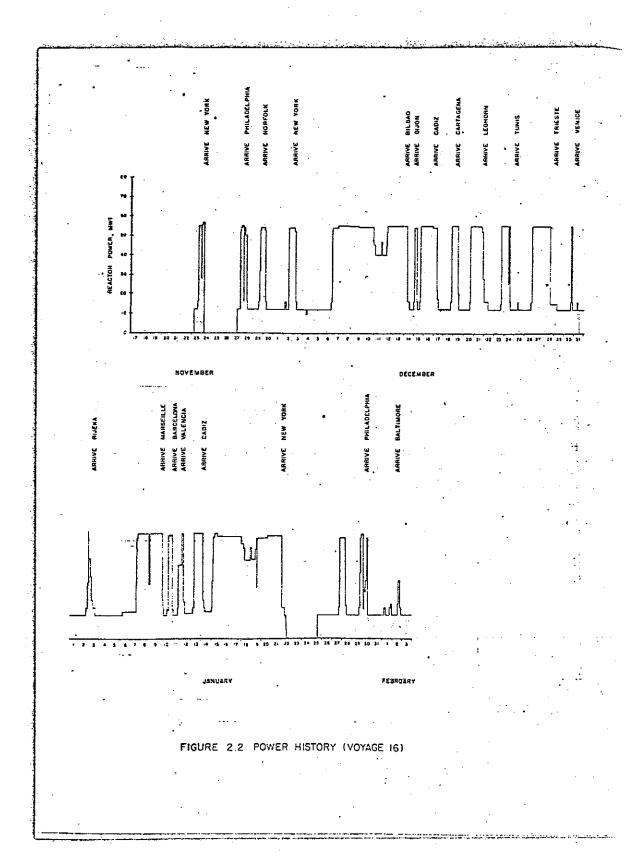


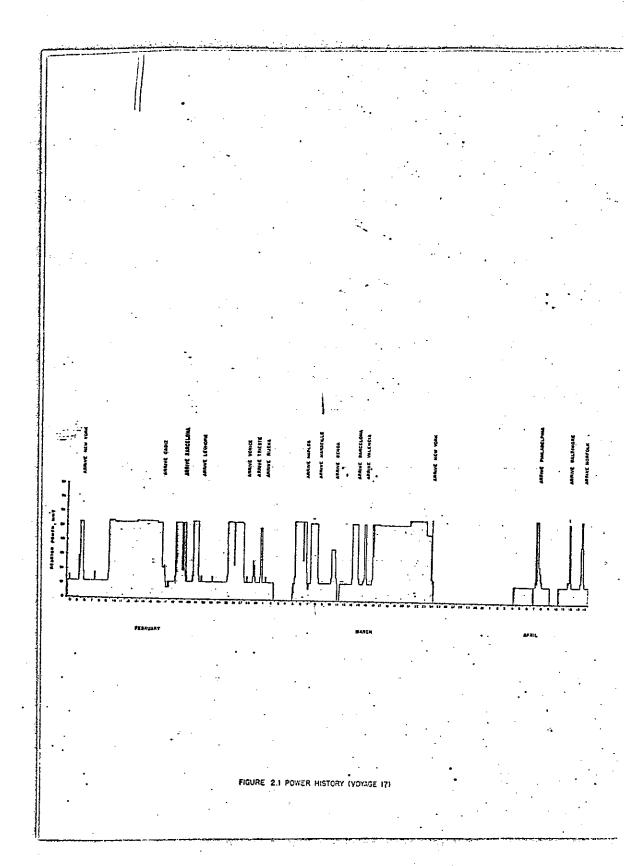


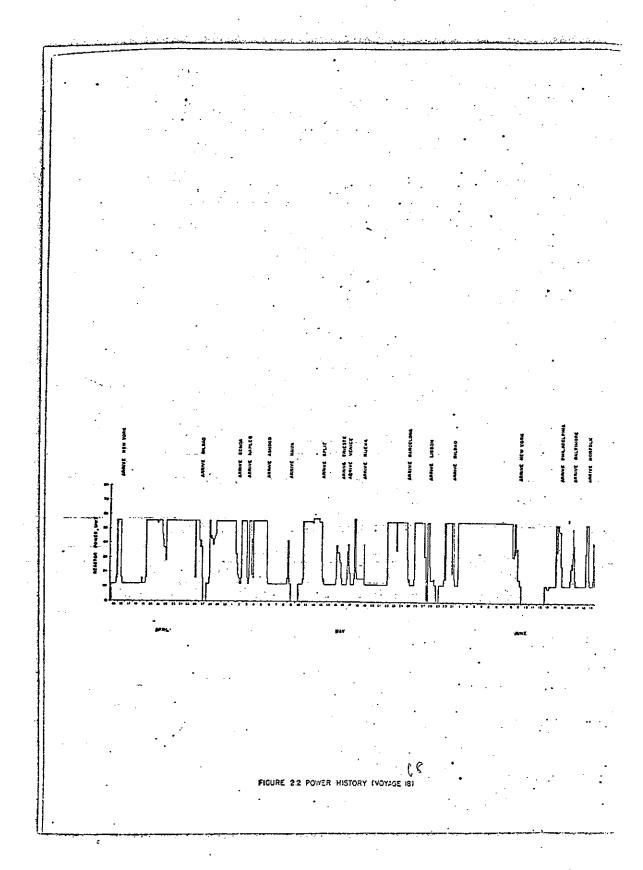


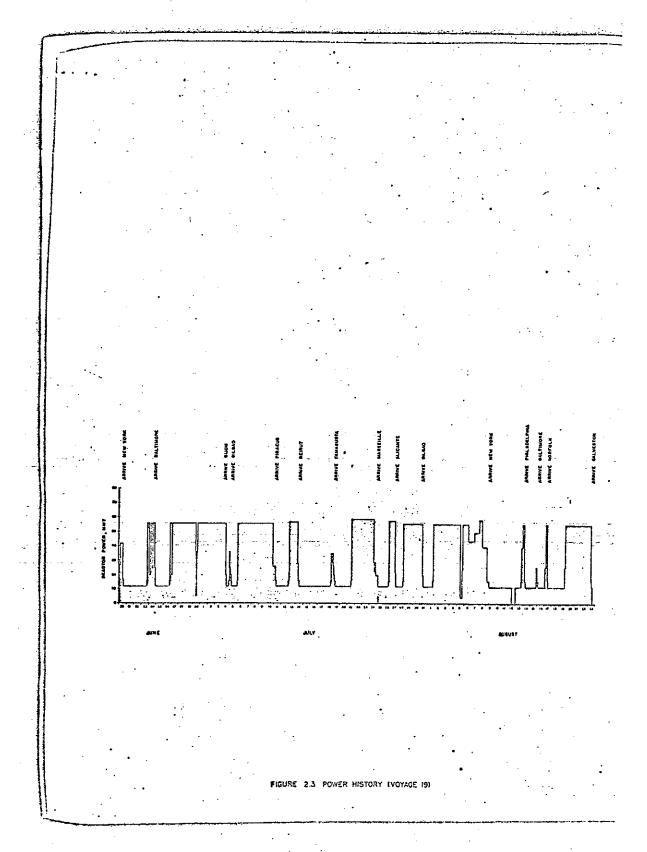












APPENDIX D

ORIGEN ARP Code Description & Inputs

ORIGEN-ARP performs isotopic activation and depletion/decay calculations for pressurized and boiling water reactors. Oak Ridge National Laboratory developed ORIGEN-ARP (and its predecessors) for the Nuclear Regulatory Commission and the Department of Energy to satisfy the need for a standardized method of isotope depletion/decay analysis of spent fuel, fissile material and radioactive material. It can be used for spent fuel characterization, isotopic inventory, radiation source terms and decay heat.

Reactor type: Pressurized Water

Peak Power: 80 MWt (megawatts thermal) Fuel Enrichment: 4.4% (Uranium-235) Fuel Load: 7.1MTU (metric tons of uranium)

Fuel Power/MTU (based on 2.423 years of effective full power operation)
Fuel Composition (computed by ORIGEN based on fuel load & enrichment):

Fuel grams*
U-234 2780
U-235 312400
U-236 1437
U-238 6787500

RPV/Internals**	grams*
Co (cobalt)	5144
Fe (iron)	2575804
Ni (nickel)	364668
Nb (niobium)	329
N (nitrogen)**	1641

^{*} ORIGEN requires fuel and reactor component weights in grams.

Decay time from reactor shutdown: 38 years (inputted to ORIGEN) based on the assumption that October 2008 would be the earliest realistic date for reactor pressure vessel disposal.

^{**} Quantities refer to naturally occurring elements that are inputted to ORIGEN based on material composition of stainless steel and carbon steel shown in Table D.1.

^{***} Nitrogen is included because Carbon-14 is produced by neutron irradiation of nitrogen – a trace element found in stainless steel and carbon steel.

Component volumes from which Curie concentrations (Ci/m³) were calculated are shown in Table D.2.

A power profile was derived from manual integration of the ship's log data. The documented total power of 2.423 full power years of operation was distributed over the eight year operating period of NSS resulting in a plant capacity factor of 30.3%. The power profile was split into two irradiation segments (shown in Figure C.1) separated by a 158 day shutdown (decay period) from March 1968 to August 1968. A final decay period of 38 years was used, corresponding to October 2008 as the projected date for burial of the Reactor Pressure Vessel with internals.

The power profile input to ORIGEN includes the following:

Basis: 7.1 MTU

Irradiation (Case Data #1&2 on ORIGEN menu)
 Power (MW/Basis) = 4.39
 Total time: 1095 days

Decay (Case Data #3 on ORIGEN menu)
 Total time: 158 days

Irradiation (Case Data #4&5 on ORIGEN menu)
 Power (MW/Basis) = 2.83
 Total time: 1825 days

Decay (Case Data #6 on ORIGEN menu)
 Total time: 38 years (assumes RPV burial in October 2008)

TABLE D.1

Material Composition (Weight %)

Data taken from NUREG/CR-3474

Material	304 Stainless Steel	Carbon Steel
Element		
Nitrogen	0.045	0.008
Chromium	18.400	0.000
Manganese	1.530	1.350
Iron	70.600	97.570
Nickel	10.00	0.610
Molybdenum	0.260	0.580
Niobium	0.009	0.002
Cobalt	0.141	0.012

TABLE D.2 NSS Component Volumes

Component	Volume (m³)
Core Basket	0.186
Upper Transition Nozzles (32)	0.094
Lower Transition Nozzles (32)	0.094
Control Rods (22)	0.008
Core Barrel	0.924
Inner Thermal Shield	0.336
Outer Thermal Shield	0.439
Lower Grid Plate and Flow Baffle Plate	0.189
Upper Grid Plate (Bottom Plate)	0.073
Upper Grid Plate Shrouds	0.175
Lower Flow Baffle Shrouds	0.149
Upper Flow Baffle Shrouds	0.212
Upper Flow Baffle Shrouds	0.245
Pressure Vessel (Middle Cylinder)	3.349
Neutron Shield Tank Inner Wall	0.286
Vessel Head and Lower Flange	6.015
Total:	12.774

APPENDIX E

ORIGEN ARP Output

Core basket

units of concentrations: curies

nuclid	e time (years)
	3.000E-01 1.000E+01 3.800E+01
`	3.000E-01 1.000E+01 3.800E+01
co60	6.905E+03 1.928E+03 4.847E+01
ni63	2.809E+02 2.627E+02 2.164E+02
fe55	7.333E+03 6.246E+02 5.102E-01
ni59	2.379E+00 2.379E+00 2.378E+00
c14	3.644E-05 3.640E-05 3.628E-05
nb94	1.359E-05 1.359E-05 1.357E-05
total	1.452E+04 2.817E+03 2.677E+02

Upper & Lower Transition Nozzle

nuclid	e time (years)
	3.000E-01 1.000E+01 3.800E+01
co60 ni63 fe55 ni59	3.495E+03 9.757E+02 2.453E+01 1.422E+02 1.330E+02 1.095E+02 3.712E+03 3.162E+02 2.583E-01 1.204E+00 1.204E+00 1.204E+00
total	7.351E+03 1.426E+03 1.355E+02

N/S SAVANNAH RPV Drilling, Sampling, and Radiochemical Analysis Project Report

Control Rods

units of concentrations: curies

nuclide	time (years)
	1.000E-02 3.000E-01 3.000E+00 3.700E+01
co60 ni63 fe55 ni59 c14 nb94	1.070E+02 1.030E+02 7.221E+01 8.245E-01 4.190E+00 4.182E+00 4.105E+00 3.244E+00 1.175E+02 1.092E+02 5.501E+01 9.793E-03 3.542E-02 3.542E-02 3.542E-02 3.540E-02 3.657E-05 3.657E-05 3.656E-05 3.641E-05 1.364E-05 1.364E-05 1.362E-05
total	2.288E+02 2.164E+02 1.314E+02 4.113E+00

Inner Thermal Shield

nuclid	e time (years)
	3.000E-02 1.000E+00 3.800E+01
co60 ni63 fe55 ni59 c14 nb94	2.592E+03 2.282E+03 1.756E+01 1.019E+02 1.012E+02 7.835E+01 2.844E+03 2.223E+03 1.847E-01 8.615E-01 8.614E-01 8.611E-01 3.653E-05 3.652E-05 3.636E-05 1.362E-05 1.361E-05
total	5.539E+03 4.607E+03 9.695E+01

N/S SAVANNAH RPV Drilling, Sampling, and Radiochemical Analysis Project Report

Middle Thermal Shield

units of concentrations: curies

nuclid	e time (years)
·	1.000E-02 1.000E+00 3.700E+01
co60 ni63 fe55 ni59 c14 nb94	3.578E+02 3.141E+02 2.757E+00 1.403E+01 1.393E+01 1.086E+01 3.934E+02 3.060E+02 3.278E-02 1.186E-01 1.186E-01 1.185E-01 3.656E-05 3.656E-05 3.640E-05 1.364E-05 1.364E-05 1.362E-05
total	7.653E+02 6.341E+02 1.377E+01

Outer Thermal Shield

nuclid	e time (years)
	1.000E-01 1.000E+01 3.800E+01
co60 ni63 fe55 ni59 c14 nb94	8.411E+01 2.287E+01 5.750E-01 3.339E+00 3.118E+00 2.568E+00 9.156E+01 7.412E+00 6.055E-03 2.824E-02 2.823E-02 2.823E-02 3.657E-05 3.653E-05 3.640E-05 1.364E-05 1.364E-05 1.362E-05
total	1.790E+02 3.343E+01 3.177E+00

N/S SAVANNAH RPV Drilling, Sampling, and Radiochemical Analysis Project Report

Lower grid plate & flow baffle plate

units of concentrations: curies

nuclid	e time (years)
	3.000E-01 1.000E+01 3.800E+01
co60 ni63 fe55 ni59 c14 nb94	7.123E+01 1.988E+01 4.999E-01 2.864E+00 2.678E+00 2.206E+00 7.477E+01 6.368E+00 5.202E-03 2.426E-02 2.425E-02 3.657E-05 3.653E-05 3.640E-05 1.364E-05 1.362E-05
total	unita of concentrational curios

nuclide	e time (years)
3	3.000E-01 1.000E+01 3.800E+01
co60	7.123E+01 1.988E+01 4.999E-01
0000	
ni63	2.864E+00 2.678E+00 2.206E+00
fe55	7.477E+01 6.368E+00 5.202E-03
ni59	2.426E-02 2.425E-02 2.425E-02
c14	3.657E-05 3.653E-05 3.640E-05
nb94	1.364E-05 1.364E-05 1.362E-05
total	1.489E+02 2.895E+01 2.735E+00

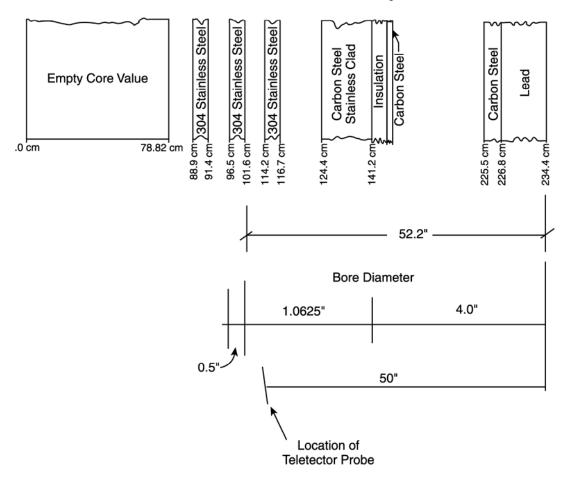
N/S SAVANNAH RPV Drilling, Sampling, and Radiochemical Analysis Project Report

Upper Grid Plate

units of concentrations: curies		
nuclide	e time (years)	
1.000E-01 1.000E+01 3.800E+01		
co60 ni63 fe55 ni59 c14	2.712E+01 7.375E+00 1.854E-01 1.108E+00 1.035E+00 8.526E-01 3.039E+01 2.460E+00 2.010E-03 9.374E-03 9.374E-03 9.371E-03 3.657E-05 3.653E-05 3.640E-05	

total 5.863E+01 1.088E+01 1.049E+00

Upper Grid Plate Shroud


nuclid	e time (years)
	3.000E-02 1.000E+01 3.800E+01
co60 ni63 fe55 ni59	1.341E+02 3.613E+01 9.083E-01 5.314E+00 4.960E+00 4.085E+00 1.483E+02 1.179E+01 9.634E-03 4.492E-02 4.492E-02 4.490E-02
total	2.877E+02 5.292E+01 5.048E+00

APPENDIX F

FIGURE FS-1

NS SAVANNAH Core, Internals, RPV & Primary Shield

