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ABSTRACT

Recent studies have demonstrated that the correlation between interannual variations of large-scale average
temperature and water vapor is stronger and less height dependent in one GCM than in an objective analysis
of radiosonde observations. To address this discrepancy, a GCM with a different approach to cumulus param-
eterization is used to explore the model dependence of this result, the effect of sampling biases, and the analysis
scheme applied to the data.

It is found that the globally complete data from the two GCMs produce similar patterns of correlation despite
their fundamentally different moist convection schemes. While this result concurs with earlier studies, it is also
shown that this apparent model–observation discrepancy is significantly reduced (although not eliminated) by
sampling the GCM in a manner more consistent with the observations, and especially if the objective analysis
is not then applied to the sampled data. Furthermore, it is found that spatial averages of the local temperature–
humidity correlations are much weaker, and show more height dependence, than correlations of the spatially
averaged quantities for both model and observed data. The results of the previous studies are thus inconclusive
and cannot therefore be interpreted to mean that GCMs greatly overestimate the water vapor feedback.

1. Introduction

Climate change simulations using general circulation
models (GCMs) depict a large positive feedback on the
greenhouse effect because of changes in water vapor
concentration and its vertical distribution. For a given
relative humidity, changes in specific humidity are de-
termined by temperature via the Clausius–Clapeyron
equation. Because of this dependence, large changes in
specific humidity will accompany a climate change in
temperature if relative humidity remains constant. In
principle, however, dynamic transports and microphys-
ical processes can change relative humidity significant-
ly. Climate warming is likely to increase the specific
humidity in the lower troposphere, as it is close to the
surface source of water vapor (Del Genio et al. 1991;
Lindzen 1990). The ultimate contribution of cloud, con-
vection, and other dynamic processes to the water vapor

Corresponding author address: M. Bauer, NASA GISS 2880
Broadway, New York, NY 10025.
E-mail: mbauer@giss.nasa.gov

budgets of the mid- and upper troposphere is less clear,
though, and thus uncertainty exists in the overall mag-
nitude of the water vapor feedback.

Given the wide variety of approaches to the param-
eterization of moist convection, cloud formation, and
microphysical processes in GCMs, one might expect
water vapor feedbacks to differ from model to model.
But this is not the case; all GCM climate change ex-
periments agree that the water vapor feedback is strong-
ly positive (cf. Cess et al. 1990; Houghton et al. 1990).
If this is correct, then it might be possible to find ex-
amples of strong positive correlations between specific
humidity and temperature in some (though not all) types
of observed climate variability as well.

Indeed, many examples of locally positive tempera-
ture–humidity (T–q) correlations exist (e.g., Inamdar
and Ramanathan 1994; Raval and Ramanathan 1989;
Rind et al. 1991; Stephens and Greenwald 1991). In
general, though, these findings can be explained as a
geographic correlation of humidity with large-scale as-
cending motions, which by themselves may not reflect
the sense of a global climate change in specific humidity
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(Sun and Oort 1995). Several studies attempt to avoid
this problem by averaging over the Tropics (or the whole
globe) and thereby include settings characterized by as-
cending and descending motion. Such studies thus cap-
ture the large-scale specific humidity response to large-
scale temperature fluctuations in time while incorpo-
rating the net effect of the large-scale dynamics on the
humidity distribution. The result again is a strong pos-
itive relationship between temperature and humidity
(Soden and Fu 1995; Yang and Tung 1998).

The companion studies of Sun and Oort (1995, here-
after SO) and Sun and Held (1996, hereafter SH) lead
to a different conclusion. In their study, SO examined
the interannual fluctuations of zonal average and tropical
average temperature and specific humidity derived from
the global radiosonde climatology. In their treatment,
SH did the same but with output from the Geophysical
Fluid Dynamics Laboratory (GFDL) GCM. While SO
found a positive correlation between temperature and
humidity at all altitudes, they noted that its strength
decreases dramatically above the trade inversion to a
midtropospheric minimum that only recovers again to
moderate values in the upper troposphere. In contrast,
SH noted strong positive T–q correlations throughout
the troposphere of the GFDL GCM. This discrepancy
places the magnitude of the water vapor feedback in
this and all other GCMs in doubt and has been blamed
on the inadequate parameterization of moist convection
in these GCMs (Hu et al. 2000; Sun and Held 1996).
In line with this trend in ideas is a recent finding that
many GCMs maintain stronger correlations between
surface humidity variations and those throughout the
atmospheric column than are observed (Sun et al. 2001).
However, attributing this to a faulty moist convection
scheme is problematic given the diversity of approaches
used to model this process (Rind 1999; Sun et al. 2001).

Perhaps some of these discrepancies can be reconciled
by examining the limitations of the observations them-
selves. The radiosonde network, for example, provides
only a sparse and biased sample of the Tropics; one that
is particularly lacking over oceanic regions character-
ized by descending motion (Raval et al. 1994; Waliser
et al. 1999). Indeed, Oort (1978) showed that the cli-
matological statistics of a GCM are altered by the sam-
pling characteristics of the global radiosonde network.
He cautioned that this network might be inadequate to
resolve longitudinal variability. Because interannual
variations in the Tropics are dominated by El Niño var-
iability, which involves spatial redistributions over both
well- and poorly sampled locations, it is doubtful that
the radiosonde climatology captures this kind of vari-
ability adequately. Indeed, Soden and Lanzante (1996)
demonstrated such a bias by resampling satellite hu-
midity measurements with a radiosonde-like network.
Moreover, the radiosonde climatology used by SO was
processed by an objective analysis scheme that inter-
polates observed values into the unobserved regions;

the impact of this operation on the resulting T–q cor-
relation is unknown.

Inevitably the value of such comparison (SO and SH)
rests on the reliability of the observations that the GCM
is being asked to match. However, studies of radiosonde
data quality indicate numerous potential distortions and
inaccuracies, including procedural and instrument
changes, instrument biases and limitations, reporting
and archiving errors and more (e.g., Elliott and Gaffen
1991; Gutzler 1993; Luers and Eskridge 1998). How-
ever, SO argue that the properties of linear correlation
and of large-scale averaging downplay these problems
and uncertainties. In part this argument depends on ran-
dom and systematic errors in the temperature record
being comparatively small (Sun and Oort 1995). This
argument is probably not correct for specific humidity,
but SO reason that it is also unlikely that humidity errors
covary in time with temperature. It follows then, that
radiosonde data can be used to estimate the actual T–q
correlation accurately (Sun and Oort 1995). Implicit in
this is the assumption that radiosonde data are a rep-
resentative sample of the atmosphere. Thus, SO rely on
large-scale averaging to mitigate this concern. This is
not an unqualified solution, however, as it makes no
provision for the uncertainties introduced by missing
and nonexisting data; that is, cases in which temperature
measurements exist when or where humidity measure-
ments do not (or less commonly the reverse). This also
includes circumstances in which the atmosphere goes
unobserved altogether. Such omissions seem especially
problematic for correlations based on quantities that
have been averaged separately (as in SO and SH). In
practice then, we should not interpret T–q correlations
as anything more than estimates of the behavior of the
available data. In any case, tropical or zonal averages
are probably not the best approach for understanding
the water vapor feedback given the extremely nonlinear
dependence of outgoing longwave radiation on tem-
perature and humidity (Yang and Tung 1998). Other
approaches have been used (e.g., Hu et al. 2000; Yang
and Tung 1998), but a detailed account of the strengths
and limitations of each approach, and what they tell us
about the water vapor feedback, has not been conducted.

In this paper, we use the Goddard Institute for Space
Studies (GISS) GCM to explore some of these issues
and make more appropriate comparisons between the
model and the radiosonde dataset. We compare T–q cor-
relations for the full GCM, a version that is sampled in
the same way as the data, and a version that is both
sampled and objectively analyzed in the same way as
the data used by SO. We also compare results from the
original in situ sampled radiosonde dataset and the ob-
jectively analyzed version discussed by SO. We describe
our data, model, and analysis methods in section 2. Our
results are presented in section 3, and we discuss their
implications for the question of water vapor feedback
in section 4.
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FIG. 1. Distribution of valid radiosonde stations at (a) 300, (b) 700, and (c) 950 hPa. Here a
valid station contains no less than 10 days of T and q data (0000 UTC) during the calendar month.
Stations reporting more than 70% of the available months (Jan 1979–Dec 1989) are marked as a
closed circle. Stations reporting more often than 30% but less than 70% of the available months
are marked as an open circle. Finally, stations reporting less than 30% of the available months
are marked with a plus.

2. Data and methods

a. Data and model

Here we compare 11 yr (January 1979–December
1989) of observations against a GCM simulation of this
period. The observations come from an updated version
of the radiosonde archive documented by Oort (1983).
Using this archive we compiled a set of station time
series detailing the variations of monthly average tem-
perature (T) and specific humidity (q). To qualify as a
valid monthly average, at least 10 days of both T and

q must have been reported at each location. Figure 1
shows the resulting temporal coverage and spatial dis-
tribution of these radiosonde stations. Regular tropical
radiosonde measurements are only available as a sparse
and irregular network, this being concentrated in south
Asia, the west Pacific, and the Caribbean.

Note that these observations are only those from 0000
UTC soundings, whereas SO reports the average of the
0000 and 1200 UTC soundings if both are available
(Oort 1983). In addition, we analyze only a subset of
the time frame covered by SO and SH (1963–89). Sim-
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FIG. 2. Schematic view of the research design.

TABLE 1. Correspondence between radiosonde mandatory levels
and GCM average layer pressures (reported in hPa).

Level Obs GCM

Upper 250
300

248
338

Middle 500
700

470
635

Lower 850
950

894
959

ilarities with SO and SH suggest that these differences
do not greatly influence our conclusions.

The simulation analyzed here was done with the GISS
GCM as part of the second phase of the Atmospheric
Model Intercomparison Project (AMIP; Gates et al.
1999). The AMIP protocol prescribes a common set of
radiative forcings and surface boundary conditions, in-
cluding fixed greenhouse gases and insolation, clima-
tological aerosol concentrations, and observed monthly
variations of ozone, sea surface temperature, and sea
ice. As suggested by AMIP, the SST and sea-ice fields
were modified such that the interpolated daily values
preserved the monthly average of the observed fields.
Standard AMIP model output is based on continuously
accumulated monthly average values. Consequently, the
GCM values are not consistent with the intramonth and
diurnal sampling of the observations.

This version of the GISS GCM operates on a 48 3
58 latitude–longitude grid that spans 12 vertical sigma-
coordinate layers. Moist convection in the GISS GCM
is represented by a mass-flux parameterization with a
cloud-base neutral buoyancy closure, convective down-
drafts, entrainment, detrainment of condensate into an-
vils, and the reevaporation of precipitation (Del Genio
and Yao 1993). Stratiform clouds are treated using a
prognostic cloud water scheme that includes parame-
terizations of all important microphysical sources and
sinks (Del Genio et al. 1996). Advection of heat and
moisture uses the quadratic upstream scheme (cf. Prath-
er 1986), which reduces the impact of numerical dif-
fusion of water vapor. We use this full-field output
(gcmf ) as a benchmark to assess the effects of sampling
and interpolation.

The effect of the GISS cumulus parameterization on
the humidity field has been documented by Del Genio

et al. (1994, their Fig. 2b). Broadly, these findings are
as follows: 1) parameterized subsidence dries and warms
the atmosphere at most altitudes and latitudes, and 2)
deep and shallow convection, respectively, moisten the
upper troposphere and the boundaries of the subtropical
trade inversion while having little effect on temperature.
The GISS scheme should thus reduce or be neutral toward
T–q correlations. Convective adjustment (cf. Manabe et
al. 1965), on the other hand, adjusts an unstable tem-
perature profile while maintaining saturated or fixed rel-
ative humidity conditions. That is, it dries the atmosphere
while releasing latent heat whenever the reference hu-
midity is exceeded. As in the GISS scheme, this action
reduces T–q correlations. However, unlike the GISS
scheme, convective adjustment also directly links chang-
es in q to changes in T whenever q reaches its reference
value. This likely contributes to positive T–q correlations
in the GFDL GCM (Sun and Held 1996).

b. Sampling

A GCM sample (gcms) was created in the simplest
manner; for each valid radiosonde station (month, lo-
cation, and pressure), we substituted the corresponding
GCM output (Fig. 2). We also constructed an analogous
radiosonde sample (obss) by averaging the in situ data
from all valid radiosonde stations onto the GISS GCM
grid domain.

To avoid certain numerical ambiguities (Trenberth
1995) the GISS GCM accumulates each monthly av-
erage from values interpolated into pressure coordinates
at the end of each model time step. From these we have
selected six levels that best match the six mandatory
reporting levels in the data (Table 1). The GCM creates
‘‘missing’’ values wherever interpolated pressure sur-
faces intersect the ground. Topography also occasionally
precludes radiosonde observations at pressures above
850 hPa (Oort and Liu 1993); however, the highly
smoothed topography in the GCM unrealistically elim-
inates low-level information from several key tropical
locations. For the most part, these lost stations are lo-
cated along coastal South America, where high topog-
raphy only abuts the actual stations (Fig. 1). In such
cases we replaced these missing GCM values with the
average of neighboring grid values. This substitution
was only applied to the fields input into the interpolation
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FIG. 3. Correlation coefficient as a function of pressure. Each panel
represents the correlated interannual variation of the tropical average
(6328) temperature and specific humidity, i.e., r(^T &, ^q&), for either
the observations (left) or the GISS GCM (right). Each curve repre-
sents one of three treatments: a solid line (open square) for the full
GCM, a dashed line (open circle) for products of sampling, and a
dash–dot line (filled circle) for products of objective analysis.

described next, and does not affect the pure sampled
fields gcms and obss.

c. Objective analysis

Next we interpolated the monthly average tempera-
ture and specific humidity from each valid radiosonde
station to fill the entire GISS GCM grid domain; we
refer to these fields as obsi and gcmi (Fig. 2). This in-
terpolation was done with the objective analysis scheme
ANAL95. ANAL95 is an updated, but algorithmically
similar, version of the scheme used by Oort (1983, i.e.,
ANAL68).

Creating a guess field for the unobserved spaces be-
tween the radiosonde stations is the first, and in some-
ways the most influential, step in applying ANAL95
(Oort 1978). For this we used the zonal average of the
valid radiosonde stations (Oort 1978; Sun and Held
1996). Next, this guess field is subtracted from the sta-
tion values, creating an anomaly field, which is then
passed into the ANAL95 software. The initial ANAL95
fit is zonally symmetric; created by binning (in 128 lat
intervals) and then latitudinally smoothing (using a
fourth-order polynomial) the anomaly field (Raval et al.
1996). The fitted field is then adjusted to the station
values. For this, each station can influence the fitting
field over a radius of 1750 km (the default for ANAL95).
The adjusted fit is then smoothed. This process is then
repeated using a smaller radius of influence (700 km).
Afterward, the adjusted fit undergoes a final cross-equa-
torial smoothing as each hemisphere is analyzed sepa-
rately on a polar stereographic grid. The original guess
field is then added back to give the final product. This
procedure is designed to mimic that used to produce the
data products analyzed by SO and SH. It is worth noting,
though, that the interpolation of a highly variable pa-
rameter such as specific humidity is bound to introduce
significant errors relative to a strategy that interpolates
relative humidity instead.

d. Analysis procedure

We focus on interannual anomalies of T and q by
removing the seasonal cycle and trend using the same
procedures as SO and SH. We calculate correlations
from these anomalies in the same manner as SO, using
the Pearson or linear correlation coefficient. We examine
two methods for finding the large-scale correlation of
the data. The first method follows SO and SH, as the
correlations are based on spatially averaged temperature
and humidity. The second method follows Hu et al.
(2000) by examining spatially averaged local correla-
tions. Strictly speaking correlation coefficients are not
additive as assumed by Hu et al. (2000). A formal sta-
tistical procedure exists for this however, the Fisher-Z
transformation, which we applied when averaging cor-
relations (Dunlap et al. 1983).

3. Results

a. Tropical averages

Figure 3 compares vertical profiles of the correlation
between tropical average (328N–328S) T and q for the
various data and model versions. The correlations are
strongest at all levels in the complete GCM (gcmf ).
There is little difference between this profile and that
from the GFDL GCM (cf. Sun and Held 1996) despite
fundamentally different approaches to convective pa-
rameterization. Attributing the strength of the GFDL
correlation profile to that model’s convective adjustment
scheme is therefore dubious. Thus the more likely sce-
nario is that it is the vertical transport of water vapor
by the resolved dynamics, which should be qualitatively
similar in the two models, that determines this result
(cf. Del Genio et al. 1991, 1994).

The weakest correlations in Fig. 3 appear in the in-
terpolated data (obsi). The contrast of this kind of com-
parison, that is, obsi versus gcmf , led SH and Sun et al.
(2001) to improperly conclude that GCMs in general
overestimate the coupling of temperature and humidity
variations. Figure 3 demonstrates that this conclusion is
overstated as much of the contrast between obsi and
gcmf is an artifact of the objective analysis procedure;
without interpolation, correlations in the data are larger
by 0.2–0.3 at most levels. This dramatic difference is a
consequence of the objective analysis procedure com-
pensating for the spatial sampling pattern of the radio-
sonde stations and gaps in their time series. There is
little difference, for example, between the correlation
profile of obsi and obss when the interpolated data are
sampled at the places and times where data are present
(i.e., the objective analysis does little to the actual data).
On the other hand, when we sample obsi at the same
radiosonde locations but include the complete time se-
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FIG. 4. Same as in Fig. 3, but for the tropical averaged local cor-
relations between temperature and specific humidity, i.e., ^r(T, q)&.
Note that each local correlation coefficient (having at least 10 valid
monthly values) was first subjected to the Fisher-Z transformation,
averaged, and then back-transformed into units of correlation.

ries (i.e., allow dates filled in by the analysis), the re-
sulting correlation profile (not shown) diverges from
obss by about half the difference between the obss and
obsi profiles seen in Fig. 3. The remaining difference is
thus due to contributions from locations without any
radiosonde stations, where the time series is purely in-
terpolated from other locations. The GCM is only sen-
sitive to this latter effect, implying that interannual
anomalies in the GCM are more spatially coherent than
are those in the observations at locations where stations
exist. This probably accounts for the relative similarity
of the sampled and interpolated version of the GCM in
Fig. 3.

The most direct and fair model-data comparison, that
is, the purely sampled fields without interpolation (gcms

vs obss), suggests that simulated T–q correlations at
places and times where data exist are only about 0.2
greater than observed. The distinctive midtropospheric
minimum in the sampled data is not present in the GCM,
however. This result depends on paired observations,
that is, that each station contributing to the tropical av-
erage reports both T and q. If we instead adopt the
criteria of SO and SH, that is, use all available T and
q for their respective tropical averages, the impression
of a midtropospheric minimum is largely removed. In
other words, relative to Fig. 3, upper-tropospheric cor-
relations decrease by 0.2–0.3, while those at higher pres-
sures remain unchanged in the sampled data and GCM.
Primarily, this reflects the relative lack of humidity mea-
surements in the upper troposphere. Other procedural
changes have less effect on our findings. For instance,
doubling the number of daily reports needed to form a
valid monthly average does little except decrease mid-
tropospheric correlations by about 0.1 (cf. Fig. 3) in
both the sampled data and GCM (not shown). Limiting
the analysis to locations reporting 70% or more of the
possible months is a bit more influential as it decreases
all correlations by about 0.1–0.2 in the sampled data
and by about half this in the sampled GCM (not shown).
In either case this primarily results from small shifts in
the station distribution (in time and space) that go into
the analysis.

The preceding discussion suggests that the objectively
analyzed radiosonde climatology does not realistically
capture tropical average temperature and humidity var-
iability (and in fact, it was never intended for this pur-
pose). The radiosonde climatology without objective
analysis is probably lacking as well because of the spa-
tial, temporal, and vertical sampling pattern of the ra-
diosonde stations. Thus, while tropical averages of ther-
modynamic quantities are in theory better proxies for
climate change than are local or regional variations, in
practice this is not the case with the existing radiosonde
network. Furthermore, outgoing longwave radiation is
a highly nonlinear function of specific humidity and
tropical averages of specific humidity must summarize
fields containing substantial local variations. Thus ex-
amining the temporal variability of tropical averages

may not be the best strategy for reaching conclusions
relevant to climate change.

Consider Fig. 4, which shows instead the tropical
average of the local T–q correlations for the various
data and model versions. Overall, these correlations are
weaker than are their counterparts in Fig. 3; a decrease
in keeping with the statistical notion that individual el-
ements of a population are less strongly correlated than
are their average values (Freedman et al. 1978). The
similarity of the interpolated data in both figures con-
tradicts this pattern. However, the weak correlations re-
ported in Fig. 3 reflect a bias in the analysis more than
a property of the data themselves, as we argued earlier.
This does not appear to be the case in Fig. 4. That is,
the interpolated and sampled data are similar in this
figure. Thus, while the objective analysis alters the local
values such that the correlations of their tropical aver-
ages are distinct from those of just the data, it does not
affect the local relationships between these values, and
hence the tropical average of their local correlations
resembles that for just the data. Indeed, the method of
averaged correlations reduces the effects of sampling
and objective analysis in both the data and the GCM,
a more robust result. This method also draws out a mid-
troposphere minimum in the GCM correlations, much
like that in the data, but at most altitudes the GCM
correlations remain about 0.2 higher than observed, sim-
ilar to the conclusion we reached by comparing the sam-
pled model and data versions in Fig. 3.

b. Zonal averages

Figures 5 and 6 show cross sections of the correlation
between zonally averaged T and q for both the data and
the GCM. Generally the GCM is more positively cor-
related than are the data. Comparison with SH suggests
that both GCMs share similar T–q correlations at all
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FIG. 5. Cross sections of the correlation coefficient of interannual
variations of the zonal average temperature and specific humidity,
i.e., r([T ], [q]). Shown here are (a) the sampled observations and (b)
the interpolated observations.

FIG. 6. As in Fig. 5, but for the GISS GCM. Shown here are (a)
the complete GCM, (b) the sampled GCM, and (c) the interpolated
GCM.

latitudes and pressures, and thus, diverge from the ob-
servations in the same way. Again this suggests that the
parameterization of moist convection in these GCMs is
not a dominant factor in T–q correlation.

The sampled data and GCM agree near the equator
(Figs. 5a and 6b). However, in the GCM this agreement
only reflects the longitudinal distribution of radiosonde
stations, which primarily sample the warmest regions
of the Tropics, places with little interannual temperature
variability (southern Asia, Malaysia, the western Pacif-
ic). Thus, these sampled equatorial correlations are low-
er than those from the complete GCM (Fig. 6a) which
also includes cooler east Pacific locations and their large
variations in both T and q due to ENSO. We cannot tell
if this bias also affects the observations, although Soden
and Lanzante (1996) found a similar shortcoming in a
radiosonde-like sample of satellite data with ENSO var-
iations.

Spatial sampling cannot directly explain the large
model-data differences around 68N, where midtropo-
spheric correlations are opposite in sign (Figs. 5a and
6b). This difference can be traced to the 1982/83 El
Niño. As SO noted, this was an unusual El Niño because
the humidity deceased more in the west Pacific than it
rose in the east Pacific, resulting in a negative zonal
average humidity anomaly. The GISS and GFDL GCMs
in contrast, give the more usual El Niño response (cf.
Pan and Oort 1983) of a positive zonal average humidity
anomaly (Sun and Held 1996). Indeed much of the mod-
el–data difference at 68N depends on the uniqueness of
this event; removing January–April 1983 decreases the
most negative correlations in Fig. 5a (700 hPa, 68N) to
nearly zero, leaving a discrepancy of about 0.2 with the

GCM. It is likely that this discrepancy is not an artifact
of the radiosonde dataset because satellite measurements
suggest a similar negative humidity anomaly at this time
(Bates et al. 1996). Moreover, another example of a
negative temperature and humidity relationship exists
between 1965 and 1968 (see Sun and Oort 1995, their
Fig. 3). Given the well-known sensitivity of linear cor-
relation to bivariate outliers, these episodes likely weak-
ened the correlations reported by SO, and thus, in-
creased the model–data discrepancies reported by SH
(see Lanzante 1996, his Figs. 10–11).

Most tropical grids contain only the products of ob-
jective analysis, which in many cases is simply a
smoothed version of the initial-guess field for the anal-
ysis—the zonal average of the station values. As a result,
the zonal averages of the sampled and interpolated GCM
agree more with each other than either one does with
the full GCM, as do the correlations derived from them.
The same arguments probably apply to the data. Dif-
ferences exist, however, particularly in the humidity
field. To understand these differences, we artificially
manipulated the radiosonde network locations and the
parameters in the ANAL95 software in a series of sen-
sitivity experiments. Overall, we found that the objec-
tive analysis scheme has two shortcomings for our pur-
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FIG. 7. As in Fig. 5, but for the zonal averaged local correlations
(having at least 10 valid monthly values) between temperature and
specific humidity, i.e., [r(T, q)]. Shown here are (a) the sampled
observations and (b) interpolated observations. Note that a Fisher-Z
transformation has been applied to these values.

FIG. 8. As in Fig. 7, but for the GISS GCM. Shown here are (a)
the complete GCM, (b) the sampled GCM, and (c) the interpolated
GCM.

poses: 1) it mixes information between latitudes, and 2)
it extends the influence of isolated stations across vast
regions of space. The decreased correlations produced
by the analysis at 308N (e.g., Fig. 5a vs 5b) can be
traced to both the incorporation of extratropical ‘‘noise’’
into the fragmentary time series of some south Asian
stations, and to the enhanced influence of isolated sta-
tions at Midway Island and in north Africa. The emer-
gence of negative correlations around 188N (Fig. 5) is
likewise dependent on the enhanced influence of the
Hawaiian, Wake, and Marshall Islands. Combined, these
differences account for much of the midtropospheric
minimum correlation seen in Fig. 3. However, this sort
of bias depends on the meteorological setting being sam-
pled by these isolated stations. For instance, stations
from French Polynesia bias Fig. 5b toward more positive
correlation at 188S. The impact of these isolated stations
can be reduced by setting both influence radii in the
ANAL95 software to their smallest values (350 km—
about half the longitudinal GCM-grid spacing), although
this merely fills the data-void regions with the zonal
average of the available data. Generally, data from the
Southern Hemisphere, as well as output from the GCM
in both hemispheres, are less affected by objective anal-
ysis. This pattern mirrors that of the standard deviation
of the zonal anomaly (not shown); the Northern Hemi-
sphere is more variable than the Southern Hemisphere
and the data are more variable than the GCM. That is,
sampling and objective analysis are most damaging
where significant spatial inhomogeneity exists and ob-
servations are few. Moreover, objective analysis often

reduces longitudinal variability compared to the sample
(or the complete field in the GCM).

Figures 7 and 8 show the zonally averaged T–q cor-
relations for the GCM and the observations. As before,
these averaged correlations are weaker than their coun-
terparts based on correlated zonal averages. This de-
crease is most dramatic in the complete GCM. Key to
this is the east Pacific, where large interannual variations
whose local correlations are strongly positive sway the
zonal average values, but not the zonally averaged cor-
relation. Downplaying the influence of the east Pacific
allows for the midtropospheric minimum and the in-
sensitivity to sampling seen in the GCM with Fig. 4.
The influence of the 1982/83 El Niño is reduced in a
similar way. Nevertheless, the biases associated with
objective analysis discussed earlier are only diminished,
but not eliminated, by the method of averaged corre-
lations.

c. Correlation maps

Figures 9 and 10 present correlation maps represen-
tative of the lower, mid-, and upper troposphere (950,
700, and 300 hPa). Figure 11 presents correlation maps
as in Figs. 9 and 10 but for interpolated values. Gen-
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FIG. 9. Correlation coefficient maps for the interannual variations
of temperature and specific humidity (having at least 10 valid monthly
values) on constant pressure surfaces. Shown here are the sampled
observations: (a) 300, (b) 700, and (c) 950 hPa.

FIG. 10. As in Fig. 9, but for the complete GISS GCM: (a) 338,
(b) 635, and (c) 959 hPa.

erally, local T–q correlation exhibits large spatial and
vertical variability. This, coupled with the station cov-
erage shown in Fig. 1, argues that sampling must be an
important consideration for studies using radiosonde
data, even for those appealing to tropical averages.

The GCM diverges greatly from the observations in
some locations. In the lower troposphere, the data are
less correlated and more variable at places where cor-
relation in the GCM is consistently strong and positive
(Figs. 9c and 10c). This difference cannot be explained
by our sampling method, that is, because of the incom-
pleteness of the resulting time series in gcms (not
shown). Indeed, generally gcmf equals gcms at the same
locations as indicated for obss. But then, this focus on
the very local may strain the assumption that the ra-
diosonde data and GCM-grid values represent similar
things. For instance, GCM grids are not point samples.
These GCM grids also capture the complete diurnal cy-
cle rather than only 0000 UTC and do not suffer from
intramonth sampling effects. Besides these sampling is-
sues, we note that GCM grids likely lack meaningful
local features such as islands, steep topography, and

mesoscale weather events. All of these things may bring
the issue of data quality and representativeness to prom-
inence. In any case, objective analysis cannot recon-
struct the actual local correlation field over the poorly
sampled GCM oceans (Figs. 10c vs 11b). This comes
about because the large spatial inhomogeneities in both
T and q at this level cannot be fully recovered from the
sparse sample. Instead, external information from well-
sampled continental regions with differing T–q corre-
lation are imposed on unobserved nearby ocean loca-
tions. This is likely to happen with the interpolated data
as well.

The midtroposphere also contains many model–data
differences, most particularly over India and in the west
Pacific (Figs. 9b and 10b). The high degree of inho-
mogeneity in these figures partly explains why sampling
and interpolation have their greatest impact at this level.
However, inconsistencies in the radiosonde data values
themselves may contribute to this inhomogeneity, and
perhaps for some of the model–data differences as well.
For instance, Gaffen (1992) notes numerous instrumen-
tal changes in the 1980s that might affect the continuity
of humidity measurements taken over Australia (main-
land plus islands). Moreover, work in progress by one
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FIG. 11. As in Figs. 9c and 10c, but for interpolated values: (a) the
observations (950 hPa) and (b) the GISS GCM (959 hPa).

of us (JRL) finds large spurious trends in tropospheric
temperature at several Indian stations during the 1980s.
Gaffen (1994) also reports problems with temperatures
from Australian and Indian stations. Indeed, Gandin et
al. (1993, their Table 3) found Indian radiosonde reports
the most error-prone worldwide. Data from the western
tropical Pacific are much less problematic in comparison
(Gandin et al. 1993). Objective analysis also contributes
to the model–data differences in the midtroposphere.
For instance, objective analysis underestimates the prev-
alence of weak-to-negative correlation in the GCM mid-
troposphere. However, the sample does the same. That
is, regions containing negative correlation in the GCM
are poorly sampled. This suggests that the relative spa-
tial offset of the GCM climatology with respect to the
observing network introduces another uncertainty into
the comparison. For example, the impression of wide-
spread weak-to-negative correlation in the interpolated
GCM can be greatly enhanced (not shown) by simply
exchanging the time series of a Hawaiian radiosonde
location with GCM output from a grid box farther to
the southwest (one that is not included in the radiosonde
sample). Nonetheless, the complete GCM appears more
positively correlated in the Tropics than is observed,
and even where negative correlation exists in the GCM
it is often weak and isolated.

In contrast, the upper troposphere is remarkably alike
for all versions of the GCM and the data. Apparently,
the radiosonde network is adequate to capture the rel-
atively spatially invariant fields of T and q at this level.
Over well-sampled continental regions (United States,
Argentina, Australia, South Africa), the correlations are
slightly lower in the data than in the GCM (Figs. 9a vs
10a). However, any disagreement (agreement) with the

data is as likely to be explained by inadequacies in
radiosonde humidity sensors, or reporting practices, at
cold temperatures as by any defect in the GCM (Elliott
and Gaffen 1991; Soden and Lanzante 1996).

4. Discussion

Radiosonde observations of the tropical troposphere
are fragmentary and widely scattered. Reasonable ef-
forts to account for this must be made if comparisons
with global climate models are to be equitable (e.g.,
Jones et al. 1997; Kidson and Trenberth 1988; Oort,
1978). By doing this, we find that the correlation of
tropical average temperature and specific humidity is
closer to what is observed than if the complete GCM
fields are used instead. Primarily, this is because the
complete GCM includes information from the tropical
eastern Pacific that a radiosonde-like sample does not.

Previous authors used a different tactic to make sim-
ilar comparisons with GCMs; they used an objective
analysis scheme (ANAL95) to interpolate the sparse ra-
diosonde data onto a GCM-like grid (Sun and Held
1996; Sun and Oort 1995; Sun et al. 2001). We have
demonstrated that this solution is unsatisfactory. Gen-
erally, we find that objective analysis lowers T–q cor-
relations relative to those in the actual data and greatly
exaggerates model-data discrepancies. There are several
reasons for this systematic error. First, objective analysis
assigns values from isolated stations to vast areas of the
Tropics (see Raval et al. 1994, their Fig. 1). Second,
objective analysis introduces spatially interpolated val-
ues into the incomplete time series of many tropical
stations (grid cells). And third, objective analysis dif-
fuses information across climatologically distinct
boundaries, for example by importing extratropical in-
fluences into the Tropics. From this, we conclude that
the objective analysis scheme ANAL95 is inadequate
for this type of study and that any inferences about
global climate variability drawn from such interpolated
data should be regarded with caution.

It is perhaps inescapable that efforts to account for
unobserved ‘‘data’’ will meet with such shortcomings,
whether they are based on sophisticated numerical
schemes (e.g., Trenberth and Caron 2001; Trenberth and
Solomon 1994) or make use of physical modeling (e.g.,
Trenberth et al. 2001). Thus, we may be left with no
choice but to compare irregular and fragmentary sam-
ples of the atmosphere and GCM. We have evaluated
two methods by which this comparison has been made:
correlated averages (e.g., Sun and Oort 1995) and av-
eraged correlations (Hu et al. 2000). Generally, these
methods lead to complementary conclusions. However,
the method of correlated averages is sensitive to sam-
pling and the bias of objective analysis. Moreover, cor-
related averages are also sensitive to whether all avail-
able information for each variable, or paired observa-
tions are used in the analysis. The method of averaged
correlations inherently downplays these issues by en-
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capsulating local variations into correlations before they
are spatially averaged.

Sun and Held (1996) report a discrepancy between
observed and simulated T–q correlations of ;0.5. Our
attempts to account for the impact of spatial and inter-
month sampling and the artifacts of analysis reduce this
to ;0.2. The impact of incomplete sampling within a
given month of the data, which we do not account for,
may explain part of the remaining difference. In the
upper troposphere, where radiosonde humidity mea-
surements are questionable, such differences are prob-
ably not significant. In the lower and midtroposphere,
however, it is worth considering possible causes of the
remaining GCM overestimate. Near the surface, model-
data disagreements are largest over the tropical oceans
(Figs. 9c vs 10c). The GCM captures the observed neg-
atively or weakly correlated variability over most land
locations, while producing uniformly strong correlations
throughout the tropical ocean boundary layer (Fig. 10c).
While this may point to flaws in the GCM boundary
layer parameterization, it may also simply contrast in-
herent differences between actual radiosonde stations
and the formulation of the GCM used in this analysis.
For instance, so-called ocean stations in the radiosonde
network are actually small islands, with at least some
land surface influence on the overlying atmosphere;
whereas the equivalent GCM grid boxes are truly oce-
anic in character, since they do not resolve islands much
smaller than the grid box size. In practice, this may
weaken the T–q correlations over these islands relative
to the surrounding ocean or all-ocean GCM grid, as
surface temperature over land responds nearly instan-
taneously to passing weather systems whereas soil mois-
ture deficits may not. Unfortunately, widespread, reli-
able and historical radiosonde-like data (i.e., with high
vertical resolution) do not exist for nonisland ocean lo-
cations. The Oort (1983) archive does in fact include
some weather ship data, but these ships did not report
during the 1979–89 time period covered by our analysis.
Nonstationary ship data are unlikely to contribute to our
analysis either as the requirement that valid monthly
means contain at least 10 days of data constrains their
usefulness. Finally we note that the GCM used in this
study, and those analyzed by SH and Sun et al. (2001),
were forced by prescribed sea surface temperatures that
vary smoothly on a monthly timescale. Thus, atmo-
spheric processes that in the real world could produce
temporary ;1 K sea surface temperature fluctuations
(e.g., in the wake of passing convective systems) are
not allowed to feed back on the ocean in these GCMs.
This suggests that coupled ocean–atmosphere GCMs
might be a more appropriate platform for testing water
vapor feedback hypotheses.

On the other hand, the coarse vertical resolution of
all current climate GCMs, and grid-scale noise in the
vertical velocity field downwind of topography, are like-
ly to lead to a certain amount of numerical diffusion
that may explain the tendency of the models to over-

estimate correlations in the midtroposphere. The in-
ability of the GFDL and GISS GCMs to produce the
change in correlation sign during the especially strong
1982/83 ENSO event, ostensibly the result of a strength-
ened resolved circulation (Hadley and Walker cells),
may be one example of deficiencies in their dynamical
water vapor transports. Then again, this discrepancy
may only suggest that the AMIP experimental design
has shortcomings for model-data comparisons (K. Tren-
berth 2001, personal communication). For example,
AMIP simulations lack the significant changes in ra-
diative forcing that followed the 1982 eruption of El
Chichón. In principle the observed SST field incorpo-
rates these forcings, but it seems unlikely that an AMIP
GCM could manifest a complete atmospheric response
to a perturbation like El Chichón on this basis alone
(Mao and Robock 1998). Some model–data uncertainty
may also be attributable to inaccuracies and other prob-
lems with the observed SST field itself (Hurrell and
Trenberth 1999; Mao and Robock 1998). Finally we
note that radiosonde data quality remains an unresolved
issue even in the lower and midtroposphere, where the
long-term continuity of radiosonde temperatures (Gaf-
fen 1994; Gaffen et al. 2000) and humidity (Elliott and
Gaffen 1991; Garand et al. 1992) cannot be ruled out
as a source of some model–data differences.

The unstated premise underlying studies like SO and
SH is that ENSO variations (the dominant contributor
to tropical variability in the time series analyzed) are a
useful proxy for long-term anthropogenic climate
change. Equating conclusions reached from ENSO var-
iations with implications for global climate change at
the very least necessitates isolating those aspects of
ENSO that vary over the largest spatial scales (net trop-
ical changes) from those that reflect a simple spatial
redistribution within the tropical domain (Lau et al.
1996). At first glance, the method of correlated averages
seems better suited to this goal (Sun and Oort 1995).
In practice, this is not the case for several reasons. First,
the radiosonde network provides a sparse and west Pa-
cific biased view of ENSO (Soden and Lanzante 1996).
Correlation maps suggest large-scale horizontal and ver-
tical structure in the ENSO signal. These correlation
features appear well represented as large-scale averages,
thus suggesting that the method of averaged correlations
is a robust alternative to correlated averages. Second,
water vapor feedback depends on the highly nonlinear
relationship between humidity and longwave radiation,
but tropical average humidity fluctuations take place in
a climate regime characterized by both high and low
extreme relative humidity values (that vary both spa-
tially and temporally), thus these variations cannot be
translated into tropical average perturbations in outgo-
ing longwave radiation in any straightforward fashion.

It is unlikely, though, that ENSO is a good proxy for
long-term anthropogenic climate change in any case.
During ENSO, equatorial sea surface temperature be-
comes more zonal and the meridional gradient increases,
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FIG. 12. Rate of fractional increase in tropical average specific
humidity ^qa& with temperature ^Ta& as a function of pressure. Fol-
lowing Sun and Oort (1995), this rate is estimated by regressing the
ratio of the anomaly and time-average humidity ^qa&/^ & against theq
temperature anomaly ^Ta&. The observations are shown on the left
and the GISS GCM on the right. Each curve represents one of three
treatments: a solid line (open square) for the full GCM, a dashed line
(open circle) for products of sampling, and a dash–dot line (filled
circle) for products of objective analysis. The solid-thick lines (with-
out symbols) give a reference rate based on the assumption of fixed
relative humidity.

which leads to increased diabatic heating of the equa-
torial atmosphere, a stronger Hadley circulation (Pan
and Oort 1983) and a decrease in subtropical humidity.
In contrast, for simulations of long-term climate change
the meridional component of the surface temperature
gradient remains fairly constant in the Tropics, and the
Hadley cell changes little or even weakens, because en-
hanced upper-level equatorial warming by moist con-
vection allows the Hadley cell to export more moist
static energy poleward without a change in the strength
of the circulation itself (Yao and Del Genio 1999). Thus,
subtropical humidity increases as the existing tropical
circulation transports along a stronger water vapor gra-
dient (Del Genio et al. 1991). In any case, the changes
in radiative forcing associated with anthropogenic cli-
mate change, and the resulting shifts in the global hy-
drologic cycle, have no obvious counterparts in current
climate variability.

Finally, such model–data differences as do exist may
not be large enough to suggest that the water vapor
feedback in GCMs is much too strong even if the dif-
ferences are taken at face value. Consider for instance
that SH estimated only a 15% reduction in total warming
if the GFDL GCM had the same rate of fractional in-
crease of specific humidity with temperature as is ob-
served. Figure 12 shows that objective analysis also
greatly underestimates the observed ‘‘water vapor feed-
back’’ defined in this fashion. That is, both the sampled
data and the GISS GCM appear to act as nearly fixed
relative humidity atmospheres under ENSO variations
(see also Fig. 12 of Lanzante 1996). Thus, even if ENSO
has some limited value as a proxy for global climate
change, and this type of analysis is appropriate for un-

derstanding water vapor feedback, then at best we can
say that GCMs are in broad agreement with observa-
tions, and at worst, that the data provide an inconclusive
test for the GCMs.
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