Halibut/Sablefish EM Pilot Project

A Collaboration Involving:

- Alaska Longline Fishermen's Assn
- Southeast Alaska Fishermen's Alliance
 Petersburg Vessel Owners Assn
 K. Best Fishermeres Assn
- K-Bay Fishermens Assn
 Archipelago Marine Research
- MMFS AFSC

Funding provided by National Fish and Wildlife Foundation.

Project Goals

- Engage stakeholders in developing a workable at-sea monitoring program
- Field test EM hardware on a range of vessels and in varied fishing conditions to ensure system reliability
- Develop a <u>cost effective</u> means of deploying EM hardware among vessels and retrieving data
- Summarize study findings to inform development and implementation of the restructured N. P. Observer Program.

Objective 1: Engage Stakeholders in Developing At-sea Monitoring Program

 Engaged fishermen in Sitka, Juneau, Petersburg and Homer

 Received input from more than 250 stakeholders on the restructured observer program

Clear preference for EM over human observers:
 EM is perceived as less intrusive and will allow normal fishing behavior

 Operator engagement is critical for successful program

 Participants in Sitka and Homer "went the extra mile" to ensure EM success.

Objective 2: Field Test EM Hardware on a Range of Vessels to Ensure Reliability

• Project total to date:

- Phase 1
- 2 vessels
- 4 trips/16 sea days
- 20 hauls
- Phase 2
- 10 vessel
- 21 trips/73 sea days
- 76 hauls

Installation Challenges: Cameras

Installation Challenges: Cameras

Installation Challenges: Sensors

Installation Challenges: Plug and Play



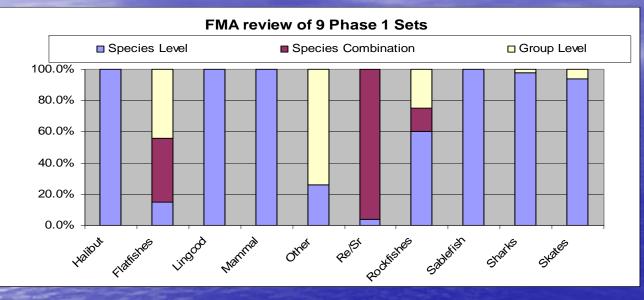
System Reliability Phase 1 & 2

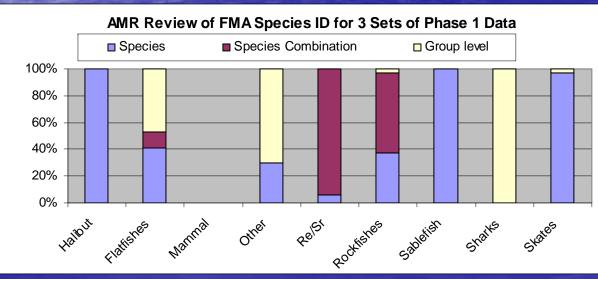
Sensor	# of sets	% reliability
Hydraulic Pressure	96	100%
Drum Rotation on Snap vessels	25	100%
Sheave Rotation on Conventional vessels	71	40%
GPS Sensor* (*does not include night time gaps)	96	95%
Video capture of Hauls	76	99%

Video Quality

Video Quality

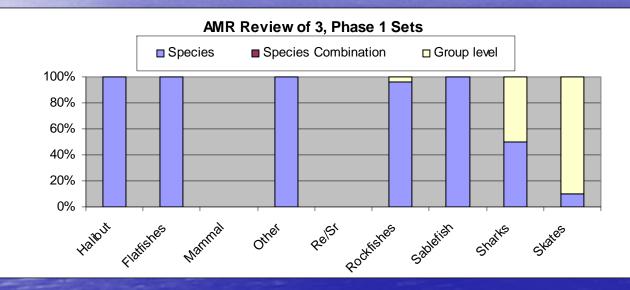
High Quality


Med Quality


Low Quality

Video Quality: Phase 2

Video Quality	# of sets	%
High Quality	40	66%
Medium Quality	21	34%
Low Quality	0	0%


Species Identification

• 93.2% id to species

Species Identification

 96.6% id to species

Objective 3: Develop a Cost Effective Deployment Program

Initial Cost Effectiveness Straw man

Hardware Costs

- Control Box, Monitor, 2 Cameras, Power supply......\$8,100
- Extra cameras...... <u>\$ 800</u> Total..... \$9,600
- 5 Year Deprecation = \$1,920/yr.
- Pilot Program Goal—Rotate EM unit to 3 vessels for minimum of 8 sea days/vessel (24 total/unit)
- \$80/sea day hardware cost

Vessel Costs

- Sensor Package..... \$ 700
- Technician Time (6 hrs)..... \$ 450
 - Installation package total..... \$ 1.150
- Hardware cost for 8 sea days...... <u>\$640</u> Total..... \$1,790
- \$224/sea day

Analysis Costs

- 10 sets @ 2 hrs each = 20 hrs video
- Review Speed = 2X
- Technician Time (10 hrs @ \$25/hr).....\$250
- \$32/sea day

Pilot Program Results

Sitka System 1-- 35 Sea Days •\$55/day hardware cost

Vessel S1 Costs*

- Vessel Installation (Sensors + Labor).... \$1,150
- Rotation Costs (1.5 hr)..... \$ 38
- Hardware cost for 12 sea days......<u>\$ 660</u>

 Total......\$1.848
- \$154/sea day

Vessel S4 Costs

Vessel Installation (Sensors + Labor)	\$1,	300
Rotation Costs (2 hr)	\$	50
Hardware cost for 11 sea days	. <u>\$</u>	<u>605</u>
Total	\$1	,955

\$178/sea day

Vessel S5 Costs*

- Vessel Installation (Sensors + Labor).... \$1,300
- Rotation Costs (4 hr)..... \$ 100
- Hardware cost for 16 sea days......<u>\$880</u> Total.....\$2,280
- \$143/sea day

Sitka System 2-- 39 Sea Days •\$49/day hardware cost

Vessel S2 Costs*

	Vessel Installation (Sensors + Labor)	\$1	,150
	Rotation Costs (1 hr)	\$	25
•	Hardware cost for 8 sea days	<u>\$</u>	<u>392</u>
	Total	\$1	,567

\$196/sea day

Vessel S3 Costs

•	Vessel Installation (Sensors + Labor)	\$1,	150
•	Rotation Costs (1 hr)	\$	25
•	Hardware cost for 18 sea days	<u>\$</u>	882
	Total	\$2	,057

• \$114/sea day

essel S6 Costs*

- Vessel Installation (Sensors + Labor).... \$1,225
- Rotation Costs (2 hr)..... \$ 50
- Hardware cost for 9 sea days..... <u>\$ 441</u>
 Total...... \$1,716
- \$191/sea day

* Indicates split season vessels

Objective 4: Summarize Findings and Outreach Lessons Learned: Stakeholder Engagement

- Strong stakeholder support for EM in lieu of human observers
- Vessels need flexibility to accommodate short-notice crew/QS holder changes
 - Vessels need flexibility to accommodate short-notice trip decisions
- Nobody wants 100% coverage

A local port coordinator is essential for success!

Objective 4: Summarize Findings and Outreach Lessons Learned: System Reliability

- Existing technology proved to be reliable and adaptive with a wide variety of fishing conditions and vessels configurations
- Existing video quality allowed identification to species level of 90+% of species encountered in hook and line fisheries

Initial recommendations:

- Recommend using 2nd hydraulic sensor for redundancy in vessels using only a sheave (conventional gear)
- Recommend developing "sleep mode" capabilities based on oil pressure or alternator activity
 - Recommend developing low cost GPS data loggers for position redundancy.
 - Recommend using education to further improve operational compliance and video quality (Canadian Approach)
 - Recommend systematic evaluation of improvements with species identification associated with increased camera resolution and frame rate capture

Objective 4: Summarize Findings and Outreach Lessons Learned: Cost Effectiveness

Buy equipment, don't lease!!!

- Multi year contract for equipment provider allows amortization of equipment costs
- Center EM programs around specific ports for programmatic and technical support
 - Train local technicians for installation and technical support
 - Use local program personnel for equipment rotation, hard drive collection and stakeholder outreach (lower cost, different focus)
- Define explicit data and cost goals, then tailor deployment plan to achieve sea days necessary to meet these goals.
 - Pre-wiring vessels allows control boxes to rotate among vessels to maximize deployment days
 - Need flexible deployment periods to allow port coordinator to maximize use
- Use existing data to evaluate cost effective video review methods.

Next Steps

- Review and incorporate Homer data
- Summarize and distribute pilot program results to QS holders
- Work with Stakeholder to inform NP observer program restructuring
 - Work with NMFS to further develop and integrate EM as an independent alternative for at-sea monitoring

