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Agriculture in coastal areas of Puerto Rico is often adjacent to or near mangrove wetlands. Riparian buffers,
while they may also be wetlands, can be used to protect mangrove wetlands from agricultural inputs of
sediment, nutrients, and pesticides. We used simulation models and field data to estimate the water,
nitrogen, and phosphorus inputs from an agricultural field and riparian buffer to a mangrove wetland
in Jobos Bay watershed, Puerto Rico. We used the Agricultural Policy/Environmental eXtender (APEX)
and the Riparian Ecosystem Management Model (REMM) models sequentially to simulate the hydrology
and water quality of the agricultural fields and an adjacent riparian buffer, respectively. Depth to the
water table surface was measured monthly at numerous sites in both field and riparian areas and were
used with recording well data from outside the field to estimate daily water table depths in the field
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Hydrology and riparian buffer and to calibrate field-scale hydrologic processes. Calibration and validation of the
Riparian buffers models were successful for the riparian buffer and in three of four field quadrants. In these areas the
Nitrogen average simulated depth to water table for the field and the riparian buffer were within +7% of field
phO'SPhorus estimated water table depths. Over the 3-year study period, the riparian buffer represented by REMM
Sediment reduced agricultural loadings to the mangrove wetland by 24% for sediment yield, and about 30% for total
QEI?/IXM nitrogen and phosphorus. Simulations indicated that tropical storms and hurricanes played an important

role in water and nutrient transport on this site contributing at least 63% of total sediment and nutrient
loads.
Published by Elsevier B.V.

1. Introduction

Because of the limited ability to monitor watershed scale inputs
to coastal waters and wetlands, simulation modeling of these
inputs is needed (Rollo and Robin, 2010). On the coast of Puerto
Rico, anthropogenic disturbances have been identified as major
contributors to the deterioration of mangrove wetlands, shallow
water coral reefs, and seagrass beds (Zitello et al., 2008). Agricul-
ture in coastal zones of Puerto Rico is often adjacent to or near
mangrove wetlands. Riparian buffers, while they may also be wet-
lands, can be used to protect mangrove wetlands from inputs of
sediment, nutrients, and pesticides from agriculture.

* Corresponding author. Tel.: +1 229 386 3894; fax: +1 229 386 7294.
E-mail address: Richard.Lowrance@ars.usda.gov (R. Lowrance).
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In 2007, the Jobos Bay watershed, Puerto Rico was selected as
the first tropical Conservation Effects Assessment Project (CEAP)
Special Emphasis Watershed due to its proximity to the Jobos Bay
National Estuarine Research Reserve (NERR) (Zitello et al., 2008).
CEAP is a multi-agency government effort to quantify the impacts
of USDA conservation practices on water quality. The Jobos Bay
CEAP was implemented to determine the effects of agricultural
conservation on coastal wetland ecosystems and was motivated
in part by U.S. Coral Reef Task Force efforts to reduce threats to
mangrove wetlands and shallow water coral reefs. The project
was a collaborative effort between USDA-Agricultural Research
Service, USDA-Natural Resources Conservation Service (USDA-
NRCS), National Oceanic and Atmospheric Administration (NOAA),
the Puerto Rico Department of Natural Resources, and the Univer-
sity of Puerto Rico-Mayaguez.

Riparian ecosystems are important tools in controlling nonpoint
source pollution (Lowrance et al., 1997) and have been established
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in agricultural landscapes to reduce the mass of sediments and
nutrients moving to receiving waters (Lee et al., 2003; Lowrance
et al., 2001, 2007; Lowrance and Sheridan, 2005). Because of con-
cerns about the effects of agriculture on the mangrove wetlands,
a riparian buffer was installed between the farm fields and the
mangrove wetlands on Jobos NERR property in the early 2000s.

Models that estimate the effects of agricultural conservation
practices on water quantity and quality are increasingly important
tools for short- and long-term assessments (Williams and Sharpley,
1989; Lowrance et al., 2000; Williams et al., 2008). Because there
were only limited data from the study area and no data on the
site before the riparian forest buffer was implemented, we used
two models that simulate water quantity and quality to evaluate
the combined field and riparian buffer system. The Agricultural
Policy/Environmental eXtender (APEX) (Williams et al., 2008) was
used to simulate of hydrology and water quality on the farm fields
and the Riparian Ecosystem Management Model (REMM) was used
to simulate attenuation of water, sediment, and nutrients in the
riparian buffer between the farm field and the mangrove wetlands
of Jobos Bay. Outputs from APEX were used to estimate edge of
field loadings and as inputs to REMM. This paper describes cali-
bration and validation of APEX and REMM using soils, hydrology
and water quality field data. The models were calibrated using
data from the first two years of the study (2008-2009) and then
validated for the final year of the study (2010). After calibration
and validation, the models were used to estimate water, sediment,
and nutrient transport from the field, retention within the adja-
cent riparian buffer, and potential water, sediment, and nutrient
delivery to the mangrove wetlands.

2. Materials and methods
2.1. Model descriptions

APEX is an extension of the widely tested Erosion-Productivity
Impact Calculator (EPIC) model (Williams et al., 1984; Williams and
Sharpley, 1989), an individual field scale model, originally used to
estimate the effect of soil erosion on soil productivity (Gassman
et al.,, 2005). APEX was developed to extend EPIC functions to
include routing of nutrients, pesticides, water and sediment across
landscapes (e.g. fields or subareas), through shallow groundwater,
and into channel systems to a watershed outlet (Williams et al.,
2008). APEX has been used to assess the effectiveness of con-
servation practices and is one of few models that are capable of
simulating the routing of chemical pollutants and water at the field
scale (Srivastava et al., 2007). Because APEX is able to consistently
model various land management strategies at scales ranging from
field to farm to small watersheds it was adopted by USDA NRCS for
the CEAP national assessment (Wang et al., 2006).

REMM simulates carbon, nitrogen, phosphorus, pesticide, and
sediment transport to surface waters via surface and subsurface
flow through riparian buffers (Inamdar et al., 1999a,b; Lowrance
et al., 2000). REMM was designed to represent a three-zone buffer
system corresponding to specifications of the USDA-Forest Service
and the USDA-NRCS (Welsch, 1991; USDA-NRCS, 1995; Inamdar
etal,, 1999a,b; Lowrance et al., 2000). In the three zone buffer, Zone
1 is the area nearest the stream or waterbody and Zones 2 and
3 are upslope from Zone 1 with Zone 3 adjacent to the field or
source area. In REMM, the soil in each zone is characterized in three
layers by which the lateral and vertical movement of water and
associated dissolved chemicals are simulated. The uppermost soil
layer is covered by a litter layer which interacts with surface runoff.
More detail on REMM can be found in Inamdar et al. (1999a,b),
Lowrance et al. (2000), and Altier et al. (2002).

2.2. Study site

The study was conducted in the Central Aguirre subwatershed
of the Jobos Bay on the south coast of Puerto Rico (17°56'36"N,
66°13'45”"W), 6 km southeast of the Municipality of Salinas. The
study site includes a 108 ha silage production farm leased by a
farmer/operator from the Puerto Rico Land Authority and the adja-
cent riparian buffer managed by the Puerto Rico Department of
Natural Resources as part of the Jobos NERR (Fig. 1). The climate is
tropical semiarid with a mean annual precipitation of 991 mm for
the 30 year period (1971-2000) and a mean annual temperature
of 26°C, with a maximum of 28.6°C in August and a minimum
of 22.4°C in January (NCDC, 2010). Seasons are defined as dry
(November-May) and wet (June-October) which corresponds to
the Atlantic hurricane season.

The aquifer underlying the study area is the South Coast Aquifer
that is contained within alluvial deposits on the broad coastal plain
that extends from Patillas westward to Ponce in southern Puerto
Rico (Kuniansky and Rodriguez, 2010; USGS, 2011). The alluvium
was deposited mostly in a number of coalescing fan-deltas that
built seaward from the mouths of major streams. In the study area
near Salinas, the alluvium ranges in thickness from about 30 m to
more than 300 m near the coast. Ground water in these deposits
generally is unconfined, except in areas near the coast where silt
or clay beds create locally confined conditions. The water table
generally slopes southward from the foothills of the island cen-
tral cordillera to the Caribbean Sea. Near the coast, this aquifer is
divided by a clay confining layer (1-20 m thick) which separates
the aquifer into a lower confined portion and an upper uncon-
fined portion. Our studies focused on the upper unconfined surficial
aquifer.

The two dominant agricultural soils at the study site were Verti-
sols classified in the Cartagena and Ponceiia Series. Cartagena clay
soils are very deep and somewhat poorly drained and Poncefia
clay soils are moderately well drained (SSURGO, 2010). Both soils
were formed in clayey sediments weathered from volcanic rocks
and limestone on the semiarid coastal plains of southern Puerto
Rico. The Cartagena soils are on the low lying areas and are sodium
enriched, while the Poncefia soils are on higher lying areas. The
dominant hydrological soil group for both the Poncefia and Carta-
gena soils is type D.

Management records used to build the database for APEX were
obtained directly from the farm managers. The farm had been under
center pivot irrigation for about 20 years, including the first two
years of this study (2008-2009). In the final year of the study
(2010), the center pivot irrigation was inoperable and crops were
not grown. The field was divided into four quadrants (Fig. 1). Each
quadrant was managed differently, however all were disk tilled
once per year in October, and at least two of the four quadrants
were simultaneously cropped at any time during 2008 and 2009
(Table 1). Multiple crops of corn (Zea mays L.) and/or sorghum
(Sorghum bicolor L.) were grown in each subarea in 2008 and 2009
(Table 1). Because each quadrant was managed differently, each
was considered a sub-watershed in APEX and will be referred to as
subareas 1 through 4 (Fig. 1). Each subarea had multiple pesticide,
fertilizer and irrigation management operations for each planting.
During the 2008-2009 calibration period, the annual N applica-
tion rate ranged from 0 to 150kgha~! for each subarea with an
annual average of 73kgha~! across the four subareas. Fertilizer
was applied multiple times for each crop planted in each subarea.
In 2010, the irrigation system was not working thus planting did
not occur and there were no fertilizer applications to any of the
subareas.

The 16 ha riparian buffer is situated in the tidal flats area which
lies directly between the upland field and the mangrove wetland
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Fig. 1. Study site located in Central Aguirre Sub-Watershed directly above the Mar Negro Wetland Complex. Black dots represent ARS monitoring wells. Inset map shows
location on the south coast of Puerto Rico. Image U.S. Geological Survey. Copyright Google Earth.

(Fig. 1). The riparian soils were classified as tidal flats (Tf) which
consist of low lying areas, slightly above sea level, that are affected
by seawater during storm tides. The soil material has high salinity
and varies widely in texture. The riparian buffer was 156 m wide
from the upland field to the mangroves (perpendicular to the man-
groves)and 1039 m long (the dimension along the mangroves). The
REMM Zone 1 width was 77 m and Zone 2 was 40 m. Vegetation
in both zones were tropical trees and shrubs, mostly leadtree (Leu-
caena leucocephala deWit.), devil’s horsewhip (Achyranthes aspera),
and Egyptian river hemp (Sesbania sesban L. Merr.). REMM Zone
3, which was furthest away from the mangroves is 40 m wide
and was vegetated with perennial grasses, primarily Guinea grass

Table 1

Crop planting and harvesting for each of the 4 subareas at the Silage Farm.
Year Subarea ID Crop Plant Harvest
2008 SA1 Corn 5-February 26-April
2008 SA1 Corn 29-April 15-July
2008 SA1 Corn 30-October 19-January
2009 SA1 Cowpea 8-April 15-September?
2010 SA1 Fallow
2008 SA2 Corn 18-January 20-May
2008 SA2 Sorghum 21-May 15-August
2008 SA2 Corn 16-December 2-February
2009 SA2 Corn 1-June 31-August
2009 SA2 Sorghum 14-September 7-December
2010 SA2 Fallow
2008 SA3 Sorghum 19-March 23-July
2008 SA3 Sorghum 26-July 25-September
2008 SA3 Sorghum 27-September 7-December
2009 SA3 Sorghum 4-February 24-March
2009 SA3 Sorghum 26-June 31-August
2009 SA3 Sorghum 26-October 7-December
2010 SA3 Fallow
2008 SA4 Sorghum 18-January 26-April
2008 SA4 Sorghum 29-April 30-June
2008 SA4 Sorghum 4-November 4-January
2009 SA4 Sorghum 18-January 20-May
2009 SA4 Sorghum 17-July 7-October
2009 SA4 Sorghum 12-October 7-December
2010 SA4 Fallow

3 Cowpea was tilled under on this date.

(Megathyrsus maximus (Jacq.) B.K. Simon and S.W.L. Jacobs), Sig-
nal grass (Urochloa distachya (L.), T.K. Nguyen), and Johnson grass
(Sorgum halepense (L.) Pers.). The slope length of the 108 ha con-
tributing field was 1039 m, yielding a field to riparian area ratio of
approximately 7:1. The ground surface slope from the upland field
to the mangrove wetlands was 1%.

2.3. Site data

Site data collected included weather, soil chemical and physi-
cal properties, topographic information, and water table depths for
the upland field and the riparian buffer. Weather measurements
(minimum and maximum temperature, daily total solar radiation,
precipitation, relative humidity, and wind speed) were obtained
from a HOBO (Onset Computer Corp., Bourne, MA) weather station
that was installed in 2008 (Fig. 1). Onset Smart Sensors were con-
nected to an Onset Hobo Event logger. When data from the site
were missing, weather data were used from the Jobos Bay NERR
(NERRS, 2009) weather station which is 2 km away from the study
location.

Soil property data by layer for the two dominant soil series in
each subarea were used for APEX and REMM database development
(Tables 2 and 3, respectively). Soil layer depth, pH, percent organic
carbon, bulk density, field capacity, wilting point, percentage sand
and silt, saturated conductivity, cation exchange capacity, sum of
bases, calcium carbonate content, and soil albedo were measured
at the study site by USDA-NRCS in 2007 (NCSS, 2009). A separate
set of soil samples were collected from the farm field for phys-
ical property measurements in 2009. Minimally disturbed cores
were collected from the top 7.6 cm of soil on each plot using an
Uhland impact type soil sampler (Blake and Hartge, 1986). Satu-
rated hydraulic conductivity (Ks), soil moisture retention expressed
as volumetric moisture content, and bulk density were measured
on the cores. The soil cores were saturated from the bottom for
determination of Ks using the constant head method (Klute and
Dirksen, 1986). Rooting depth in the fields and riparian buffer were
estimated from observation of fresh soil cores in the field. Saturated
hydraulic conductivities of all soil layers in the riparian buffer and
of soil layers 2 and 3 in the field were estimated with the ROSETTA
model (Schaap et al., 2001) using measurements of percentages
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Table 2
Soil properties by layer for Cartagena and Poncefia soils.

Layer Soil series Layer depth Bulk density Wilting point Field capacity Sand (%) Silt (%) pH Organic carbon
(cm) (gem™3) (mm-1) (mm-1) (%)
1 Cartagena 0-23 2.00 0.18 0.26 283 27.8 7.7 0.82
2 Cartagena 24-79 1.99 0.16 0.22 28.6 33.1 7.8 0.27
3 Cartagena 80-180 2.05 0.16 0.22 25.1 32.6 7.8 0.02
1 Poncena 0-40 1.94 0.15 0.28 20.7 31.6 79 0.81
2 Poncena 41-137 1.95 0.18 0.27 20.35 32.1 7.9 0.22
3 Poncena 138-180 1.98 0.18 0.24 22.75 36.6 7.9 0.03

of sand, silt and clay; bulk density; and water retention at 33 and
1500 kPa as input parameters.

Groundwater data were collected from March 2008 to
December 31, 2010 to evaluate hydrologic processes in the land-
scape and calibrate and validate the models. Thirteen monitoring
wells were installed on or adjacent to the upland field and 10 wells
in the riparian buffer in 2008 (Fig. 1). Two wells installed north of
the upland field and two, located south of the upland field, that
were already in place when the study began were instrumented
with pressure transducers and HOBO real time data loggers to mon-
itor water table depth. Tape-down measurements were made in all
of the remaining wells monthly. Groundwater samples were col-
lected monthly for water quality analysis after tape down. Wells
were purged with a submersible pump and then sample water was
collected with a bailer from the water that flowed back into the
well. Samples were stored on ice in the field and then frozen for
transport to the USDA-ARS laboratory in Tifton, GA. Nitrate plus
nitrite N was determined using the cadmium reduction technique
on a Lachat 8000 flow injection analyzer. The method detection
limit was 0.02 mg NO3-N L1,

Monitoring wells in the upland field were located along the
east-west axis of the field (Fig. 1). The water table depths used to
calibrate and validate both APEX and REMM were observed daily
values for the middle of the subarea. We were interested in evalu-
ating the riparian buffer as a whole instead of three separate zones;
therefore we compared the REMM average water table depths for
all three zones versus the interpolated water table depths for both
calibration and validation. Shallow groundwater nitrate data from
wells in the riparian buffer were compared to REMM simulated
concentrations for validation.

2.4. Model input data

APEX model inputs included daily weather, soil properties by
layer, land use, planting and harvesting dates, tillage type and dates,
and fertilizer applications. The daily weather variables necessary
for model simulation were precipitation, minimum and maxi-
mum air temperature, and solar radiation. The Hargreaves method
(Hargreaves and Samani, 1985) was used to calculate potential

evapotranspiration for this particular study and was also used for
the national CEAP study. The APEX field operation schedule was
configured based on actual management occurring at the study site
(Table 1).

REMM took upland outputs, which in this case were generated
by APEX, and calculated loadings of water, nutrients, sediment, and
carbon based on actual area of the three zones of the buffer system.
Daily field outputs generated from APEX and used for REMM inputs
included surface runoff; subsurface flow; sediment yield; and N,
P, and C in surface runoff, subsurface flow, and sediment. Other
REMM inputs included daily weather (same as for APEX), soil, plant,
and litter properties by layer, and vegetation type by zone. Initial
conditions for soil include physical and hydrologic properties, and
initial carbon and nutrient pools.

2.5. Simulation methodology and model performance

APEX and REMM were both calibrated for 2008 and 2009 and
then run for the validation period, 2010, using the calibrated mod-
els. Because hydrologic data for surface runoff were not available,
calibration and validation were done with groundwater data using
depth to water table in the field and riparian buffer and groundwa-
ter nitrate in the riparian buffer.

Water table input parameters for APEX are presented in Table 4.
Each subarea was assumed to be homogenous with an average
slope of 1% and a single soil type (Table 4). APEX calibration was
performed using the observed daily water table depths for March
2008-December 2009 by manually adjusting APEX parameters 87,
88, and 89 on a trial-and-error basis (Table 4). Parameter 87 (P87), a
water table recession coefficient, limits the rate at which the water
table recedes. The range for this coefficient is 0.001-1.0, where
smaller values slow the water table recession. Parameter 88 (P88)
limits the daily water table movement and is a fraction of the dif-
ference between the current day water table depth (WTBL) and the
minimum (WTMN) or maximum (WTMX) water table depth. The
range for this coefficient is 0.001-1.0. Parameter 89 (P89) adjusts
the water table recession exponent and the range is 0.1-0.9. The
antecedent period (rainfall) is user defined and ranges from 5 to
30 days. APEX simulated water table depth for each subarea but

Table 3
Soil properties by layer for riparian zone soils.
Zone Depth (cm) Bulk density Wilting point Field capacity Sand (%) Silt (%) pH Organic
(gcm?) (mm-1) (mm-1) carbon (%)
1 Layer 1 0-20 1.50 0.24 0.37 32.60 27.40 8.17 2.20
Layer 2 20-220 1.40 0.28 0.39 27.60 25.40 8.77 1.00
Layer 3 220-300 1.40 0.28 0.39 24.60 27.40 8.53 1.00
2 Layer 1 0-20 1.40 0.22 0.35 46.60 21.40 7.94 221
Layer 2 20-220 1.40 0.28 037 31.60 23.40 8.29 1.31
Layer 3 220-300 1.40 0.28 0.39 31.60 22.40 8.20 1.16
3 Layer 1 0-20 1.60 0.22 0.35 31.60 28.40 8.44 2.69
Layer 2 20-220 1.40 0.28 0.39 27.60 25.40 8.66 1.65
Layer 3 220--300 1.40 0.28 0.39 28.60 25.40 8.63 1.27
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Table 4

Water table and soil input parameters in APEX. WTBL is the current day water table
depth, WTMN is the minimum water table depth, and WTMX is the maximum water
table depth. Parameter 87, 88, and 89 are APEX parameters that limit daily water
table movements and are explained more fully in the text.

Subareal Subarea2 Subarea3 Subarea4
Subarea size (ha) 27 27 27 27
Antecedent rainfall (days) 15 15 15 15
WTMN (m) 0.00 0.00 0.00 0.00
WTMX (m) 5.50 7.50 4.00 5.50
WTBL (m) 3.01 3.43 2.07 243
Upper slope (%) 1.00 1.00 1.00 1.00
Hydrology group D D D D
P872 0.012
P88? 0.020
P89? 0.900

2 P87, P88, and P89 parameters are the same for all subareas in APEX.

parameters to calibrate the water table depth were common to
all four subareas so adjustments made to one subarea affected all
subarea water table depth calibrations. After identification of a set
of optimum values, the calibrated model was then continuously
run for the validation period (2010) using these parameter values
(Table 4).

Water table depths in REMM are directly influenced by rooting
depth, soil moisture, saturated hydraulic conductivity, porosity,
pore size distribution, and the bubbling pressure head for soil

Subarea 1

— Simulated
Observed

Depth to Water Table (m)
w

6 T T T T
1/1/08 7/1/08 1/1/09 7/1/09 11110 7110 1111
Time
Subarea 3
0
—— Simulated
Observed

Depth to /Water Table (m)
w

6 T T T T
1/1/08 7/1/08 1/1/09 711109 1110 7110 11111

Time

(Altier et al., 2002). Parameter values estimated using the ROSETTA
model were field capacity, saturated hydraulic conductivity, and
porosity and were not changed during the calibration process.
Values for pore size distribution, and bubbling pressure were esti-
mated using textural classification (Ritchie, 1972; USDA-SCS, 1984;
Altier etal.,2002)and were adjusted within literature values during
calibration. Available moisture in soil layers is partitioned among
roots of each plant type and water is taken up from soil layers from
the surface downward (Altier et al., 2002). If roots are not present
in a layer, REMM does not allow water uptake from that layer.
The maximum rooting depth for all three zones was set at 150 cm,
which is within the range of rooting depths for the plant species
evaluated and was not adjusted during the calibration period; how-
ever soil layer depths (layers 2 and 3) for each zone were adjusted
to keep the roots out of soil layer 3 and thus maintain a permanent
water table in soil layer 3, as observed in the field.

Simulated and observed water table depths were compared
using mean, standard deviation (SD), coefficient of determination
(R?), Nash-Sutcliffe efficiency (NSE) (Nash and Sutclifee, 1970), per-
cent bias (PBIAS), and root mean square error (RMSE) for both the
calibration and validation periods. The PBIAS is a simple goodness-
of -fit criterion. For a perfect model, PBIAS is equal to zero, and the
smaller the PBIAS, the better the model performance. The RMSE is
used to measure differences between predicted and observed val-
ues. It is a good measure of model precision. The NSE coefficientis a
common measurement used to evaluate hydrologic model perfor-
mance. Values range from —oo to one, where a value of one indicates

Subarea 2

—— Simulated
Observed

Depth to Water Table (m)
w

5 4
6 T T T T
1/1/08 711108 1/11/09 7/1/109 11110 71110 1111
Time
Subarea 4
0
—— Simulated
Observed
14
£
(]
5 21
©
-
. E
2 1
s 3
=
o
=
£ 4 A
=
o
[
o
5
6 T T T T
1/1/08 711/08 111/09 7/1/09 1110 711110 1111
Time

Fig. 2. Observed and APEX simulated water table depths for the upland field at the Silage Farm for each of the subareas.
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Table 5

Observed versus simulated daily water table depths (m) statistics for the calibration (2008-2009) and validation (2010) periods.
Area Measured Simulated R? NSE PBIAS RMSE

Mean Std Mean Std

Subarea 1
Calibration 3.2 0.72 29 0.65 0.86 0.72 -85 0.38
Validation 4.1 0.57 3.8 0.77 0.85 0.33 -8.0 0.47
Subarea 2
Calibration 3.6 0.89 3.7 0.71 0.67 0.65 34 0.53
Validation 4.6 0.71 3.1 0.37 0.46 -3.77 -31.6 1.55
Subarea 3
Calibration 2.3 0.59 24 0.44 0.47 0.45 29 0.44
Validation 2.6 0.66 2.6 0.19 0.67 0.38 -2.0 0.51
Subarea 4
Calibration 2.7 0.65 2.7 0.51 0.82 0.80 0.5 0.29
Validation 3.3 0.57 3.2 0.22 0.41 0.33 2.3 0.46
Riparian zone
Calibration 15 0.48 1.6 0.64 0.69 0.41 4.3 0.37
Validation 1.5 0.52 14 0.72 0.95 0.7 -3.7 0.29

good model performance and values less than zero indicate that o Riparian Buffer

the average of the observed data is a better predictor than the

model. Mean NO3-N concentrations in the riparian wells were com-

pared to the water table calibrated REMM simulated values for the

entire study period (2008-2010) for each zone of the buffer with no T 11

further calibration of REMM for groundwater nitrate. Because the o

data were not normally distributed we used nonparametric tests E

(Mann-Whitney U Statistic and Kruskal-Wallis One Way ANOVA 5

on Ranks) for differences (SigmaPlot, 2012). We calculated percent g 21

reduction for the entire riparian buffer for the entire study period. °

Percent reduction was calculated as ((input — output)/input)*100. £

8 3-
—— Simulated
3. Results and discussion Observed
4 . . . .
3.1. Calibration and validation 1/1/08 7/1/08 1/1/09 7/1/09 11110 71110 11111
Time

Summary statistics for observed and APEX and REMM simulated
water table depths are presented in Table 5. The average simulated
depths to water table for each subarea were within £7% of the cor-
responding observed value for both the calibration and validation
periods with the exception of subarea 2 for the validation period.
The R? values ranged from 0.41 to 0.95 and NSE values from 0.33
to 0.80, except subarea 2 which was —3.77. The PBIAS were within
+9% during both the calibration and validation periods with the
exception of subarea 2 which was —31.6%. The RMSE for both the
calibration and validation periods was low suggesting that water
table depths were similar. These performance metrics indicated
that APEX and REMM were able to reasonably simulate daily water
table depths.

Daily time series of for observed and APEX-simulated water
table depths are shown in Fig. 2. The graphical comparisons suggest
that APEX reasonably tracked trends during the calibration period,
however, consistently over predicted the depths to the water table
during the dry season (greater water table depths). APEX was not
as efficient during the validation period. Generally APEX performed
better during the wet season (lesser water table depths) in compar-
ison to the dry season and responded well to precipitation events.
The fields were not cultivated during the validation period (2010)
but there was vegetative cover due to substantial weed growth and
volunteer sorghum re-growth. APEX under-predicted the depth to
water table during this period, with the exception of subarea 1,
likely as a result of an underestimation of actual plant biomass and
associated transpiration.

Fig. 3. Observed and REMM simulated water table depths for the riparian buffer
zone at the Silage Farm.

Daily time series of water table depths for observed and REMM
simulated values are shown in Fig. 3. There were periods during the
validation when REMM either over predicted or under predicted
the depths to the water table. As with APEX, REMM performed bet-
ter during the wet season in comparison to the dry season and
responded well to precipitation events. In contrast to the APEX sim-
ulations, there were no vegetation changes in the riparian buffer
during the validation period (2010). REMM was able to track the
trends in water table depths fairly well during this period.

Observed and REMM simulated monthly groundwater nitrate-
N concentrations are shown in Table 6 for the three REMM zones of
the buffer. There was no significant difference among the observed
and simulated for Zone 3 of the buffer. The observed monthly
nitrate concentrations ranged from 0 to 1.48 mg NO3-N L1 with
a mean of 0.13mg NO3-N L-! and standard deviation of 0.23 mg
NO3-N L~1. The REMM simulated monthly nitrate concentrations
ranged from 0 to 1.49 mg NO3-N L~! with a mean of 0.10 mg NOs-
N L1 and standard deviation of 0.18 mg NO3-N L~1. The observed
percent reduction in concentration between zones 3 and 1 was 94%
and the simulated percent reduction was 100%. REMM overesti-
mated nitrate removal in Zone 2 and 1 of the buffer but observed
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Table 6
Monthly averaged (2008-2010) observed and REMM simulated groundwater
nitrate concentrations by zone.

Observed SD REMM SD
NO3-N (mgL')
Zone 3 (adjacent to silage 0.33 0.30 0.54 0.53
field)
Zone 2 0.022 0.07 0.00 0.00
Zone 1 (adjacent to Mar 0.02° 0.03 0.00 0.00
Negro Wetland)

2 Observed versus simulated nitrate concentrations were significantly different
based on the Mann-Whitney test. The detection limit for the methodology is 0.02 mg
NO3-NL-'.

b Observed versus simulated nitrate concentrations were not significantly differ-
ent based on the Mann-Whitney test.

concentrations were very low and generally below method detec-
tion limits.

3.2. Apex simulated field outputs

Mean annual water, sediment, and nutrient data from APEX
and REMM simulations for the three year period are shown in
Table 7. Annual rainfall was 1059 mm in 2008, 670 mm in 2009,
and 1400 mm in 2010. Annual irrigation was 553 mm in 2008,
1270 mm in 2009, and zero in 2010. APEX simulated discharge of
water was 14% of total rainfall and irrigation. Surface runoff was
greatest during 2008, with 443 mm ha~!, representing 80% of total
surface runoff for the three years. This was due to a series of tropical
cyclones that impacted the site in August-October 2008. Tropical
Storm Faye (August 15, 2008), Hurricane Kyle (September 21-25,
2008), and Hurricane Omar (October 12-15, 2008) caused 32 mm,
364 mm, and 25 mm of runoff, respectively. Surface runoff was
81mmha~! in 2009 and 31 mmha~! in 2010. On days when the
fields were irrigated, 13 mm ha~! of subsurface flow and 4 mm ha~!
of surface runoff were generated. APEX simulated subsurface flow
was 40 mmha~! in 2008, 33 mmha~! in 2009, and 54 mmha~! in
2010. The greatest amount of subsurface flow (54 mmha~1) was
generated during 2010 when rainfall events were more evenly dis-
tributed and there was no crops grown (Fig. 4a).

APEX simulated sediment transport was 28 Mgha~! in 2008,
0.7Mgha~! in 2009, and 0.01Mgha~! in 2010. Most of the
sediment transported in 2008 (25.7tha~1) was associated with
Hurricane Kyle. This was 93% of total sediment transported from

Table 7
Mean annual simulated transport of water, sediments, and nutrients from APEX and
REMM. Percent reduction is calculated as ((input — output)/input)*100.

Parameter APEX REMM % Reduction
Rainfall 3129 3129
[rrigation 1873 30?

Total water 227 190 16
Surface runoff (mmha-! y-1) 185 179 3
Subsurface flow (mmha=' y-1) 42 0.3 99
Sediment yield (Mgha=' y~1) 10 7 30
Nitrogen

Total load (kgha' y~1) 195 135 31
Dissolved surface runoff-N (kgha=1 y~1) 27 8 70
Dissolved subsurface flow-N (kgha=! y=1) 0.7 0 100
Sediment-N (kgha—'y-1) 168 126 25
Phosphorus

Total load (kgha='y~1) 7 5 29
Dissolved surface runoff-P (kgha-'y~1) 1 0.3 67
Sediment-P (kgha=1y~1) 6 4 33

2 Volume of runoff from REMM on days when silage field was irrigated.

APEX during that year (Fig. 4b). The total mass of sediment trans-
ported on irrigation days was 0.23 tha~!, which was less than 1%
of total sediment transported during the 3-year study period.

Approximately 86% of the N output was sediment bound
with 66% generated during Hurricane Kyle in 2008 (Fig. 4d). The
remaining N output was transported as inorganic N in surface
runoff and was more evenly distributed during the study period
(Fig. 4c). The total mass of N transported on days which irrigation
occurred was 7.8kgNha~1, for the 3-year period, 1% of total N
transported. Most of the N transported on irrigation days was NHy4-
N in surface runoff. The simulated total N output data generated by
APEX (Table 6) was greater than the range of N outputs in other
watersheds (Lowrance et al., 1985, 2007), likely as a result of the
tropical storms driving the system.

The simulated P transport was 19kgPha~1 in 2008, 1 kgPha~!
in 2009, and less than 1kgPha~! in 2010 with 74% generated as
a result of Hurricane Kyle (Fig. 4f). The majority of total P trans-
port was in particulate form (17 kg Pha~1). Not including Hurricane
Kyle, total P output was very small and constant for the 3-year
period with a yearly average of 1.8 kg P ha~!. Total P transported on
irrigation days was 0.25 kgPha~!, which was less than 1% of total
P transported during the 3-year study. The simulated dissolved P
transport was more evenly distributed (Fig. 4e).

3.3. Remm simulated riparian outputs

Simulated loadings transported to REMM from APEX were the
daily volume of water, mass of sediment, and nitrogen and phos-
phorus in both surface runoff (dissolved and particulate) and
subsurface flow. REMM simulated reductions of APEX simulated
field outputs represent decreases of water, sediment, and nutrients
reaching the mangrove wetlands.

REMM simulated surface runoff output was 425mmbha-! in
2008, 499mmbha~! in 2009, and 63 mmha~! in 2010. The overall
reduction in water flow in the buffer for the 3-year study period
was 16% (Table 7). REMM simulated an 8% reduction of surface
runoff for Tropical Storm Faye but only a 1% reduction in runoff
from Hurricane Kyle (Fig. 4a) due to the antecedent soil moisture
conditions of the riparian buffer when these storms occurred and
the intensity of the rainfall events. Up until Tropical Storm Faye, the
surface runoff reduction in REMM was 100%. A series of rain events
occurring after Tropical Storm Faye, including Tropical Storm Omar
produced little to no surface runoff entering the buffer. However,
due to saturated conditions surface runoff was generated from the
buffer and for these events there were increases in runoff from the
buffer. Year 2009 was a dry year and REMM simulated daily surface
runoff reductions ranged between 53% and 100% with the excep-
tion of one rainfall event that occurred on December 25, 2009 that
had 66 mm of rain and only a 2% reduction of surface runoff. REMM
simulated surface runoff suggests that the riparian buffer substan-
tially reduced surface runoff, however, intense rainfall events such
as tropical storms and hurricanes may overwhelm the buffer and
deliver runoff from the riparian buffer to the mangrove wetlands.
The flow from APEX generated as a result of irrigation was reduced
by 77% in REMM.

REMM reduced subsurface flow by 99% (Table 7). The large
decrease in REMM subsurface flow was the result of low gradi-
ents and low hydraulic conductivities in the riparian buffer and
high evapotranspiration in the tropical environment. Exfiltration
(surface seepage) at the edge of the riparian buffer as generated in
REMM was 124 mmha~! which was 98% of the subsurface flow
that was generated from APEX. Exfiltration leaving Zone 1 was
32mmha~1, a 74% decrease from the edge of the buffer. The dif-
ference in exfiltration at the edge of the buffer and the exfiltrated
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Fig. 4. Total volume of discharge, mass of sediments, and nutrients transported from APEX and REMM.

water leaving the buffer is the amount of water that infiltrated in
the REMM buffer.

The REMM simulated average reduction in sediment yield was
24% for the 3-year study period (Table 7). The REMM simulated
mass of sediment transport corresponded to the volume of water
that was transported. Most of the sediment transport was asso-
ciated with Hurricane Kyle which had a sum of 469 mm of rain
over a 5-day period, more than four times greater than any other
rain event during the three-year study period. Most of the rain-
fall occurred during the first two days (184 and 226 mm of rain on
September 21st and 22nd, respectively). A likely contribution to
sediment transport during the Hurricane Kyle event was the lack
of a crop in the field (Table 1), high antecedent soil moisture, and
rainfall duration and intensity.

REMM reduced the APEX estimated total N load by 31%. A total of
380kgNha~! was transported during 2008, 13kgNha~! in 2009,
and 12 kgNha~1in2010.Total N transported during Hurricane Kyle
was 333 kgNha~! which represented 82% of REMM simulated 3-
year total N transport. The total mass of N transported from REMM
during the 3-year study represented 69% of N fertilizer applied to
all subareas. Most of simulated N loss was sediment-N (Table 7);
representing 94% of the total N loads. REMM simulated sediment

bound N transport was 379kgNha~!, a 25% reduction in sedi-
ment bound N load transport by APEX. The corresponding soluble
N loss (NO3-N and NH,4-N) in surface runoff for the 3-yr period was
25kgNha~1, which was a 69% reduction of soluble N transported
in surface runoff from APEX. REMM simulated soluble N loss in sub-
surface flow was 0 kg Nha~!, which was a 100% reduction of N. On
days when fields were irrigated, total N transported by REMM was
4.8kgNha~!, which is 19% of total N transported during the 3-year
study. The percent reduction in N transported on irrigation days
from REMM was 60%.

REMM reduced the APEX simulated total P load by 30% (Table 7).
Particulate bound P represented 93% of total P load from REMM,
of which 77% was generated as a result of Hurricane Kyle. REMM
simulated particulate bound P was a 24% reduction compared to
APEX input. As a result of Hurricane Kyle, of the fertilizer P applied
to the upland silage farm during the 3-year period, approximately
6% was transported from REMM as particulate P. Total P transported
by REMM on days where fields were irrigated was 0.09kgPha1,
which is less than 1% of total P transported by REMM during the
3-year study period. There was a 62% increase in total P transported
from the upland field to REMM on irrigation days. The 62% increase
was likely a result of fertilizer application timing.
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4. Summary and conclusions

APEX and REMM were evaluated for their ability to simulate
hydrologic processes and water quality (sediment and nutrients)
for the upland silage fields and the adjacent riparian buffer for
three years. The models were calibrated and validated for water
table depth with R? values ranging from 0.41 to 0.95, and Nash-
Sutcliffe efficiencies ranged from 0.33 to 0.80, with the exception
of subarea 2 of APEX which had a NSE of —3.77 during the vali-
dation period. Water table depth parameters that were adjusted
in APEX during calibration were not subarea specific; parameter
adjustments affect all subareas. Validation of REMM showed that
average groundwater NO3-N concentrations simulated by REMM
were not significantly different from observed concentrations in
Zone 3 of the buffer, nearest the field. REMM simulations indicated
complete removal of NO3-N compared to observed levels near the
detection limits for the analytical method. The calibrated and val-
idated models were used to estimate loadings from the fields and
the reduction in loading reaching the mangrove wetlands due to
the riparian buffer. Three year simulations of the calibrated and
validated models are presented as the base case conditions for this
portion of the Jobos Bay watershed. The principal outputs from
REMM representing potential loadings to Jobos Bay were a result of
two tropical systems - Tropical Storm Faye and Hurricane Kyle. For
the entire study period, compared to APEX inputs, REMM simulated
outputs were 16% less for total water; 99% less for subsurface flow,
and 24% less for sediment. Nitrogen and phosphorus loadings from
APEX were decreased by 31% and 29% in the REMM simulated buffer
system, respectively. Simulation results for both models show the
importance of timing of extreme events in reducing potential load-
ings to the mangrove wetlands.
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