ICTRT Meeting: April 10-11, 2006

Members in attendance: Pete Hassemer, Phil Howell, Howard Schaller, Fred Utter, Casey Baldwin, Michelle McClure, Tom Cooney, Charlie Petrosky, Rich Carmichael Non-members in attendance: Damon Holzer, Jon Honea, Don Matheson

- 1. Meeting dates (locations to be determined):
 - a. June 27^{th} - 28^{th}
 - b. July 18^{th} - 19^{th}
 - c. August 23-24th
- 2. Shriaz update
 - a. 2 modeling efforts
 - i. effects of landscape processes and land use on habitat
 - ii. no fry to summer parr survivorship
 - 1. characterize fry to beginning of overwintering fish
 - b. model structure
 - i. fish tracked according to stock, life-stage, and location (based on HUC-6 areas)
 - ii. Beverton-Holt equation calculated at each life-stage for each stock
 - iii. After numbers of next life-stage are calculated, fish move to new location (or stay put) deterministic if desired
 - iv. Model repeats from life-stage to life-stage
 - c. Modeling changes in numbers
 - i. BH model applied at each life-stage
 - ii. How reliable are capacity estimates at various stages?
 - iii. Incorporation of density dependent movement
 - d. Relation between egg survivorship and water temperature
 - i. Desired model can be selected
 - e. Discharge and egg survivorship
 - i. Annual peak flow / maximum peak flow over 100-yr period
 - ii. Scouring (less of an impact on the east side), dewatering, runoff
 - 1. larger problem for fry colonization?
 - f. Functional relationships
 - i. Egg fine sediment, temperature, discharge
 - ii. Fry none
 - iii. Summer parr mean daily temperature, low flow capacity, riffle/run embeddedness
 - iv. Overwinter cobbles and wood in pools, pool cobble embeddedness
 - v. Smolt survivorship from mouth of Wenatchee to estuary (capacity likely not limited)
 - vi. Estuarine based on relationships developed for Snohomish
 - 1. tidal: uniform random number between 0.57 0.70
 - 2. near shore: uniform random between .047 .057
 - 3. hatchery smolt survivorship in Snohomish = 0.04
 - 4. is capacity limited?
 - vii. Ocean 1 survivorships .7, .8, .9, .9 for each age in turn (.35 for yr2-3 hatchery); lognormal distribution with cv of 0.05

- viii. Upstream adults (yr 3-6) mainstem passage
 - ix. Spawners (yr 3-6) mean max temp, capacity determined as maximum number of redds times 2.2 fish per redd
 - x. Other notes
 - 1. modeling a captive brood-based program
 - 2. check Coho literature for survival in different stream structures (Lawson habitat modeling paper)
- g. Scenarios
 - i. Current condition
 - ii. 100% implementation of recovery plan actions
 - iii. current path future based on rational for path of degradation or improvement
- h. next steps
 - i. life-cycle parameterization
 - ii. scenarios
 - 1. minimize hatchery programs (future scenario) except Leavenworth
 - 2. work with Casey to set up a meeting for scenario development
- 3. Gaps update
 - a. Changes in language
 - i. "current observed gaps"
 - ii. "projected gaps" alternate climate / hydro scenarios
 - b. table structure changes as discussed (one risk level per page with all scenarios blank space left for new scenario)
 - c. MPG summaries (characterize gaps using population scenarios)
 - d. Graphic multi-bar chart with different paired scenarios
 - e. Zonal approach
 - i. Attempts to create a logically flowing gaps analysis (adjusts for "knife edge" effects)
 - ii. Correlation between total weighted area and capacity estimate (of entire data series)
 - iii. Combines capacity gap with productivity gaps for populations needing large improvement in capacity and productivity
 - Is it appropriate to decrease the capacity estimate of the Imnaha? Could have historically supported a larger capacity than other Chinook stocks (rearing in the Snake)

 a. Same concern in Lookingglass
 - 2. generate table with data for capacity and productivity gaps and assigned gap
- 4. Steelhead MSA structure
 - a. Created new category -- Major with highly variable access
 - b. In Klickitat falls (little Klickitat) created a 0 100% passable barrier
 - c. Velocity layer
 - i. Meant to account for high, low gradient reaches with little potential

- ii. Data analysis supports views of bios, accept changes
- 5. White River Plans
 - a. Is the White River a unique stock? is the original premise consistent with more recent interpretations of the data?
 - b. Shift from captive brood program (ready for outplanting) building weir, eventually switching to broodstocking returning adults
 - c. Several options presented
 - i. release at mouth, potential for returns to white and little Wenatchee
 - ii. Shift focus to Little Wenatchee
 - 1. low returns MSA adjacent to the White
 - 2. more habitat damage
 - 3. less local concern for hatchery releases
 - iii. start with White River brood, create Upper Wenatchee broodstock supplementation program
 - iv. no upper supplementation program, focus on Nason and Chiwawa (bulk of spawners)
 - 1. less than 10% of spawning is going to the white & Little Wenatchee
 - v. broodstock collection at Tumwater dam

Option	Action	White Distinct	White Not Differentiated	No Additional Info
а	current program	0	0	0
b	modified current	+++	++	++(+)
С	transfer to little wenatchee			
d	outplant upper river stock in both			
е	supplement Chiwawa (and Nason) only	EEE	E	EE
f	Tumwater Collection	++++	+++	+++(+)

6. Modeling work

- a. Charlie and Howard to finish spreadsheets by the end of the week
 - i. fixed "d" and lamda with variable "n" and delta and alternate regression
 - ii. provide writeup
- b. Get fixed "d" work written up this week (new Bev-Holt relationships) by April 21st (Michelle)
 - i. Sensitive to S3 estimation (sensitivity analysis)
 - 1. describe suite of ocean indices and possible change
- c. Provide modeling framework for Rich to identify effect on the gap
- d. Gaps analysis with fixed "d" for now, but with comment on variable "d"
- e. April $24^{\text{th}} 27^{\text{th}}$ continue steelhead modeling
 - i. SAR series to Rich (by the 24th)
- f. Meeting on April 27th Seattle (and computer conference)
- g. Next steps
 - i. Steelhead analysis and implementation of variable "d" with lambda "n" finish by May 11^{th}

- ii. Fall Chinook use half-day of Boise TRT (on the 16th) meeting
 - 1. pull literature together (adult counts, Deschutes reconstruction series, juvenile survival) Tom, Rich
 - 2. come to agreement on form of analysis (by the end of may)
 - a. structure
 - b. likely important factors