IEEE Computervol. 43, no. 6 (June, 2010) , pp. 79-81

Adding Attributes to Role-Based Access Control

D. Richard Kuhnpational Institute of Standards and Technology
Edward J. Coynescience Applications International Corp.
Timothy R. Weil,Raytheon Polar Services Company

Merging the best features of RBAC and attributeellasy/stems can provide effective access control for
distributed and rapidly changing applications.

Role-based access control (D.F. Ferraiolo and Dtk “Role-Based Access Control®toc. 15th Ann.
Nat'l Computer Security ConfNSA/NIST, 1992, pp. 554-563; R. Sandhu et al.pléRBased Access
Control Models,”"Computer,29(2), 1996, pp. 38-47), also known as RBAC, presid popular model for
information security that helps reduce the compyerif security administration and supports reviefv o
permissions assigned to users. This feature igcarito organizations that must determine theik ris
exposure from employee IT system access.

RBAC has frequently been criticized for the diffiguof setting up an initial role structure and for
inflexibility in rapidly changing domains. A pureBRC solution may provide inadequate support for
dynamic attributes such as time of day, which migbed to be considered when determining user
permissions. To support dynamic attributes, padity in large organizations, a “role explosion”’nca
result in thousands of separate roles being fashidor different collections of permissions. Redetgrest
in attribute-based access control (ABAC) suggdsis attributes and rules could either replace RBAC
make it more simple and flexible.

ROLE-BASED ACCESS CONTROL

A US standard defined iANSI/INCITS 359-2004, Information Technology—Robse8 Access
Control, RBAC controls all access through roles assignedisers. Each role assigns a collection of
permissions to users. RBAC assumes that, in mgsications, permissions needed for an organizagion’
roles change slowly over time, but users may efeaxe, and change roles rapidly.

Hierarchical structure

For efficiency, roles can be structured hierardhicgo that some roles inherit permissions fromeosh
RBAC simplifies access control compared with thenauistrative burden that would be required for a
direct mapping from individual users to access marists attached to resources. Once roles withirth
permissions have been defined, user provisioninglyi requires that office staff assign users t@sas
authorized by management.

RBAC is also well suited to separation-of-duty riegments, where no single individual has all
permissions needed for critical operations suctxagnditure of funds. Proper operation of RBAC iezgi
that roles fall under a single administrative damai have a consistent definition across multigendins,
so distributed applications might be challenging.

Although RBAC implementations differ, many provide least basic features of the RBAC standard.
Several proposals for revising the standard hawn betroduced (N. Li, J. Byun, and E. Bertino, “A
Critique of the ANSI Standard on Role-Based Acdesatrol,” IEEE Security & PrivacyNov. 2007, pp.
41-49) and evaluated with respect to the ratiodatedesign decisions in the current standard (D.F.
Ferraiolo, D.R. Kuhn, and R. Sandhu, “RBAC Stand@edionale: Comments on a Critique of the ANSI
Standard on Role-Based Access Contri®dEE Security & PrivacyNov. 2007, pp. 51-53).

Committee CS1.1 within the InterNational Commitftee Information Technology Standards (INCITS)
has initiated a revision with the goal of extenditggusefulness to more domains, particularly disted
applications.

Attribute-based access control

Although ABAC has no clear consensus model to date,approach’s central idea asserts that access
can be determined based on various attributes mexbdoy a subject (A.H. Karp, H. Haury, and M.H.
Davis, “From ABAC to ZBAC: the Evolution of Accegsontrol Models,” tech. reportHPL-2009-30, HP
Labs, 21 Feb. 2009). Rules specify conditions undeich access is granted or denied. For example, a

IEEE Computervol. 43, no. 6 (June, 2010) , pp. 79-81

bank might allow access if the subject is a tellerking between the hours of 7:30 am and 5:00 prthe
subject is a supervisor or auditor working thosees&ours who also has management authorization.

This approach might be more flexible than RBAC heseait does not require separate roles for relevant
sets of subject attributes, and rules can be imphted quickly to accommodate changing needs. The
trade-off for this flexibility is the complexity ofases that must be considered:rfdoolean attributes or
conditions using attributes, there ark ssible combinations. Authentication of attrilsuteould be
distributed and based on the authority that issugmrticular attribute, such as a firm vouching #or
subject’s employment status. Negotiation betweeatiggamust establish trust in attributes and enthaée
parties use the same definition for attributes.

COMBINING RBAC AND ABAC

RBAC and ABAC have their particular advantages disddvantages. While ABAC may require up to
2" rules forn attributes, attempting to implement the same odsin RBAC could, in a worst case, require
2" roles, one for each possible combination of aiteb. Generally speaking, RBAC trades up-front role
structuring effort for ease of administration argkmuupermission review, while ABAC makes the reverse
trade-off: it is easy to set up, but analyzing loarging user permissions can be problematic.

Determining RBAC role structure, a process knownr@s engineering(R. FernandezEnterprise
Dynamic Access Control Version 2 Overvidély Space and Naval Warfare Systems Center, 1 086, 2
http://csrc.nist.gov/rbac/EDACv2overview.pdf), cdubke many months, but once completed it is easy t
determine who has what permissions. ABAC makesdlyeo specify access rules, but to determine the
permissions available to a particular user a patiytlarge set of rules might need to be executed
exactly the same order in which the system appliesn. This can make it impossible to determine risk
exposure for a given employee position.

Can these two models be combined to take advaofay®h their strengths?

Table 1 summarizes possible combination strategiesoptions for integrating attributes with RBAC
(RBAC-A). Options 0 and 2 are undefined but incldider completeness; options 1 and 3, which have no
user ID in the access decision, might appear uhimuaould be used in public facilities where iatites
or roles determine anonymous users’ access.

Table 1. Combination strategies and options for integrating attributes with RBAC

Option U/ RIA Model Permission mapping
0 0| 0| 0| undefined —
1 0| 0| 1| ABAC-basic Ay, ... ,A,— perm
2 0| 1| O| undefined —
3 01| 1| ABAC-RBAC hybrid R Ay ... ,A,— perm
4 1|10 0| ACLs U— perm
5 10| 1| ABAC-ID U, A, ... ,/A,— perm
6 1| 1| 0| RBAC-basic U— R— perm
7 1| 1| 1| RBAC-A, dynamicroles| U, A, ... /A,— R— perm
8 1| 1| 1| RBAC-A, attribute-centric U, R, A;, ... ,A, — perm
9 1| 1| 1| RBAC-A, role-centric U—-R— A, ... ,Ay— perm

* U = user/subject ID; R = role; A = attributes

Broadly speaking, there are three RBAC-A approadhelsandle the relationship between roles and
attributes, all retaining some of the administratand user permission review advantages of RBAQewhi
allowing the access control system to work in adiggchanging environment:

. Dynamic roles.Attributes such as time of day are used by a femrdt module to determine the
subject’s role, retaining a conventional role stuoe but changing role sets dynamicaltyJ(Coyne,
Role EngineeringArtech House, 2008 5ome implementations of dynamic roles might letalser’s
role be fully determined by the front-end attribategine, while others might use the front end aaly
select from among a predetermined set of authoriaked.

e Attribute-centric.A role name is just one of many attributes. Intcast with conventional RBAC, the
role is not a collection of permissions but the mawh an attribute calletble. This approach’s main

IEEE Computervol. 43, no. 6 (June, 2010) , pp. 79-81

drawback is the rapid loss of RBAC’s administratsmnplicity as more attributes are added. It also
suffers from potential problems with ABAC when detéing the risk exposure of a particular
employee position.

. Role-centric Attributes are added to constrain RBAC. Constraitgs that incorporate attributes can
only reduce permissions available to the user.emptind them. Some of ABAC's flexibility is lost
because permission sets are still constrained ley boit the system retains the RBAC capability to
determine the maximum set of user-obtainable peions. As an aside, developers explicitly
designed the formal model for RBAC, introduced BB2, to accommodate additional constraints
being placed on a role.

The dynamic-roles RBAC-A model allows implementatas a layer atop an existing RBAC structure.
Attribute-centric RBAC-A, as defined here, is l@ssue RBAC system because access is not contioyled
roles formed from sets of permissions.

PERMISSION CONSTRAINTS

Implementing the role-centric RBAC-A scheme reguichanging the RBAC standard to constrain the
set of permissions available during a user’s sassiothe current standard all permissions arelalvigi
depending on the user’s active roles. Clearly, shibject must avoid receiving any permission not
authorized for the active role or restricted by dlfteibute-based constraints.

The permissions in this approach will be the irgetion of P andR, whereP is the set of permissions
assigned to the subject’'s active roles and R iss#iteof permissions specified by the applicable ABA
rules. The user’s role set therefore determinegriagimum set of available permissions, supporthng t
principle of least privilege and allowing easy ewiof user permissions.

Combined design

We use a combined design rather than a pure systmause, in general, some user attributes are
relatively static—such as position, skill set, dfiae location—while others, such as time of day a
dynamic. Developing a role structure based on tbeenstatic attributes can avoid awkward designs tha
might result from purely one choice or another.

For example, consider a system with 10 attributasg, of which are static and six dynamic. This et
attributes could result in"2roles or 2° ABAC rules. Establishing a role structure basedtanfour static
and six dynamic attributes means a maximum of 1&srand 64 rules, a significant improvement over th
1,024 roles or rules that could be considered usithg RBAC or only ABAC.

Determining maximum permissions

Applying the role-engineering effort to the relaly static attributes, and encapsulating these
components of access decisions in roles, can rétiecaumber of dynamic rules dramatically. A congloin
design thus retains advantages of RBAC, such as efasiser provisioning and the ability to quickly
determine the maximum permissions available to eeseh—critical in determining risk exposure while
preventing a “role explosion” to cover every polsilbontingency for permission sets that might be
required by users.

We believe this is an appropriate trade-off thdt wetain the benefits of RBAC while extending its
utility to today’s important distributed applicati®. In response to comments received over theyfas-
life of the current RBAC standard, INCITS CS1.1developing a policy-enhanced RBAC standard to
accommodate importation of arbitrary constraimtg]uding attributes of all types. This enhanced ehod
will maintain the advantages of RBAC while provigia mechanism for including attributes in access-
control decisions. For more information, see bhitprE.nist.gov/groups/SNS/rbac/rbac-standard-
revision.html.

D. Richard Kuhn is a computer scientist at thvtional Institute of Standards and Technology. t@ohhim at
kuhn@nist.gov.

Edward J. Coyne is a senior security engineer atience Applications International Corp. Contacmhiat
ed.coyne@va.gov.

Timothy R. Well is an information security manager at RaytheoraPSkrvices Compangontact him at
Timothy.Weil.Contractor@usap.gov

IEEE Computervol. 43, no. 6 (June, 2010) , pp. 79-81

Certain software products are identified in thisculbent, but such identification does not imply
recommendation by the US National Institute of 8tads and Technology or other agencies of the US
government, nor does it imply that the productsiied are necessarily the best available forghose.

Mike Hinchey, editor of the Software Technologies column, is codirector at Lero—the Irish Software Engineering Research Centre. Contact him at
mike.hinchey@lero.ie.

Role-based access control, Dynamic roles, Addirdyraanaging attributes, Controlling permissions,
attribute based access control

