4.0 WALLEYE POLLOCK

The Bering Sea pollock fishery, and potential changes to the prosecution of the pollock fishery to reduce salmon bycatch under the alternatives, impacts the pollock stocks. This chapter provides information on pollock biology, distribution, and current survey and stock assessment information. This chapter analyses the impacts to pollock by estimating the ability of the pollock fleet to catch the full total allowable catch under the alternatives. Chapter 3 provides a description of the methodology used to conduct these analyses. The description of the pollock fishery and economic impacts to the pollock fishery from the alternatives are discussed in the RIR.

4.1 Overview of pollock biology and distribution

Overview information in this section is extracted from Ianelli et al. (2007). Other information on pollock may be found at the NMFS website, <u>www.afsc.noaa.gov/refm</u>.

Walleye pollock, *Theragra chalcogramma*, are a member of the order Gadiformes and family Gadidae. They are a semi-demersal, schooling species that are generally found at depths from 30 to 300 meters but have been recorded at depths as low as 950 meters (Mecklenburg *et al.* 2002). Pollock are usually concentrated on the outer shelf and slope of coastal waters but may utilize a wide variety of habitats as nearshore seagrass beds (Sogard and Olla 1993). Their distribution extends from the waters of the North Pacific Ocean off Carmel, California throughout the Gulf of Alaska in the eastern Pacific Ocean, across the North Pacific Ocean including the Bering Sea, Chukchi Sea, and Aleutian Islands, and in the western Pacific Ocean (Mecklenburg *et al.* 2002, Hart 1973).

Pollock are considered a relatively fast growing and short-lived species and currently represents a major biological component of the Bering Sea ecosystem. Adult pollock are visual, opportunistic feeders that diet on euphausiids, copepods, and fish, with a majority of their diet from juvenile pollock (National Research Council 1996). In the eastern Bering Sea, cannibalism is the greatest source of mortality for juvenile pollock (Livingston 1989), but cannibalism is not prevalent in the Gulf of Alaska (GOA) (Bailey *et al.* 1999). Juvenile pollock reach sexual maturity and recruit to the fishery at about age four at lengths of 40 to 45 centimeters (Wespestad 1993). Most pollock populations spawn at consistent times and consistent locations each year, most often in sea valleys, canyons, deep water, or the outer margins of the continental shelf during late winter and early spring (Bailey *et al.* 1999). In the eastern Bering Sea, spawning occurs over the southeastern slope and shelf from March through June and over the northwest slope and shelf from June through August (Hinckley 1987). The main spawning location is on the southeastern shelf while the main rearing ground location is on the northeastern shelf (Ianelli et al. 2007).

For management purposes, pollock in the U.S. waters of the Bering Sea are divided into three stocks: the eastern Bering Sea stock, the Aleutian Islands stock, and the Central Bering Sea-Bogoslof Island stock (Ianelli *et al.* 2007). The extent to which pollock migrate across the boundaries of these three areas, across the boundaries of the Bering Sea U.S. EEZ and the Russian EEZ, and seasonally within the eastern Bering Sea is unclear. General migratory movements of adult pollock on and off the eastern Bering Sea shelf tend to follow a pattern of movement to the outer shelf edge and deep water in the winter months, to

spawning areas in the springtime, and to the outer and central shelf during the summer months to feed (Smith 1981).

Japanese mark-recapture studies during the summer/autumn feeding seasons have revealed that pollock migrate across the Bering Sea (Dawson 1989) suggesting the interchange of pollock between Russian and U.S. waters. There are concerns that Russian fisheries may be harvesting U.S. managed pollock stocks resulting in a higher fishing mortality. Although the few tagging studies in the Bering Sea have not provided information on spawning migrations, homing to specific spawning sites, and the characteristic of migrating populations as schools or individuals, tagging studies around Japan have been more informative. Mark-recapture studies in which pollock were tagged during the spawning season (April) in Japanese waters revealed migrations for spawning site fidelity, but diffuse mixing during the summer feeding season (Tsuji 1989).

4.1.1 Food habits/ecological role

In North American waters, pollock are most prevalent in the eastern Bering Sea. Because of their large biomass, pollock provide an important food source for other fishes, marine mammals as Steller sea lions (*Eumetopias jubatus*), northern fur seals (*Callorhinus ursinus*), and fin whales (*Balaenoptera physalus*), and marine birds as the northern fulmars (*Fulmarus glacialis*), kittiwakes (*Rissa tridactyla, Rissa brevirostris*), murres (*Uria aalge, Uria lomvia*), and puffins (*Fratercula corniculata, Lunda cirrhata*) (Kajimura and Fowler 1984). These predator-prey relationships between pollock and other organisms are an integral part of the balance that makes the eastern Bering Sea one of the most highly productive environments in the world.

In comparisons of the western Bering Sea (WBS) with the Eastern Bering Sea using mass-balance foodweb models based on 1980-85 summer diet data, Aydin et al. (2002) found that the production in these two systems is quite different. On a per-unit-area measure, the western Bering Sea has higher productivity than the EBS. Also, the pathways of this productivity are different with much of the energy flowing through epifaunal species (e.g., sea urchins and brittlestars) in the WBS whereas for the EBS, crab and flatfish species play a similar role. In both regions, the keystone species in 1980-85 were pollock and Pacific cod. This study showed that the food web estimated for the EBS ecosystem appears to be relatively mature due to the large number of interconnections among species. In a more recent study based on 1990-93 diet data (see Boldt 2007 for methods), pollock remain in a central role in the ecosystem. The diet of pollock is similar between adults and juveniles with the exception that adults become more piscivorous (with consumption of pollock by adult pollock representing their third largest prey item). In terms of magnitude, pollock cannibalism may account for 2.5 million t to nearly 5 million t of pollock consumed (based on uncertainties in diet percentage and total consumption rate).

Regarding specific small-scale ecosystems of the EBS, Ciannelli et al. (2004) presented an application of an ecosystem model scaled to data available around the Pribilof Islands region. They applied bioenergetics and foraging theory to characterize the spatial extent of this ecosystem. They compared energy balance, from a food web model relevant to the foraging range of northern fur seals and found that a range of 100 nautical mile radius encloses the area of highest energy balance representing about 50% of the observed foraging range for lactating fur seals. This suggests that fur seals depend on areas outside the energetic balance region. This study develops a method for evaluating the shape and extent of a key ecosystem in the EBS (i.e., the Pribilof Islands). Subsequent studies have examined spatial and temporal patterns of age zero pollock in this region and showed that densities are highly variable (Winter et al. 2005, Swartzman et al. 2005).

The impact of predation by species other than pollock may have shifted in recent years. In particular, the increasing population of arrowtooth flounder in the Bering Sea is a concern, especially considering the

large predation caused by these flatfish in the Gulf of Alaska. Overall, the total non-cannibal groundfish predator biomass has gone down in the Bering Sea according to current stock assessments, with the drop of Pacific cod in the 1980s exceeding the rise of arrowtooth in terms of biomass (e.g., Fig. 4 in Boldt 2007). This also represents a shift in the age of predation, with arrowtooth flounder consuming primarily age-2 pollock, while Pacific cod primarily consume larger pollock. However, the dynamics of this predation interaction may be quite different than in the Gulf of Alaska. A comparison of 1990-94 natural mortality by predator for arrowtooth flounder in the Bering Sea and the Gulf of Alaska shows that they are truly a top predator in the Gulf of Alaska. In the Bering Sea, pollock, skates, and sharks all prey on arrowtooth flounder, giving the species a relatively high predation mortality.

The predation on small arrowtooth flounder by large pollock gives rise to a specific concern for the Bering Sea pollock stock. Walters and Kitchell (2001) describe a predator/prey system called "cultivation/depensation" whereby a species such as pollock "cultivates" its young by preying on species that would eat its young (for example, arrowtooth flounder). If these interactions are strong, the removal of the large pollock may lead to an accelerated decline, as the control it exerts on predators of its recruits is removed—this has been cited as a cause for a decline of cod in the Baltic Sea in the presence of herring feeding on cod young (Walters and Kitchell 2001). In situations like this, it is possible that predator culling (e.g., removing arrowtooth) may not have a strong effect towards controlling predation compared to applying additional caution to pollock harvest and thus preserving this natural control. At the moment, this concern for Bering Sea pollock is qualitative; work on extending a detailed, age-structured, multispecies statistical model (e.g., MSM; Jurado-Molina et al. 2005) to more completely model this complex interaction for pollock and arrowtooth flounder is continuing.

4.1.2 NMFS surveys and stock assessment

NMFS conducts bottom trawl surveys annually and echo-integration trawl surveys every other year. Both occur during summer months and provide a synoptic overview of relative densities of adult and pre-recruit pollock (Fig. 4-1).

Extensive observer sampling is conducted and a complete assessment is done each year for evaluating stock status and to form the basis of catch recommendations. The most recent assessment shows a declining biomass since 2003 and a period of recent below-average recruitment levels (Fig. 4-2; Ianelli et al. 2007). During 2002-2005 the EBS region pollock catch has averaged 1.463 million tons while for the period 1982-2000, the average was 1.15 million tons. The effect of this level of fishing continues to be closely monitored by resource assessment surveys and an extensive fishery observer program.

The assessment reporting process involves reviews done by the Council through the Groundfish Plan Team (which meet on assessment issues twice per year). The Plan Team prepares a summary report of the assessment as the introduction to the Stock Assessment and Fishery Evaluation (SAFE) report which contains separate chapters for each stock or stock complex. These are posted on the internet and can be obtained at http://www.afsc.noaa.gov/REFM/stocks/assessments.htm. Preliminary drafts are presented to the Council in early December where the SSC reviews the documents and makes final ABC recommendations. As part of the review process, the SSC formally provides feedback on aspects of research and improvements on assessments for the coming year. The SSC ABC recommendation is forwarded to the Council where the value represents an upper limit of where the TAC may be set.

Fig. 4-1 Echo-integration trawl survey results for 2006 and 2007. The lower Fig. is the result from the BTS data in the same years. Vertical lines represent biomass of pollock as observed in the different surveys

Fig. 4-2 Estimated age 3+ EBS mid-year pollock biomass, 1978-2008 (top) and age-1 year-class strengths. Approximate upper and lower 95% confidence limits are shown by dashed lines and error bars.

4.1.3 Pollock density within the Catcher Vessel Operation Area

The catcher vessel operational area (CVOA) is defined as the area of the Bering Sea east of 167°30' W. longitude, west of 163° W. longitude, south of 56° N. latitude, and north of the Aleutian Islands (Fig. 4-3). Vessels in the CP sector or CVs catching pollock for the mothership sector are prohibited from conducting directed fishing for pollock in the CVOA unless they are participating in a CDQ fishery. The CVOA is in effect during the pollock "B" season, from September 1 until the date that the inshore CV sector has harvested its "B" season allocation and is closed to directed fishing.

Fig. 4-3 Catcher Vessel Operational Area (CVOA)

Comparison of NMFS survey estimates of pollock biomass in the CVOA with pollock catch within the same region (1998-2007) suggests that expected CPUE in this region may be lower. The historical densities of pollock were evaluated within the CVOA. Based on mid-water acoustic survey data, the relative abundances of pollock in the CVOA has declined in the last three years (Fig. 4-4).

Fig. 4-4 Proportion of pollock found within the CVOA based on the echo-integration mid-water trawl survey (from Ianelli et al. 2008).

4.2 Impact analysis methods

The approach to evaluate the impact of the alternative management measures for Chinook salmon bycatch involved evaluating spatial patterns and the overall reduction in the ability to catch the full pollock TAC. To determine the likely dates when attainment of the salmon bycatch cap would occur under each option, we created a database that expanded observer data proportionately from each reporting area, month, and sector to match NMFS's catch accounting data as of April 30, 2008. This allows us to evaluate spatial components while ensuring that proportionate catch estimates are equivalent to total estimates maintained by NMFS. Additional information on the specific methodology for the impact analysis is contained in Chapter 3.

This analysis assumes that past fleet behavior appropriately approximates operational behavior under the alternatives and does not estimate changes in behavior. While it is expected that the fleet would change its behavior to fully harvest the pollock TAC and mitigate potential losses in pollock revenue, explicitly predicting changes in fleet behavior in a reasonable way would require data and analyses that are presently unavailable.

The area considerations were used to partition historical pollock data for differences in age and size due to either a regulatory closure (to evaluate impacts of Alternative 3) or for a closure that the industry is likely to impose to avoid suspension of fishing activities. Also, for the summer-fall fishery (B season), we examined the "early" with the "later" part of this season since Chinook bycatch rates tend to be higher later in the season. The question that we address is if the spatio-temporal aspects would result in the pollock population being more or less vulnerable to overfishing. For presentation purposes, the area east

and west of 170°W was identified, and the summer-fall season was split into pre- and post- August 31st periods.

Alternative 3: Triggered closure areas

Because the areas for which closures were triggered were different for the A and B season, we categorized observer data as falling inside or outside of these areas. The individual haul records were then aggregated up to match unique area-month-sector strata. Observer data from 1991 to 2002 were retained for the analysis, but for clarity we focus our evaluation of triggered closures on the 2003-2007 period only.

The treatment of the data involved finding when each specified trigger salmon bycatch level would have been reached, then summing values from that date onwards till the end of the season. For example, to compute the expected forgone pollock that would have occurred given a cap in a given year the analysis examined the cumulative daily bycatch records of Chinook and found the date that the cap was exceeded (e.g., Sept 15th); and then computed the tons of pollock that the fleet (or sector) caught from Sept 16th till the end of the season. This would be one measure of "forgone pollock" that might have accrued had one of the different salmon bycatch measures been selected.

4.3 Impacts on pollock

Alternatives 2 and 3 both use the same range of caps; the difference between the alternatives is that, when the cap is reached, Alternative 2 would close the fishery completely and Alternative 3 would close only certain areas to directed pollock fishing (see Fig. 2-2 and Fig. 2-3 for Alternative 3 closure areas) and allow fishing to continue in different areas. Alternative 2 would be likely, therefore, to result in more pollock forgone, i.e., in lower pollock harvests. Table 4-1 through Table 4-3 show hypothetical dates when the fisheries would have closed had Alternative 2 Chinook caps been in place. These dates translate into estimates of forgone pollock (Table 4-4 through Table 4-8). For Alternative 3, the impact of continued fishing outside the closed areas uses the hypothetical date projections for area closure impacts in terms of relative pollock catch rates (inside and outside of closed areas). Parallel impacts are expected to occur under each of the alternatives.

All four alternatives would likely close the fishery earlier than Alternative 1 (the status quo) and, thus, result in lower pollock catches (based on 2003-2007 data and assuming fleet behavior in the past approximates future behavior under each alternative). For the Alternative 2 analysis, it was assumed that transfers and rollovers were not allowed but were provided as options under Alternative 2. For Alternative 2, the A and B season closure dates would have varied considerably in different years under the four different cap level and seasonal split options, respectively (Table 4-9 and Table 4-14, respectively). Under Alternative 2, Table 4-10 shows that in the most constraining option, the A-season forgone pollock would have been a minimum of 182,300 t in 2004 to a maximum of 460,000 t in 2007. Even for the least constraining option, the 2007 A-season forgone pollock level would be nearly 119,000 t. The least constraining option was a cap of 87,500 with a 70/30 season split. Within each fishing sector, the variability of forgone pollock is higher over different scenarios within Alternative 2 than over different years (Table 4-11 through Table 4-13 for the A-season and in Table 4-15 through Table 4-18 for the B-season).

The analysis of Alternative 4 and 5 was similar to that for caps in Alternative 2, and retrospective fishery closures were tabulated from 2003-2007. However, for Alternatives 4 and 5, transfers between sectors within each season and rollovers between seasons were assumed. Alternatives 4 and 5 have identical lower cap levels (scenario 2) but differ in the higher cap level (scenario 1) and the rollover provision (80% in Alternative 4, 100% in Alternative 5).

The Alternative 4 analysis shows that sector specific closure dates for both the A and B seasons (in which sector-specific allowances with and without transferability among sectors and with 80% rollover from any remaining Chinook salmon bycatch from the A season to the B season) result in closure dates that are generally later than for those under Alternative 2 (Table 4-19). For example, under the least constraining cap scenario within Alternative 2, the 70/30 A/B season allocation would have resulted in fleetwide closures around mid-October in 2004, 2005, and 2007. The analogous Alternative 4 scenario (annual scenario 1) would have closed the entire fleet early in 2007, though the CPs and inshore CV sectors would have closed sooner than the under Alternative 2.

The estimated amounts of forgone pollock catch under Alternative 4 are generally lower than under Alternative 2. In 2007, the highest bycatch year, Alternative 4 would have had the highest level of fleetwide forgone pollock, ranging between 300 - 435 thousand t, depending on the annual scenario cap level and transferability (but assuming 80% rollover allowance; Table 4-21). The different rollover options (no rollover and 100% rollover) change the levels of forgone pollock slightly for the 100% rollover case and, to a greater extent, for the 0% rollover case (Table 4-22). Compared to the 80% rollover in Alternative annual scenarios 1 and 2, the 2003-2007 sum of the forgone pollock for the 0% and 100% rollover options highlights the impacts of the rollover provision Alternative 4 (Table 4-24).

The Alternative 5 (annual scenario 1) analysis shows that sector specific closure dates for both the A and B seasons result in closure dates that are several days earlier than those under the similar scenario of Alternative 4 (Table 4-20). For example, under the assumption of full A season transferability, Alternative 5 scenario 1 would have closed each sector of the fishery between 3 to 9 days earlier in the 2007 A season, and 2 to 7 days earlier in the B season (Table 4-20).

The estimated amounts of forgone pollock catch under Alternative 5 annual scenario 1 are higher than under Alternative 4 annual scenario 1 in conjunction with the earlier closure dates by sector. In 2007, the highest bycatch year, Alternative 5 annual scenario 1 would have resulted in forgone pollock of approximately 50 thousand tons more than under the higher cap level in Alternative 4 annual scenario 1(Table 4-23).

Alternative 4 and 5 annual scenarios 2 are equivalent except for the different rollover provision whereby Alternative 5 includes 100% rollover while Alternative 4 includes an 80% rollover provision. The different rollover options (no rollover and 100% rollover) change the levels of forgone pollock slightly for the 100% rollover case and, to a greater extent, for the 0% rollover case (Table 4-22). Compared to the 80% rollover in the Alternative 4, the 2003-2007 sum of the forgone pollock for the 0% and 100% rollover options highlights the impacts of the rollover provision Alternative 4 (Table 4-24). Further discussion of the differences in these rollover provisions for the same cap level are contained in Chapter 5 section 5.3.3.

Analysis indicates that Alternatives 2, 3, 4, and 5 would make it more difficult for fishermen to catch the full TAC for EBS pollock without changing their fishing behavior to avoid Chinook salmon bycatch. If the pollock TAC was not fully harvested, fishing would have less impact on the stock, and the pollock fishing mortality rates may be lower than biologically acceptable levels. Hence, the Chinook salmon management measures would not negatively impact the pollock stock in terms of total removals by the fishery.

Given the potential closures, the fishermen may go to greater extremes to avoid salmon bycatch, and the impact of this change in fishing behavior on the pollock stock requires consideration. For example, the measures may result in the fishery focusing on younger (or older) ages of pollock than otherwise would have been taken. Since these changes would be monitored and updated in future stock assessments, the risk to the stock is considered minor since conservation goals for maintaining spawning biomass would

remain central to the assessment. However, the change in fishing pattern could result in lower overall ABC and TAC levels, depending on how the age composition of the catch changed. The available length and age data were compiled from 2000-2007 and disaggregated by seasons (and partial seasons) and regions (east and west of 170°W) for analysis. The resulting numbers of samples by age are shown in Table 4-25.

Results indicate that pollock lengths-at-age and weights-at-age are smaller earlier in the season (Fig. 4-5). Should the fishery focus effort earlier in the B-season, then the yield per individual pollock will be lower. This would be reflected in the stock assessment analysis since updated mean weights-at-age would likely result in a lower ABC (and perhaps TAC), if all other factors are equal. Therefore, the potential biological effects of the any of the alternatives are expected to be correctly incorporated in the present pollock quota system.

Spatial effects of the alternatives on the size-at-age of pollock are compounded by seasonal effects, particularly within the summer-fall (B) season, even larger spatial and seasonal effects can be observed on weights-at-age (Fig. 4-6). While 170°W represents a proxy for fleet movement out of areas where salmon bycatch rates are high, this clearly demonstrates spatial consequences for expected size-at-age values assumed for pollock. Based on previous patterns of Chinook bycatch closures observed by the industry, most areas were east of 170°W, where the mean size at age is considerably larger than elsewhere. We can anticipate then that more restrictive closures will result in a general pattern that tends towards harvesting pollock at smaller sizes at age. As mentioned above, this would be reflected in the stock assessment analysis since updated mean weights-at-age are computed but could result in lower ABC and TAC recommendations.

The assumption that harvests may reach the pollock TAC under Alternative 3 depends on how difficult it is for fishermen to find pollock outside the closed areas. The data show that, in some years, the pollock catch rate is consistently higher outside the closed areas, although in other years the pollock catch rate is consistently lower for the CPs and inshore CVs and for the fleet as a whole (Fig. 4-7 through Fig. 4-12). Without evaluating a full catch-rate model that accounts for vessel size and other factors (search time, cooperative catch-rate reporting groups etc), this simple examination suggests that the extra effort required to fully catch the pollock TAC outside the closed area depends on when the closure occurs and where the pollock are, which, based on this analysis, appears to be highly variable between years.

The same pollock resource impacts identified for the hard caps under Alternative 2 would likely occur under Alternative 3 also—namely, that the fleet would be likely to fish earlier in the summer and tend to fish in areas farther from the core fishing grounds north of Unimak Island. Both of these effects would result in catches of pollock that are considerably smaller in mean size-at-age. This impact would likely result in smaller TACs since pollock harvests would not benefit from the summer growth period.

Table 4-1	Hypothetical closure dates, by year and season, under Alternative 2 Chinook salmon hard
	cap sector allocation Option 1 (Chinook bycatch allocated to sector proportional to pollock
	allocation).

opt1(AFA)					А					В		
AB Split	Cap	Sect	2003	2004	2005	2006	2007	2003	2004	2005	2006	2007
		CDQ										
	87 500	М				23-Feb	15-Feb					
	07,500	Р				21-Mar	13-Feb					
		S				10-Feb	2-Feb		23-Oct	8-Oct	22-Oct	10-Oct
		CDQ										
	68 100	М				18-Feb	2-Feb					
	00,100	Р	15-Mar			11-Mar	8-Feb					
50/50		S	23-Mar			7-Feb	29-Jan		12-Oct	3-Oct	13-Oct	5-Oct
		CDQ					3-Mar					25-Oct
48,700	48,700	М	15-Mar			8-Feb	28-Jan					
	- 9	Р	19-Feb		1-Mar	21-Feb	4-Feb					
		S	27-Feb	17-Mar	24-Feb	5-Feb	25-Jan		2-Oct	27-Sep	2-Oct	29-Sep
		CDQ	12-Mar			14-Mar	18-Feb		27-Sep			14-Oct
	29,300	M	13-Feb	26-Feb	l'/-Feb	3-Feb	24-Jan	9-Oct	23-Oct			18-Oct
	, i	P	II-Feb	I-Mar	11-Feb	8-Feb	26-Jan					23-Oct
		S	12-Feb	24-Feb	10-Feb	30-Jan	23-Jan	14-Oct	16-Sep	10-Sep	I7-Sep	14-Sep
		CDQ				 20 E.1	 20 E.1					
	87,500	M				28-Feb	28-Feb					
		P C				 16 Eab	18-Feb		 14 Oct	 5 Oct	 16 Oat	 6 Oct
		<u>S</u>				10-Feb	/ - Feb		14-Oct	5-0cl	16-001	6-0cl
		CDQ M				 21 Eab	 10 Eab					
	68,100	D				21-Fe0	10-гео 11 Eab					
		P C				0 Eab	21 Ion		 7 Oct	 1 Oct	 8 Oct	2 Oct
58/42		CDO				9-160	0 Mor		7-001	1-001	8-001	2-001
		M	 27_Mar			 10-Eeb	30-Jan		4-Nov			26-Oct
	48,700	P	27-101al 21-Feb		 14-Mar	26-Feb	6-Feb		4-1107			20-001
		S	21-100 8-Mar		7-Mar	6-Feb	26-Ian		28-Sen	22-Sen	26-Sen	21-Sen
		CDO			, iviui		20 Juli 21-Feb		23-Sen		20.500	12-Oct
		M	17-Feb	3-Mar	25-Feb	5-Feb	25-Jan	7-Oct	15-Oct			12-Oct
	29,300	Р	13-Feb	5-Mar	15-Feb	10-Feb	27-Jan					18-Oct
		S	15-Feb	1-Mar	13-Feb	1-Feb	23-Jan	8-Oct	12-Sep	1-Sep	13-Sep	12-Sep
		CDO										
	07 500	M										
	87,500	Р					1-Mar					
		S				21-Feb	14-Feb		5-Oct	29-Sep	5-Oct	30-Sep
		CDQ										18-Oct
	(0.100	Μ				24-Feb	21-Feb		4-Nov			26-Oct
	08,100	Р					16-Feb					
70/20		S				13-Feb	4-Feb		28-Sep	22-Sep	26-Sep	21-Sep
70/30		CDQ							27-Sep			14-Oct
	48 700	М				18-Feb	2-Feb	9-Oct	23-Oct			18-Oct
	40,700	Р	16-Mar			11-Mar	8-Feb					23-Oct
		S	23-Mar			7-Feb	29-Jan	13-Oct	16-Sep	10-Sep	17-Sep	14-Sep
		CDQ					25-Feb		14-Sep			7-Oct
	29 300	Μ	25-Feb	26-Mar	10-Mar	6-Feb	26-Jan	4-Oct	27-Sep			25-Sep
	27,500	Р	16-Feb	11-Mar	21-Feb	15-Feb	1-Feb	10-Oct		14-Sep		2-Oct
		S	20-Feb	9-Mar	17-Feb	3-Feb	24-Jan	3-Oct	6-Sep	22-Aug	7-Sep	9-Sep

opt2a					А					В		
AB Split	Cap	Sect	2003	2004	2005	2006	2007	2003	2004	2005	2006	2007
		CDQ	6-Mar			9-Mar	19-Feb		30-Sep			16-Oct
	87 500	М				14-Feb	30-Jan					
	87,500	Р	19-Feb		4-Mar	21-Feb	5-Feb					
		S				23-Feb	23-Feb			28-Oct		25-Oct
		CDQ	26-Feb	12-Mar	3-Mar	1-Mar	12-Feb		14-Sep			8-Oct
	68 100	М	6-Mar			6-Feb	29-Jan					
	00,100	Р	18-Feb	11-Mar	23-Feb	14-Feb	28-Jan					
50/50		S				22-Feb	7-Feb			12-Oct		17-Oct
50/50		CDQ	11-Feb	3-Mar	22-Feb	28-Feb	11-Feb	25-Sep	13-Sep			1-Oct
	48 700	М	18-Feb	4-Mar	24-Feb	6-Feb	22-Jan	9-Oct	28-Oct			25-Oct
	.0,700	Р	10-Feb	3-Mar	8-Feb	6-Feb	21-Jan					25-Oct
		S				7-Feb	30-Jan		14-Oct	4-Oct	19-Oct	8-Oct
		CDQ	2-Feb	23-Feb	14-Feb	19-Feb	3-Feb	2-Sep	5-Sep	14-Sep		23-Sep
	29.300	М	3-Feb	10-Feb	1-Feb	22-Jan	21-Jan	7-Oct	28-Sep			2-Oct
	_,,	Р	2-Feb	9-Feb	31-Jan	29-Jan	20-Jan	10-Oct		15-Sep		2-Oct
		S	26-Feb	18-Mar	24-Feb	5-Feb	22-Jan		28-Sep	26-Sep	3-Oct	23-Sep
		CDQ	14-Mar			17-Mar	20-Feb		22-Sep			9-Oct
	87.500	М				22-Feb	31-Jan					
	9	P	27-Feb			1-Mar	5-Feb					
		S				24-Mar	23-Mar			20-Oct		17-Oct
		CDQ	5-Mar		11-Mar	9-Mar	12-Feb	10-Oct	14-Sep			8-Oct
	68,100	M	21-Mar			/-Feb	30-Jan	T7-Oct	5-Nov			26-Oct
	·	P	19-Feb	19-Mar	3-Mar	21-Feb	5-Feb					2-Nov
58/42		S	11 5 1			23-Feb	15-Feb		28-Oct	12-Oct	27-Oct	9-Oct
		CDQ	11-Feb	11-Mar	23-Feb	28-Feb		1/-Sep	6-Sep	30-Sep		30-Sep
	48,700	M	19-Feb	12-Mar	4-Mar	6-Feb	22-Jan	8-Oct	20-Oct			17-Oct
		P	11-Feb	3-Mar	15-Feb	6-Feb	28-Jan		12 0-4	2 0.4		1/-Oct
		<u>S</u>	 10 Eab	 24 Eab	 21 Eab	/-Feb	30-Jan	 1 Sam	13-Oct	3-0cl	11-Oct	1-0ct
		CDQ M	10-Feb	24-FCU 17 Eab	21-FCU 9 Eab	20-Fe0	21 Ion	1-Sep	29-Aug	7-Sep		23-Sep
	29,300	D NI	10-Feb	0 Ech	о-гео 21 Ion	29-Jan 5 Eab	21-Jan	29-Sep	27-Sep	7 San		24-Sep
		P S	2-reb	9-FCU 26 Mor	2 Mor	5-reb	20-Jan 22 Jan	2-001	24-Sep	7-Sep	 25 Son	24-Sep
		CDO	0-1v1a1	20-141	J-Iviai	0-1.60	22-Jali 21-Eeb	3-Oct	27-Sep	18-Sep	25-Sep	8-Oct
		M				23_Eeb	21-Feb	17-Oct	28-Oct			25-Oct
	87,500	P	21_Mar			25-100 16-Mar	6-Feb	17-000	20-000			25-0ct
		S	21 Miui						21-Oct	4-Oct	19-Oct	20 Oct
		CDO	13-Mar			17-Mar	20-Feb	17-Sep	6-Sen	30-Sep		30-Sen
		M				15-Feb	31-Jan	8-Oct	20-Oct			17-Oct
	68,100	Р	20-Feb		11-Mar	1-Mar	5-Feb					17-Oct
		S				10-Mar	16-Mar		13-Oct	3-Oct	11-Oct	1-Oct
70/30		CDO	26-Feb	12-Mar	3-Mar	1-Mar	12-Feb	2-Sep	5-Sep	14-Sep		23-Sep
		M	6-Mar			6-Feb	29-Jan	7-Oct	28-Sep			2-Oct
	48,700	Р	18-Feb	11-Mar	23-Feb	14-Feb	28-Jan	10-Oct		15-Sep		2-Oct
		S				22-Feb	7-Feb		28-Sep	26-Sep	3-Oct	23-Sep
		CDQ	10-Feb	2-Mar	22-Feb	20-Feb	11-Feb	1-Sep	29-Aug	29-Aug		1-Sep
	20.200	M	11-Feb	25-Feb	16-Feb	29-Jan	21-Jan	29-Sep	12-Sep	22-Sep		2-Sep
	29,300	Р	10-Feb	17-Feb	7-Feb	5-Feb	21-Jan	9-Sep	1-Sep	30-Aug		10-Sep
		S	21-Mar			6-Feb	29-Jan	16-Oct	12-Sep	4-Sep	10-Sep	9-Sep

Table 4-2Hypothetical closure dates, by year and season, under Alternative 2 Chinook salmon hard
cap sector allocation Option 2a (3-year (2004-2006) average).

opt 2d	(-)		А					В		
AB Split	Сар	Sect	2003	2004	2005	2006	2007	2003	2004	2005	2006	2007
	1	CDQ					9-Mar					
	07 500	M				19-Feb	5-Feb					
	87,500	Р	18-Mar			11-Mar	8-Feb					
		S				19-Feb	11-Feb			14-Oct		16-Oct
		CDQ					28-Feb					20-Oct
	(0.100	Μ	28-Mar			10-Feb	30-Jan					
	68,100	Р	21-Feb		6-Mar	25-Feb	5-Feb					
50/50		S				10-Feb	1-Feb		23-Oct	8-Oct	22-Oct	10-Oct
30/30		CDQ	17-Mar				20-Feb		29-Sep			15-Oct
	48 700	Μ	24-Feb	15-Mar	9-Mar	6-Feb	26-Jan	24-Oct	4-Nov			26-Oct
	40,700	Р	15-Feb	9-Mar	18-Feb	13-Feb	31-Jan					
		S	17-Mar		24-Mar	6-Feb	27-Jan		10-Oct	2-Oct	10-Oct	3-Oct
		CDQ	21-Feb	10-Mar	25-Feb	1-Mar	13-Feb		16-Sep			8-Oct
	29 300	М	10-Feb	18-Feb	10-Feb	30-Jan	23-Jan	7-Oct	14-Oct			13-Oct
	27,500	Р	8-Feb	17-Feb	6-Feb	5-Feb	24-Jan					14-Oct
		S	17-Feb	5-Mar	15-Feb	2-Feb	24-Jan		26-Sep	19-Sep	22-Sep	19-Sep
		CDQ										24-Oct
	87 500	М				22-Feb	13-Feb					
	07,500	Р				16-Mar	11-Feb					
		S				23-Feb	16-Feb		26-Oct	10-Oct	25-Oct	11-Oct
		CDQ					5-Mar					17-Oct
	68 100	М				18-Feb	1-Feb					
	00,100	Р	28-Feb			3-Mar	7-Feb					
58/42		S				16-Feb	6-Feb		14-Oct	5-Oct	15-Oct	6-Oct
		CDQ					22-Feb		25-Sep			13-Oct
	48,700	M	11-Mar			8-Feb	27-Jan	11-Oct	27-Oct			22-Oct
	,	P	l'/-Feb	16-Mar	26-Feb	18-Feb	3-Feb					26-Oct
		S	27-Mar			8-Feb	29-Jan		5-Oct	28-Sep	5-Oct	30-Sep
		CDQ	I-Mar	l'/-Mar	5-Mar	3-Mar	15-Feb	1-Oct	12-Sep			6-Oct
	29,300	M	12-Feb	24-Feb	16-Feb	3-Feb	24-Jan	5-Oct	1-Oct			3-Oct
		P	9-Feb	28-Feb	9-Feb	/-Feb	25-Jan	17.0.4		20-Sep		6-Oct
		S	21-Feb	13-Mar	18-Feb	4-Feb	25-Jan	1/-Oct	18-Sep	14-Sep	18-Sep	15-Sep
		CDQ				 1 Man	 1 Man		1-Oct			16-Oct
	87,500	M D				1-Mar	1-Mar					
		P S				 17 Mor	10-Feb		12 Oct	2 Oct	 12 Oct	 5 Oct
		S CDO				1 /-Iviai	22-iviai		12-0ct	3-0cl	13-00	12 Oct
		M				 21 Eab	 10 Eab	11 Oct	23-Sep			13-001 22 Oct
	68,100	D				21-FC0	10-Feb	11-001	27-001			22-001 26 Oct
		г С				21 Eab	10-Feb		4 Oct	 28 San	 5 Oct	20-001 30 Sen
70/30		CDO				21-100	28-Eeb		16-Sen	20-50p	5-00	8-Oct
		M	28-Mar			 10-Feb	20-1 CO 30-Ian	7-Oct	14-Oct			13-Oct
48	48,700	P	20-141ai 21_Feb		7-Mar	25-Feb	5-Feb	/-001				13-Oct
		S	21-1.00		/ -1v1a1	10-Feb	1-Feb		26-Sen	19-Sep	 22-Sen	19-Sen
		CDO	7-Mar			10-Mar	17-Feb	15-Sep	7-Sep	27-Sep		30-Sen
		M	17-Feb	3-Mar	26-Feb	5-Feb	25-Jan	30-Sep	22-Sep	13-Oct		13-Sep
	29,300	P	12-Feb	3-Mar	14-Feb	9-Feb	26-Ian	28-Sep	17-Sep	8-Sen		23-Sen
		S	3-Mar	21-Mar	1-Mar	5-Feb	26-Jan	7-Oct	10-Sep	29-Aug	12-Sep	11-Sep
		~	5 11141			2 1 00	_0 0 uii	,	10 D c p			11 Sep

Table 4-3Hypothetical closure dates, by year and season, under Alternative 2 Chinook salmon hard
cap section allocation Option 2d (midpoints of the ranges provided by Option 1 and options
2(a-c) by sector).

	2003			opt1 (AFA)			opt2a			opt2d	
Seas	Cap	Sect	50/50	58/42	70/30	50/50	58/42	70/30	50/50	58/42	70/30
		CDQ	0	0	0	20,158	7,826	0	0	0	0
	07.500	Μ	0	0	0	0	0	0	0	0	0
	87,500	Р	0	0	0	96,403	77,278	21,454	22,130	0	0
		S	0	0	0	0	0	0	0	0	0
	87,500) Total	0	0	0	116,561	85,104	21,454	22,130	0	0
		CDQ	0	0	0	37,301	21,437	8,343	0	0	0
	(0.100	Μ	0	0	0	10,189	2,410	0	19	0	0
	68,100	Р	22,491	0	0	99,692	97,845	95,074	95,568	76,553	0
		S	1,401	0	0	0	0	0	0	0	0
	68,100) Total	23,892	0	0	147,183	121,693	103,416	95,587	76,553	0
А		CDQ	0	0	0	48,057	47,756	37,294	766	0	0
	40.700	Μ	2,785	28	0	22,209	21,796	10,184	16,153	7,690	16
	48,700	Р	97,084	94,819	22,466	127,140	125,500	99,679	100,033	98,240	95,550
		S	90,166	37,904	1,389	0	0	0	14,291	831	0
	48,700) Total	190,035	132,750	23,856	197,405	195,053	147,157	131,242	106,761	95,566
	,	CDQ	8,148	0	0	51,899	48,624	48,353	44,328	22,243	19,951
	20.200	Μ	28,630	22,088	16,109	37,246	29,542	28,899	29,301	28,765	22,072
	29,300	Р	126,818	125,127	99,316	155,741	154,835	128,755	129,019	127,681	125,673
	20.200	S	158,705	126,121	123,209	91,428	60,538	13,805	124,692	122,211	60,708
	29,300) Total	322,301	273,337	238,633	336,314	293,540	219,812	327,340	300,899	228,404
		CDQ	0	0	0	0	0	2,071	0	0	0
	07.500	Μ	0	0	0	0	0	1,158	0	0	0
	87,500	Р	0	0	0	0	0	0	0	0	0
		S	0	0	0	0	0	0	0	0	0
	87,500) Total	0	0	0	0	0	3,229	0	0	0
		CDQ	0	0	0	0	21	24,610	0	0	0
	(0.100	Μ	0	0	0	0	1,059	3,368	0	0	1,188
	68,100	Р	0	0	0	0	0	0	0	0	0
		S	0	0	0	0	0	0	0	0	0
D	68,100) Total	0	0	0	0	1,080	27,978	0	0	1,188
В		CDQ	0	0	0	10,863	24,599	51,807	0	0	0
	40.700	Μ	0	0	3,205	2,939	3,366	4,006	2	1,187	3,606
	48,700	Р	0	0	0	0	0	339	0	0	0
		S	0	0	1,715	0	0	0	0	0	0
	48,700) Total	0	0	4,920	13,802	27,965	56,153	2	1,187	3,606
		CDQ	0	0	0	51,792	52,696	54,052	0	1,962	25,243
	20.200	Μ	3,199	3,584	4,163	4,002	7,733	8,144	3,600	3,922	7,888
	29,300	Р	0	0	254	332	3,769	22,870	0	0	3,851
		S	1,687	14,503	28,900	0	0	2,377	0	927	15,217
	29,300) Total	4,885	18,088	33,317	56,126	64,199	87,444	3,600	6,811	52,199

Table 4-4Hypothetical forgone pollock catch, in mt, by season and sector, under Alternative 2
Chinook salmon hard cap sector allocation options for 2003.

	2004			opt1 (AFA)			opt2a			opt2d	
Seas	Cap	Sect	50/50	58/42	70/30	50/50	58/42	70/30	50/50	58/42	70/30
		CDQ	0	0	0	0	0	0	0	0	0
	07.500	Μ	0	0	0	0	0	0	0	0	0
	87,500	Р	0	0	0	0	0	0	0	0	0
		S	0	0	0	0	0	0	0	0	0
	87,500) Total	0	0	0	0	0	0	0	0	0
		CDQ	0	0	0	3,925	0	0	0	0	0
	(9.100	Μ	0	0	0	0	0	0	0	0	0
	08,100	Р	0	0	0	29,340	5,088	0	0	0	0
		S	0	0	0	0	0	0	0	0	0
	68,100) Total	0	0	0	33,266	5,088	0	0	0	0
A		CDQ	0	0	0	13,464	5,064	3,917	0	0	0
	10 700	М	0	0	0	5,227	1,698	0	352	0	0
	48,700	Р	0	0	0	57,292	55,245	29,318	29,907	5,688	0
		S	12,967	0	0	0	0	0	0	0	0
	48,700) Total	12,967	0	0	75,983	62,007	33,235	30,259	5,688	0
		CDQ	0	0	0	24,655	24,044	14,268	4,378	350	0
	20.200	М	11,255	5,016	0	26,232	18,684	11,511	18,339	11,383	4,989
	29,300	Р	56,891	54,779	28,713	128,084	126,560	100,623	100,940	57,969	55,461
	29,300	S	101,177	66,910	36,923	14,112	414	0	64,926	14,899	502
	29,300) Total	169,322	126,705	65,636	193,082	169,701	126,402	188,584	84,601	60,952
		CDQ	0	0	0	4,517	15,260	29,375	0	0	2,605
	87 500	М	0	0	0	0	0	839	0	0	0
	87,500	Р	0	0	0	0	0	0	0	0	0
		S	1,179	14,423	28,629	0	0	6,791	0	836	15,307
	87,500) Total	1,179	14,423	28,629	4,517	15,260	37,004	0	836	17,912
		CDQ	0	0	0	27,694	28,868	45,713	0	0	4,442
	68 100	М	0	0	7	0	38	3,084	0	0	894
	08,100	Р	0	0	0	0	0	0	0	0	0
		S	15,167	28,266	37,867	0	1,100	15,792	1,205	14,479	28,652
В	68,100) Total	15,167	28,266	37,875	27,694	30,005	64,589	1,205	14,479	33,988
D		CDQ	0	0	3,796	29,784	45,707	47,251	3,205	4,435	28,210
	48 700	М	0	7	1,176	987	3,083	9,003	11	892	3,652
	40,700	Р	0	0	0	0	0	0	0	0	0
		S	28,923	37,863	66,671	14,112	15,782	37,498	15,976	28,647	38,150
	48,700) Total	28,923	37,870	71,643	44,883	64,572	93,752	19,191	33,974	70,012
		CDQ	3,777	14,487	28,717	47,240	60,298	60,963	28,191	29,286	46,079
	29 300	М	1,171	3,649	9,405	8,991	9,652	23,297	3,651	8,785	17,447
	29,500	Р	0	0	0	0	1,707	24,782	0	0	3,916
		S	66,658	67,412	91,922	37,488	38,074	66,972	38,142	50,469	90,778
	29,300) Total	71,606	85,548	130,044	93,720	109,732	176,014	69,985	88,539	158,220

Table 4-5Hypothetical forgone pollock catch, in mt, by season and sector, under Alternative 2
Chinook salmon hard cap sector allocation options for 2004.

2005			opt1 (A	FA)		opt2a			opt2d		
Seas	Cap	Sect	50/50	58/42	70/30	50/50	58/42	70/30	50/50	58/42	70/30
		CDQ	0	0	0	0	0	0	0	0	0
	97 500	М	0	0	0	0	0	0	0	0	0
	87,300	Р	0	0	0	42,708	0	0	0	0	0
		S	0	0	0	0	0	0	0	0	0
	87,500) Total	0	0	0	42,708	0	0	0	0	0
		CDQ	0	0	0	11,604	2,842	0	0	0	0
	68 100	М	0	0	0	0	0	0	0	0	0
	08,100	Р	0	0	0	71,056	44,828	17,785	18,460	0	0
		S	0	0	0	0	0	0	0	0	0
Δ.	68,100) Total	0	0	0	82,660	47,670	17,785	18,460	0	0
л		CDQ	0	0	0	22,548	21,334	11,599	0	0	0
	48 700	М	0	0	0	11,464	4,273	0	85	0	0
	40,700	Р	43,709	1,494	0	120,999	94,852	71,039	92,724	45,408	18,435
		S	92,796	33,715	0	0	0	0	46	0	0
	48,700) Total	136,505	35,209	0	155,010	120,459	82,638	92,855	45,408	18,435
		CDQ	0	0	0	34,189	24,838	23,743	20,246	3,344	0
29	20 200	М	19,477	11,189	46	33,508	26,538	19,820	26,360	19,649	4,785
	29,300	Р	120,586	94,459	70,588	152,222	151,010	123,074	123,413	121,694	95,034
		S	159,298	129,990	127,648	94,569	60,558	0	128,840	126,845	60,768
	29,300) Total	299,361	235,638	198,283	314,488	262,944	166,637	298,859	271,532	160,587
		CDQ	0	0	0	0	0	0	0	0	0
	87 500	М	0	0	0	0	0	0	0	0	0
	87,500	Р	0	0	0	0	0	0	0	0	0
		S	21,875	36,695	52,973	1,497	13,078	35,965	19,793	21,325	37,268
	87,500) Total	21,875	36,695	52,973	1,497	13,078	35,965	19,793	21,325	37,268
		CDQ	0	0	0	0	0	96	0	0	0
	68 100	М	0	0	0	0	0	0	0	0	0
	00,100	Р	0	0	0	0	0	0	0	0	0
		S	37,177	38,151	70,555	20,296	21,748	37,583	21,916	36,731	53,000
в	68,100) Total	37,177	38,151	70,555	20,296	21,748	37,679	21,916	36,731	53,000
D		CDQ	0	0	0	0	93	5,462	0	0	0
	48 700	М	0	0	0	0	0	0	0	0	0
	40,700	Р	0	0	0	0	0	27,981	0	0	0
		S	53,331	70,550	88,977	36,493	37,576	53,637	37,702	52,994	70,943
	48,700) Total	53,331	70,550	88,977	36,493	37,669	87,081	37,702	52,994	70,943
		CDQ	0	0	0	5,455	9,593	13,781	0	0	262
	29 300	М	0	0	0	0	0	9,001	0	0	2,215
	27,500	Р	0	0	27,537	27,942	48,725	73,400	0	13,916	49,121
		S	88,968	125,252	148,561	53,626	70,839	105,794	70,932	88,732	125,524
	29,300) Total	88,968	125,252	176,099	87,022	129,156	201,977	70,932	102,647	177,122

Table 4-6Hypothetical forgone pollock catch, in mt, by season and sector, under Alternative 2
Chinook salmon hard cap sector allocation options for 2005.

2006			opt1 (A	FA)		opt2a			opt2d		
Seas	Сар	Sect	50/50	58/42	70/30	50/50	58/42	70/30	50/50	58/42	70/30
		CDQ	0	0	0	9,338	1,128	0	0	0	0
	97 500	М	7,656	2,436	0	19,404	9,561	8,216	9,057	7,936	2,418
	87,300	Р	696	0	0	75,155	50,555	8,288	8,658	6,781	0
		S	163,745	130,857	93,329	90,223	538	0	95,770	91,687	11,747
	87,500) Total	172,097	133,293	93,329	194,120	61,783	16,504	113,485	106,405	14,165
		CDQ	0	0	0	19,866	10,114	1,528	0	0	0
	69 100	М	9,519	8,473	6,903	27,576	27,083	19,055	26,806	9,737	8,429
	08,100	Р	8,857	7,011	0	100,767	76,409	51,445	51,867	49,730	7,607
		S	168,111	165,659	131,854	97,110	93,242	35,663	163,854	130,948	93,484
	68,100) Total	186,487	181,143	138,757	245,319	206,848	107,691	242,527	190,415	109,520
A		CDQ	0	0	0	21,190	20,658	19,860	0	0	0
	18 700	М	27,352	26,823	9,512	28,453	28,101	27,572	27,903	27,462	26,801
	40,700	Р	75,747	51,228	8,843	130,488	129,038	100,756	101,061	76,752	51,852
		S	172,477	170,723	168,093	166,388	163,660	97,082	169,432	167,192	163,831
	48,700) Total	275,575	248,774	186,448	346,520	341,458	245,270	298,396	271,406	242,483
		CDQ	1,377	0	0	32,319	31,838	31,116	20,181	19,487	9,213
	20,200	М	37,947	28,350	27,873	48,257	38,560	38,127	38,397	38,037	28,337
	29,300	Р	130,203	128,708	100,442	157,797	133,225	131,916	132,150	130,966	129,191
		S	213,627	212,549	210,932	173,179	171,538	169,077	211,755	173,663	171,641
	29,300) Total	383,154	369,607	339,247	411,552	375,160	370,237	402,484	362,154	338,382
		CDQ	0	0	0	0	0	0	0	0	0
	87 500	М	0	0	0	0	0	0	0	0	0
	87,500	Р	0	0	0	0	0	0	0	0	0
		S	2,369	16,791	51,273	0	0	15,716	0	1,574	31,642
	87,500) Total	2,369	16,791	51,273	0	0	15,716	0	1,574	31,642
		CDQ	0	0	0	0	0	0	0	0	0
	68 100	М	0	0	0	0	0	0	0	0	0
	00,100	Р	0	0	0	0	0	0	0	0	0
		S	31,485	33,166	75,284	0	2,185	32,186	2,429	16,844	51,328
в	68,100) Total	31,485	33,166	75,284	0	2,185	32,186	2,429	16,844	51,328
Б		CDQ	0	0	0	0	0	0	0	0	0
	48 700	М	0	0	0	0	0	0	0	0	0
	+0,700	Р	0	0	0	0	0	0	0	0	0
		S	52,005	75,273	102,616	16,494	32,174	52,630	32,391	51,317	100,590
48	48,700) Total	52,005	75,273	102,616	16,494	32,174	52,630	32,391	51,317	100,590
		CDQ	0	0	0	0	0	0	0	0	0
	29 300	М	0	0	0	0	0	0	0	0	0
	27,500	Р	0	0	0	0	0	0	0	0	0
		S	102,596	123,886	137,539	52,606	75,882	123,384	100,564	102,060	124,281
	29,300) Total	102,596	123,886	137,539	52,606	75,882	123,384	100,564	102,060	124,281

Table 4-7Hypothetical forgone pollock catch, in mt, by season and sector, under Alternative 2
Chinook salmon hard cap sector allocation options for 2006.

	2007 Seas Cap Sect			opt1 (AFA))		opt2a			opt2d	
Seas	Cap	Sect	50/50	58/42	70/30	50/50	58/42	70/30	50/50	58/42	70/30
		CDO	0	0	0	32,259	31,706	30,877	7,668	0	0
	o - - 00	M	20,516	6,362	0	35,056	34,383	20,894	27,895	20,705	6,334
	87,500	Р	90,321	70,523	52,285	122,086	120,514	118,157	118,578	91,456	88,815
		S	195,946	165,042	131,609	100,269	2,042	0	133,582	130,281	2,198
	87,500) Total	306,783	241,927	183,894	289,670	188,645	169,928	287,723	242,442	97,346
		CDQ	0	0	0	41,022	40,603	31,950	19,399	8,493	0
	(0.100	M	34,351	21,068	12,063	35,990	35,465	34,679	35,170	34,515	21,038
	68,100	Р	118,803	91,672	89,075	148,007	123,040	121,206	121,533	119,873	92,230
		S	199,131	197,342	166,208	164,203	131,538	21,672	196,025	165,148	131,734
	68,100) Total	352,286	310,081	267,346	389,222	330,647	209,506	372,128	328,029	245,002
A		CDQ	8,888	7,725	0	41,768	41,469	41,019	31,548	30,881	19,389
	48 700	М	35,751	35,189	34,346	45,051	44,648	35,986	44,421	35,869	35,166
	48,700	Р	122,536	121,037	118,788	184,499	149,054	148,000	148,188	123,301	121,521
		S	229,763	228,386	199,118	197,874	195,884	164,179	200,095	198,461	196,009
	48,700) Total	396,939	392,337	352,251	469,193	431,055	389,184	424,253	388,512	372,084
		CDQ	31,858	31,241	19,998	48,575	42,334	42,064	41,200	40,809	32,205
	20.200	М	45,296	44,933	44,387	46,054	45,811	45,448	45,675	45,372	44,918
	29,300	Р	184,265	148,894	147,807	187,474	186,755	185,677	185,869	184,894	183,431
	29 300	S	233,193	232,364	231,121	230,315	229,026	199,836	231,754	230,695	229,107
	29,300) Total	494,612	457,431	443,314	512,418	503,927	473,024	504,499	501,770	489,660
		CDQ	0	0	0	2,998	5,233	5,443	0	1,167	2,614
	87 500	М	0	0	0	0	0	2,619	0	0	0
	07,500	Р	0	0	0	0	0	5,198	0	0	0
		S	39,362	40,200	53,563	9,415	24,271	39,711	24,475	38,978	52,578
	87,500) Total	39,362	40,200	53,563	12,413	29,504	52,971	24,475	40,146	55,192
		CDQ	0	0	2,286	5,287	5,396	7,397	1,215	2,465	2,983
	68 100	М	0	0	2,269	0	2,432	5,447	0	0	2,675
	00,100	Р	0	0	0	0	203	14,938	0	0	4,791
		S	52,509	53,245	71,474	24,950	39,274	52,816	39,391	40,224	53,582
В	68,100) Total	52,509	53,245	76,029	30,237	47,305	80,598	40,606	42,689	64,032
D		CDQ	1,155	2,283	2,853	7,310	7,397	9,980	2,735	2,981	5,335
	48 700	М	0	2,267	5,357	2,770	5,446	9,528	2,286	2,673	5,579
	10,700	Р	0	0	5,529	5,721	14,932	29,967	0	4,782	15,095
48,		S	53,819	71,471	85,600	40,065	52,811	61,216	52,906	53,578	71,691
	48,700) Total	54,974	76,021	99,340	55,865	80,585	110,691	57,926	64,015	97,701
		CDQ	2,849	5,147	5,382	9,978	10,050	13,643	5,333	5,435	7,428
	29,300	М	5,353	5,567	12,449	9,525	12,532	22,040	5,576	9,471	18,003
		Р	5,510	14,765	29,851	29,956	37,605	58,892	15,081	22,844	37,689
	L	S	85,594	85,943	86,466	61,212	71,633	85,740	71,685	72,055	86,103
	29300) Total	99,307	111,422	134,148	110,673	131,820	180,315	97,676	109,805	149,222

Table 4-8Hypothetical forgone pollock catch, in mt, by season and sector, under Alternative 2
Chinook salmon hard cap sector allocation options for 2007.

(Cap scenario	CAP	2003	2004	2005	2006	2007
87,500	1-1: 70/30	61,250					6-Mar
	1-2: 58/42	50,750				12-Mar	18-Feb
	1-3: 55/45	48,125				4-Mar	17-Feb
	1-4: 50/50	43,750				25-Feb	16-Feb
68,100	1-1: 70/30	47,670				3-Mar	17-Feb
	1-2: 58/42	39,498				22-Feb	13-Feb
	1-3: 55/45	37,455				21-Feb	12-Feb
	1-4: 50/50	34,050				19-Feb	10-Feb
48,700	1-1: 70/30	34,090				19-Feb	10-Feb
	1-2: 58/42	28,246	12-Mar			12-Feb	6-Feb
	1-3: 55/45	26,785	10-Mar		15-Mar	12-Feb	5-Feb
	1-4: 50/50	24,350	5-Mar		4-Mar	10-Feb	3-Feb
29,300	1-1: 70/30	20,510	22-Feb	14-Mar	26-Feb	7-Feb	31-Jan
	1-2: 58/42	16,994	19-Feb	7-Mar	17-Feb	6-Feb	28-Jan
	1-3: 55/45	16,115	18-Feb	6-Mar	15-Feb	6-Feb	28-Jan
	1-4: 50/50	14,650	16-Feb	2-Mar	14-Feb	6-Feb	28-Jan

Table 4-9A-season fleetwide closure date scenarios by year reflecting when each Alternative 2 cap
level would have been exceeded in each year.

Table 4-10Hypothetical forgone pollock catch estimated from all vessels at the time fleetwide A-
season closures were invoked under Alternative 2 on the dates provided in Table 4-9.

Pollock				Sec	tor (All), A sea	son	
Cap scenario		CAP	2003	2004	2005	2006	2007
87,500	1-1: 70/30	61,250					118,839
	1-2: 58/42	50,750				73,600	249,878
	1-3: 55/45	48,125				149,049	256,242
	1-4: 50/50	43,750				223,068	266,316
68,100	1-1: 70/30	47,670				159,612	256,242
	1-2: 58/42	39,498				252,395	298,484
	1-3: 55/45	37,455				262,180	309,889
	1-4: 50/50	34,050				284,894	327,167
48,700	1-1: 70/30	34,090				284,894	327,167
	1-2: 58/42	28,246	106,465			357,833	366,132
	1-3: 55/45	26,785	124,915		37,483	357,833	374,767
	1-4: 50/50	24,350	162,583		139,743	379,588	391,740
29,300	1-1: 70/30	20,510	278,458	66,515	214,138	410,952	430,075
	1-2: 58/42	16,994	306,771	131,587	295,708	420,195	460,173
	1-3: 55/45	16,115	313,744	140,323	312,428	420,195	460,173
	1-4: 50/50	14,650	328,885	182,337	323,323	420,195	460,173

Pollock				At-sea pr	ocessors, A s	eason	
Cap scenario		CAP	2003	2004	2005	2006	2007
87,500	1-1: 70/30	61,250					57,380
	1-2: 58/42	50,750				32,495	114,870
	1-3: 55/45	48,125				74,155	117,816
	1-4: 50/50	43,750				102,435	121,417
68,100	1-1: 70/30	47,670				78,162	117,816
	1-2: 58/42	39,498				114,607	133,134
	1-3: 55/45	37,455				119,214	137,803
	1-4: 50/50	34,050				127,007	145,973
48,700	1-1: 70/30	34,090				127,007	145,973
	1-2: 58/42	28,246	61,622			160,555	163,773
	1-3: 55/45	26,785	69,744		12,165	160,555	170,023
	1-4: 50/50	24,350	86,804		63,350	168,087	179,879
29,300	1-1: 70/30	20,510	142,483	29,118	95,696	182,192	192,671
	1-2: 58/42	16,994	153,534	62,258	134,210	187,258	205,379
	1-3: 55/45	16,115	156,707	65,354	142,525	187,258	205,379
	1-4: 50/50	14,650	162,422	85,213	147,369	187,258	205,379

Table 4-11Hypothetical forgone pollock catch estimated from **at-sea processors** at the time fleetwide
A-season closures were invoked under Alternative 2 on the dates provided in Table 4-9.

Table 4-12Hypothetical forgone pollock catch estimated from shorebased catcher vessels at the time
fleetwide A-season closures were invoked under Alternative 2 on the dates provided in
Table 4-9.

Pollock				Insł	nore CV, A se	ason	
Cap scenario		CAP	2003	2004	2005	2006	2007
87,500	1-1: 70/30	61,250					52,892
	1-2: 58/42	50,750				36,681	113,198
	1-3: 55/45	48,125				66,745	115,146
	1-4: 50/50	43,750				105,560	120,188
68,100	1-1: 70/30	47,670				72,544	115,146
	1-2: 58/42	39,498				118,657	136,116
	1-3: 55/45	37,455				122,460	142,134
	1-4: 50/50	34,050				134,426	150,122
48,700	1-1: 70/30	34,090				134,426	150,122
	1-2: 58/42	28,246	37,427			167,556	168,466
	1-3: 55/45	26,785	46,908		24,503	167,556	169,944
	1-4: 50/50	24,350	64,618		67,047	178,948	175,269
29,300	1-1: 70/30	20,510	114,917	34,006	102,827	192,424	196,449
	1-2: 58/42	16,994	129,926	61,607	136,775	196,527	210,593
	1-3: 55/45	16,115	133,210	66,453	143,189	196,527	210,593
	1-4: 50/50	14,650	142,168	84,355	148,367	196,527	210,593

Pollock				Mothersh	ip operation	s, A season	
Cap scenario		CAP	2003	2004	2005	2006	2007
87,500	1-1: 70/30	61,250					8,566
	1-2: 58/42	50,750				4,425	21,811
	1-3: 55/45	48,125				8,149	23,280
	1-4: 50/50	43,750				15,074	24,711
68,100	1-1: 70/30	47,670				8,906	23,280
	1-2: 58/42	39,498				19,132	29,234
	1-3: 55/45	37,455				20,506	29,952
	1-4: 50/50	34,050				23,460	31,071
48,700	1-1: 70/30	34,090				23,460	31,071
	1-2: 58/42	28,246	7,416			29,722	33,893
	1-3: 55/45	26,785	8,263		815	29,722	34,800
	1-4: 50/50	24,350	11,161		9,346	32,553	36,592
29,300	1-1: 70/30	20,510	21,057	3,391	15,615	36,336	40,955
	1-2: 58/42	16,994	23,311	7,723	24,724	36,411	44,201
	1-3: 55/45	16,115	23,827	8,516	26,715	36,411	44,201
	1-4: 50/50	14,650	24,295	12,770	27,587	36,411	44,201

Table 4-13Hypothetical forgone pollock catch estimated from mothership operations at the time
fleetwide A-season closures were invoked under Alternative 2 on the dates provided in
Table 4-9.

Table 4-14B-season fleetwide trigger-closure date scenarios by year reflecting when the Alternative 2
cap level would have been exceeded in each year.

Cap scenario		CAP	2003	2004	2005	2006	2007
87,500	1-1: 70/30	26,250		25-Oct	13-Oct		13-Oct
	1-2: 58/42	36,750			30-Oct		26-Oct
	1-3: 55/45	39,375					28-Oct
	1-4: 50/50	43,750					31-Oct
68,100	1-1: 70/30	20,430		12-Oct	7-Oct	22-Oct	9-Oct
	1-2: 58/42	28,602		30-Oct	19-Oct		16-Oct
	1-3: 55/45	30,645			25-Oct		18-Oct
	1-4: 50/50	34,050			28-Oct		23-Oct
48,700	1-1: 70/30	14,610		2-Oct	1-Oct	12-Oct	30-Sep
	1-2: 58/42	20,454		12-Oct	7-Oct	22-Oct	9-Oct
	1-3: 55/45	21,915		14-Oct	9-Oct	26-Oct	10-Oct
	1-4: 50/50	24,350		20-Oct	11-Oct		11-Oct
29,300	1-1: 70/30	8,790	8-Oct	14-Sep	10-Sep	21-Sep	16-Sep
	1-2: 58/42	12,306	14-Oct	27-Sep	24-Sep	3-Oct	23-Sep
	1-3: 55/45	13,185		1-Oct	26-Sep	5-Oct	27-Sep
	1-4: 50/50	14,650		2-Oct	1-Oct	12-Oct	30-Sep

Cap scenario	0	CAP	2003	2004	2005	2006	2007
87,500	1-1: 70/30	26,250		5,380	22,837		71,041
	1-2: 58/42	36,750			648		21,433
	1-3: 55/45	39,375					15,070
	1-4: 50/50	43,750					2,636
68,100	1-1: 70/30	20,430		20,373	34,894	20,338	84,320
	1-2: 58/42	28,602		2,156	14,292		60,036
	1-3: 55/45	30,645			9,693		53,280
	1-4: 50/50	34,050			2,166		31,171
48,700	1-1: 70/30	14,610		39,409	50,710	57,544	111,799
	1-2: 58/42	20,454		20,373	34,894	20,338	84,320
	1-3: 55/45	21,915		15,792	32,648	10,138	80,740
	1-4: 50/50	24,350		8,273	27,731		77,229
29,300	1-1: 70/30	8,790	27,727	138,524	151,247	166,009	152,958
	1-2: 58/42	12,306	12,310	59,879	78,447	96,274	129,625
	1-3: 55/45	13,185		41,154	69,545	87,372	117,657
	1-4: 50/50	14,650		39,409	50,710	57,544	111,799

Table 4-15 Hypothetical forgone pollock catch estimated from **all vessels** at the time fleetwide Bseason closures were invoked under Alternative 2 on the dates provided in Table 4-14.

Table 4-16Hypothetical forgone pollock catch estimated from **at-sea processors** at the time fleetwide
B-season closures were invoked under Alternative 2 on the dates provided in Table 4-14.

Pollock—at-sea proce	ssors		B season				
Cap scenario		CAP	2003	2004	2005	2006	2007
87,500	1-1: 70/30	26,250		0	0		22,708
	1-2: 58/42	36,750			0		6,776
	1-3: 55/45	39,375					4,176
	1-4: 50/50	43,750					397
68,100	1-1: 70/30	20,430		5	0	998	26,445
	1-2: 58/42	28,602		0	0		19,651
	1-3: 55/45	30,645			0		17,790
	1-4: 50/50	34,050			0		10,108
48,700	1-1: 70/30	14,610		2,685	3,184	12,771	37,642
	1-2: 58/42	20,454		5	0	998	26,445
	1-3: 55/45	21,915		0	0	0	25,335
	1-4: 50/50	24,350		0	0		24,309
29,300	1-1: 70/30	8,790	1,716	42,951	48,891	55,640	54,182
	1-2: 58/42	12,306	0	11,508	14,384	29,896	44,738
	1-3: 55/45	13,185		3,183	11,823	25,413	39,812
	1-4: 50/50	14,650		2,685	3,184	12,771	37,642

l able 4-1	4.						
Pollock-shorebased cate	cher vessels				B season		
Cap scenario		CAP	2003	2004	2005	2006	2007
87,500	1-1: 70/30	26,250		3,140	19,260		37,642
	1-2: 58/42	36,750			648		10,228
	1-3: 55/45	39,375					7,561
	1-4: 50/50	43,750					1,212
68,100	1-1: 70/30	20,430		17,002	28,876	15,175	45,523
	1-2: 58/42	28,602		1,004	13,065		30,396
	1-3: 55/45	30,645			9,693		26,503
	1-4: 50/50	34,050			2,166		15,688
48,700	1-1: 70/30	14,610		32,309	41,402	37,130	57,734
	1-2: 58/42	20,454		17,002	28,876	15,175	45,523
	1-3: 55/45	21,915		12,605	27,273	7,775	43,833
	1-4: 50/50	24,350		5,440	23,340		41,790
29,300	1-1: 70/30	8,790	22,300	69,594	86,112	92,492	75,141
	1-2: 58/42	12,306	10,172	36,317	56,078	55,094	64,100
	1-3: 55/45	13,185		32,662	50,354	51,472	60,425
	1-4: 50/50	14,650		32,309	41,402	37,130	57,734

Table 4-17Hypothetical forgone pollock catch estimated from shorebased catcher vessels at the time
fleetwide B-season closures were invoked under Alternative 2 on the dates provided in
Table 4-14.

Table 4-18Hypothetical forgone pollock catch estimated from mothership operations the time
fleetwide B-season closures were invoked under Alternative 2 on the dates provided in
Table 4-14.

Pollock—mothership operation	ns				B season		
Cap scenario		CAP	2003	2004	2005	2006	2007
87,500	1-1: 70/30	26,250		2,240	3,577		10,691
	1-2: 58/42	36,750			0		4,428
	1-3: 55/45	39,375					3,333
	1-4: 50/50	43,750					1,027
68,100	1-1: 70/30	20,430		3,366	6,018	4,165	12,352
	1-2: 58/42	28,602		1,152	1,227		9,989
	1-3: 55/45	30,645			0		8,988
	1-4: 50/50	34,050			0		5,375
48,700	1-1: 70/30	14,610		4,415	6,125	7,644	16,422
	1-2: 58/42	20,454		3,366	6,018	4,165	12,352
	1-3: 55/45	21,915		3,187	5,374	2,364	11,571
	1-4: 50/50	24,350		2,833	4,392		11,130
29,300	1-1: 70/30	8,790	3,711	25,979	16,244	17,877	23,635
	1-2: 58/42	12,306	2,138	12,054	7,985	11,285	20,786
	1-3: 55/45	13,185		5,308	7,368	10,488	17,420
	1-4: 50/50	14,650		4,415	6,125	7,644	16,422

Table 4-19Alternative 4 dates of closures for different scenarios by sector between A and B seasons
and assuming no transferability in the A season, 'No', or perfect transferability in the A
season, 'Yes' (in all cases perfect B-season transferability was assumed).

Alt 4	A-season Transfer-		A-Sease	on			A-B	B-Seaso	n		
Scenario	Ability	Year	CDQ	М	Р	S	Rollover	CDQ	М	Р	S
		2003									
		2004									
	No	2005									29-Oct
		2006		23-Feb	18-Mar	19-Feb					22-Oct
		2007		19-Feb	15-Feb	15-Feb		15-Oct	25-Oct	10-Oct	7-Oct
1		2003									
		2004									
	Yes	2005					80%				29-Oct
		2006		27-Feb		20-Feb					22-Oct
		2007		22-Feb	15-Feb	15-Feb		15-Oct	25-Oct	10-Oct	7-Oct
		2003			8-Mar						
		2004									11-Oct
	No	2005								25-Sep	5-Oct
		2006		18-Feb	5-Mar	9-Feb					10-Oct
2		2007	7-Mar	2-Feb	6-Feb	5-Feb		7-Oct	17-Oct	29-Sep	26-Sep
2		2003			21-Mar				16-Oct		
		2004									11-Oct
	Yes	2005								25-Sep	5-Oct
	2	2006		18-Feb	9-Mar	10-Feb	b.				10-Oct
		2007	7-Mar	2-Feb	6-Feb	5-Feb		7-Oct	17-Oct	29-Sep	26-Sep

Table 4-20Alternative 5 dates of closures for the 60,000 Chinook salmon cap between A and B
seasons, with and without A-season transferability.

						R Season					
			A-3	season	I		в-зе	ason			
Transferability	Year	CDQ	М	Р	S	CDQ	М	Р	S		
	2003										
	2004										
No	2005								26-Oct		
	2006		21-Feb	13-Mar	15-Feb				19-Oct		
	2007		12-Feb	12-Feb	11-Feb	8-Oct	21-Oct	6-Oct	5-Oct		
	2003										
	2004										
Yes	2005								26-Oct		
	2006		21-Feb	14-Mar	17-Feb				19-Oct		
	2007		13-Feb	12-Feb	11-Feb	8-Oct	21-Oct	6-Oct	5-Oct		

Table 4-21	Hypothetical forgone pollock by sector and scenario had dates presented in Table 4-19 been
	invoked as closures by sector with A-B split equal to 70:30 and allowing 80% rollover from
	A to B season under the two Alternative 4 annual scenarios (AS), 2003-2007 and summed
	over these years (last 4 rows).

	A-season												
Alt 4	Transfer-				A-Season	n				B-Seas	on		Annual
AS	ability	Year	CDQ	М	Р	S	A-Total	CDQ	М	Р	S	B-Total	Total
		2003	0	0	0	0	0	0	0	0	0	0	0
		2004	0	0	0	0	0	0	0	0	0	0	0
	No	2005	0	0	0	0	0	0	0	0	648	648	648
		2006	0	8,212	6,821	129,068	144,102	0	0	0	12,604	12,604	156,705
1		2007	0	15,337	89,484	120,188	225,009	4,415	2,992	23,408	47,537	78,351	303,361
1		2003	0	0	0	0	0	0	0	0	0	0	0
		2004	0	0	0	0	0	0	0	0	0	0	0
	Yes	2005	0	0	0	0	0	0	0	0	648	648	648
		2006	0	4,299	0	122,460	126,759	0	0	0	12,604	12,604	139,362
		2007	0	12,168	89,484	120,188	221,840	4,415	2,992	23,408	47,537	78,351	300,191
		2003	0	0	61,233	0	61,233	0	0	0	0	0	61,233
		2004	0	0	0	0	0	0	0	0	17,002	17,002	17,002
	No	2005	0	0	0	0	0	0	0	9,776	30,374	40,150	40,150
		2006	0	15,429	50,888	178,948	245,266	0	0	0	38,958	38,958	284,224
		2007	10,281	29,262	119,925	168,466	327,935	6,057	5,958	34,921	60,425	107,362	435,296
2		2003	0	0	23,677	0	23,677	0	1,447	0	0	1,447	25,124
		2004	0	0	0	0	0	0	0	0	17,002	17,002	17,002
	Yes	2005	0	0	0	0	0	0	0	9,776	30,374	40,150	40,150
		2006	0	15,429	33,051	170,773	219,254	0	0	0	38,958	38,958	258,212
		2007	10,281	29,262	119,925	168,466	327,935	6,057	5,958	34,921	60,425	107,362	435,296
1	No	Total	0	23,549	96,305	249,256	369,111	4,415	2,992	23,408	60,789	91,603	460,714
1	Yes	Total	0	16,467	89,484	242,648	348,599	4,415	2,992	23,408	60,789	91,603	440,201
2	No	Total	10,281	44,691	232,046	347,414	634,434	6,057	5,958	44,697	146,759	203,472	837,905
2	Yes	Total	10,281	44,691	176,653	339,239	570,866	6,057	7,405	44,697	146,759	204,919	775,784

Table 4-22Hypothetical forgone pollock by sector and scenario had dates presented in Table 4-19 been
invoked as closures by sector with A-B split equal to 70:30 and allowing 0% and 100%
rollover from A to B season under the two Alternative 4 annual scenarios (AS), 2003-2007.

	A season	A-Season					A-B	B-Season						
Alt 4	Transfer-						А	Roll					В	Annual
AS	Ability	Year	CDQ	М	Р	S	total	over	CDQ	М	Р	S	Total	Total
		2003	0	0	0	0	0		0	0	0	0	0	0
		2004	0	0	0	0	0		15,995	1,152	0	17,002	34,148	34,148
	No	2005	0	0	0	0	0		0	0	0	28,876	28,876	28,876
		2006	0	8,212	6,821	129,068	144,102		0	0	0	15,175	15,175	159,277
		2007	0	15,337	89,484	120,188	225,009		4,723	2,992	25,391	47,537	80,643	305,652
1		2003	0	0	0	0	0		0	0	0	0	0	0
		2004	0	0	0	0	0		15,995	1,152	0	17,002	34,148	34,148
	Yes	2005	0	0	0	0	0		0	0	0	28,876	28,876	28,876
		2006	0	4,299	0	122,460	126,759		0	0	0	15,175	15,175	141,934
		2007	0	12,168	89,484	120,188	221,840	00/	4,723	2,992	25,391	47,537	80,643	302,483
		2003	0	0	61,233	0	61,233	070	0	1,447	0	0	1,447	62,680
		2004	0	0	0	0	0		37,452	3,187	1,008	30,186	71,833	71,833
	No	2005	0	0	0	0	0		0	0	37,999	39,247	77,246	77,246
		2006	0	15,429	50,888	178,948	245,266		0	0	0	38,958	38,958	284,224
2		2007	10,281	29,262	119,925	168,466	327,935		6,057	6,164	34,921	60,425	107,567	435,502
2		2003	0	0	23,677	0	23,677		0	1,447	0	0	1,447	25,124
		2004	0	0	0	0	0		37,452	3,187	1,008	30,186	71,833	71,833
	Yes	2005	0	0	0	0	0		0	0	37,999	39,247	77,246	77,246
		2006	0	15,429	33,051	170,773	219,254		0	0	0	38,958	38,958	258,212
		2007	10,281	29,262	119,925	168,466	327,935		6,057	6,164	34,921	60,425	107,567	435,502
		2003	0	0	0	0	0		0	0	0	0	0	0
		2004	0	0	0	0	0		0	0	0	0	0	0
	No	2005	0	0	0	0	0		0	0	0	0	0	0
		2006	0	8,212	6,821	129,068	144,102		0	0	0	11,184	11,184	155,286
1		2007	0	15,337	89,484	120,188	225,009		4,415	2,992	22,534	47,537	77,477	302,487
1		2003	0	0	0	0	0		0	0	0	0	0	0
		2004	0	0	0	0	0		0	0	0	0	0	0
	Yes	2005	0	0	0	0	0		0	0	0	0	0	0
		2006	0	4,299	0	122,460	126,759		0	0	0	11,184	11,184	137,943
		2007	0	12,168	89,484	120,188	221,840	1000/	4,415	2,992	22,534	47,537	77,477	299,317
		2003	0	0	61,233	0	61,233	10070	0	0	0	0	0	61,233
		2004	0	0	0	0	0		0	0	0	12,605	12,605	12,605
	No	2005	0	0	0	0	0		0	0	2,936	28,876	31,812	31,812
		2006	0	15,429	50,888	178,948	245,266		0	0	0	37,130	37,130	282,395
2		2007	10,281	29,262	119,925	168,466	327,935		6,057	5,958	34,921	60,425	107,362	435,296
2		2003	0	0	23,677	0	23,677		0	0	0	0	0	23,677
		2004	0	0	0	0	0		0	0	0	12,605	12,605	12,605
	Yes	2005	0	0	0	0	0	0	0	0	2,936	28,876	31,812	31,812
		2006	0	15,429	33,051	170,773	219,254		0	0	0	37,130	37,130	256,383
		2007	10,281	29,262	119,925	168,466	327,935		6,057	5,958	34,921	60,425	107,362	435,296

Table 4-23	Hypothetical forgone pollock by sector for Alternative 5 given dates presented in Table
	4-19 been invoked as closures by sector with A-B split equal to 70:30 and allowing rollover
	from A to B season and transferability.

A-season				B-season							
	CDQ	Μ	Р	S	A-total	CDQ	Μ	Р	S	B-total	Annual
2003	0	0	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	3,672	3,672	3,672
2006	0	11,101	12,652	137,026	160,779	0	0	0	19,752	19,752	180,531
2007	0	20,864	99,698	142,134	262,696	5,363	4,152	27,113	51,737	88,365	351,062
Total	0	31,965	112,350	279,160	423,475	5,363	4,152	27,113	75,161	111,789	223,579

Table 4-242003-2007 sum of additional forgone pollock relative to 80% rollover amounts presented in
Table 4-21. E.g., for Alt 4 AS1 with no transferability and no rollover (first row) the total
estimate of forgone pollock catch over they years 2003-2007 was 67,239 mt more than the
scenario with 80% rollover whereas with the 100% rollover option, there would have been
2.941 mt *less* forgone pollock (compared to the 80% rollover option).

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2,9 11 me tess forgene penden (compared to are objectione ver option).										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AS	Transferability	Rollover	Total	CDQ	М	Р	S			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	No	0%	67,239	16,303	1,152	1,983	47,801			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Yes	0%	67,240	16,303	1,152	1,983	47,801			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	2	No	0%	93,580	37,452	4,840	29,231	22,057			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Yes	0%	92,133	37,452	3,393	29,231	22,057			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	No	100%	-2,941	0	0	-874	-2,068			
2 No 100% -14,564 0 0 -6,840 -7,723 Yes 100% -16,011 0 -1,447 -6,840 -7,723		Yes	100%	-2,941	0	0	-874	-2,068			
Yes 100% -16,011 0 -1,447 -6,840 -7,723	2	No	100%	-14,564	0	0	-6,840	-7,723			
		Yes	100%	-16,011	0	-1,447	-6,840	-7,723			

Table 4-25 Sample sizes for EBS pollock age data broken out by season and region.

Jan-May			June-Aug			Sept-Dec				
Age	A season	E	W	Subtotal	E	W	Subtotal	Total		
3	144	263	210	473	216	136	352	969		
4	570	325	814	1,139	228	375	603	2,312		
5	1,332	463	977	1,440	330	271	601	3,373		
6	1,427	432	596	1,028	338	132	470	2,925		
7	997	257	286	543	226	67	293	1,833		
8	718	183	199	382	164	35	199	1,299		
9	391	114	67	181	67	16	83	655		
10+	574	132	73	205	126	12	138	917		

Fig. 4-5Mean length (top panel) and mean weight (bottom) at age for EBS pollock based on
fishery observer data from 2000-2007 broken out by A-season (Jan 20 – May 31) and two
B-season time frames: June 1 – August 31 (B1) and September 1 – December 31

Fig. 4-6Mean weight at age for EBS pollock based on fishery observer data from 2000-2007
broken out by two B-season time frames: June 1 – August 31 (B1) and September 1 –
December 31 and geographically by east of 170°W (E) and west of 170°W (W)

Relative catch rates of pollock for all vessels combined by tow of outside area relative to inside trigger closure region for A-season (top) and B-season (bottom), 2003-2007. A value of one for a given date indicates that the means for catch rates outside and inside are the same for that date through to the end of the season

Relative catch rates of pollock for at-sea processors by tow of outside area relative to inside trigger closure region for A-season (top) and B-season (bottom), 2003-2007. A value of one for a given date indicates that the means for catch rates outside and inside are the same for that date through to the end of the season.

Relative catch rates of pollock for shorebased catcher vessels by tow of outside area relative to inside trigger closure region for A-season (top) and B-season (bottom), 2003-2007. A value of one for a given date indicates that the means for catch rates outside and inside are the same for that date through to the end of the season.

4.4 Consideration of future actions

CEQ regulations require that the analysis of environmental consequences include a discussion of the action's impacts in the context of all other activities (human and natural) that are occurring in the affected environment and impacting the resources being affected by the proposed action and alternatives. This cumulative impact discussion should include incremental impacts of the action when added to past, present, and reasonably foreseeable future actions. Past and present actions affecting the pollock resource have been incorporated into the impacts analysis in this Chapter. Section 3.4 provides a detailed discussion of reasonably foreseeable future actions that may affect the Bering Sea pollock fishery, the

Chinook salmon caught as bycatch in that fishery, and the impacts of salmon bycatch on other resource components analyzed in the EIS.

4.4.1 Ecosystem-sensitive management

Measures to minimize chum salmon bycatch

The reasonable foreseeable future actions that will most impact the pollock fisheries and pollock stocks are changes to the management of the fisheries due to increasing protection of ESA-listed and other non-target species. The Council is considering action on management measure to minimize chum salmon bycatch in the pollock fishery. A suite of alternative management measures was proposed in April 2008, and a discussion paper was presented to the Council in October 2008. In December 2008, the Council developed a range of alternatives for analysis. Because any revised chum salmon bycatch measures will also regulate the pollock fishery, there will be a synergistic interaction between the alternatives proposed in this EIS and those considered under the chum salmon action. Analysis has not yet begun on the chum salmon action, but will be underway before this EIS is finalized, and a further discussion of the impact interactions will be included at that time.

Adjusting protections for Steller sea lions

The Council and NMFS may develop additional Steller sea lion protection measures to reduce the pollock fisheries interaction with Steller sea lions. As discussed in section 3.4, NMFS is currently developing a biological opinion on the status quo groundfish fisheries in the BSAI and GOA which is expected to be available in late 2009. Depending on the results of that biological opinion, the Council and NMFS may decide to change the management of the pollock fleet. Additionally, the potential change in listing for the ice seals and northern fur seals could result in management changes. As with new chum salmon measures, analysis of any new management measures for the pollock fleet would consider the impacts of adding those new measures to the existing suite of management measure for the pollock fleet.

Changes to fishery management based on ongoing research and understanding of ecosystem interactions and the effects of climate change

Pollock stocks may also be affected by changing climate conditions. Pollock distribution has been shown to be affected by bottom temperatures, with densities occurring in areas where the bottom temperatures are greater than zero (Ianelli et al., 2008). A study is currently underway linking temperature and salmon bycatch rates, and preliminary evidence indicates a relationship (Ianelli et al. 2009). At this time, it is not possible to forecast in what way changing climate conditions are likely to affect pollock stocks.

4.4.2 Traditional management tools

Development of the salmon excluder device

The development and deployment of the salmon excluder devise may reduce Chinook salmon bycatch and improve the fleets ability to harvest the pollock TAC under a hard cap. The salmon excluder is still being tested in pollock fisheries, and is not yet in wide-scale use, however many of the early design flaws have been corrected at this stage.

Authorization of the pollock fishery in future years

Future harvest specifications will primarily affect fishing mortality as the other significance criteria for pollock (temporal and spatial harvest, prey availability, and habitat suitability) are primarily controlled through regulations in 50 CFR part 679. The setting of harvest levels each year is controlled to ensure the stock can produced MSY on a continuing basis and to prevent overfishing. Each year's setting of harvest specifications include the consideration of past harvests and future harvests based on available biomass

estimates. In-season managers close fisheries to directed fishing as fishermen approach TACs, treat species whose TACs have been taken as prohibited species, and introduce fishing restrictions, or actual fishery closures, in fisheries in which harvests approach OFL. The 2 million mt OY in the BSAI also contributes significantly to preventing overharvests. The controls on fishing mortality in setting harvest specifications ensure the stocks are able to produce MSY on a continuing basis.

Increasing enforcement responsibilities

The number of TAC categories with low values of ABC/OFL are increasing which tends to increase the likelihood that closures of directed fisheries to prevent overfishing will occur. In recent years management of species groups has tended to separate the constituent species into individual ABCs and OFLs. For example, in 1991 the category 'other red rockfish' consisted of four species of rockfish. By 2007, one of those species (sharpchin rockfish) had been moved to the 'other rockfish' category and northern, shortraker, and rougheye are now managed as separate species. While managing the species with separate ABCs and OFLs reduces the potential for overfishing the individual species, the effect of creating more species categories can increase the potential for incurring management measures to prevent overfishing, such as fishery closures. Managers closely watch species with fairly close amounts between the OFL and ABCs during the fishing year and the fleet will adjust behavior to prevent incurring management actions. Currently the NPFMC is considering separating components of the 'other species' category (sharks, skates, octopus, sculpin). Should that occur, incidental catch of sharks for example could impact management of the pollock fishery. As part of the 2006 'other species' incidental catch of 1,973 mt in the pollock fishery, 504 mt were shark. The tier 6 ABC for shark as part of the 'other species' category in 2006 was 463 mt and OFL 617 mt. If sharks were managed as a separate species group under their current tier, the pollock fishery would likely have been constrained in 2006.

Improved enforcement through VMS

The entire pollock fleet now carries VMS due to VMS requirements introduced in connection with the AFA. In-season managers currently use VMS intensively to manage fisheries so that harvests are as close to TACs as possible. VMS has also become a valuable diagnostic tool for addressing situations with unexpected harvests. It was used as a diagnostic tool in July 2006 to investigate the sources of a sudden and unexpected bycatch of squid in the pollock fishery. As agency experience with VMS grows, it should allow in-season managers to more precisely match harvests to TACs, reducing potential overages, and maximizing the value of TACs to industry.

4.4.3 Actions by Other Federal, State, and International Agencies

Future exploration and development of offshore mineral resources

The Minerals Management Service (MMS) expects that reasonably foreseeable future activities include development of oil and gas deposits over the next 15-20 years in federal waters off Alaska. Potential environmental risks from the development of offshore drilling include the impacts of increased vessel offshore oil spills, drilling discharges, offshore construction activities, and seismic surveys. The MMS has published a notice of intent to prepare an Environmental Impact Statement for oil and gas lease Sale 214 which is tentatively scheduled for 2011 in the "program area" of North Aleutian Basin, offshore the State of Alaska. A notable proportion of the pollock fishery occurs in the North Aleutian Basin program area, and adverse environmental impacts resulting from exploration and development in the future could impact pollock stocks. The extent to which these impacts may occur is unknown.

4.4.4 Private actions

Commercial pollock fishing

The analysis assumes that the commercial fishery for pollock will continue into the future, and the direct effects analysis has been designed to study the impacts of the fishery.