LCF Climate Science Computational End Station

Presented by

James B. White III (Trey)

Scientific Computing National Center for Computational Sciences Oak Ridge National Laboratory

Lawrence Buja

National Center for Atmospheric Research

Objectives of the Climate Science Computational End Station

- Predict future climate
 - Based on scenarios of anthropogenic emissions
 - Resulting from options in energy policies
- Deliver simulations that improve climate models
 - Scientific basis
 - Accuracy
 - Fidelity
- Inform national science policy
- Thus contribute to DOE science mission

Approach of the Climate Science Computational End Station

- Develop, maintain, and support the Community Climate System Model (CCSM)
- Execute high-priority simulations at LCF
- Outreach to research community
 - Simulation products
 - Analysis of model results
 - CCSM workshop
- Champion and execute research program to deliver CCSM4 in three years
 - In time for next assessment by the Intergovernmental Panel on Climate Change

CCSM4 development objectives

- Document, understand, and correct biases and systematic errors
 - Improve simulation of important quantities, like regional precipitation patterns
 - Higher resolution in dynamics
 - Higher fidelity in physical parameterizations
- Characterize dominant nonlinear dynamical mechanisms
 - Climate variability and abrupt transitions
 - Ice and ocean processes with long timescales but small characteristic length scales
- Quantify nature and timing of biogeochemical feedbacks
 - Atmosphere, ocean, and land
 - Impacting global carbon cycle

Unique value of the Climate Computational End Station

- Coordination of development and simulations
- Priority setting in climate-change research simulations
- Sharing of software expertise
- Development of scalable solutions

Roles within the Climate Science Computational End Station

- National Center for Atmospheric Research
 - Higher-resolution atmosphere models
 - Improved physical processes that remove biases
 - Climate-change studies
- Los Alamos National Laboratory
 - Increased resolution of ocean and sea-ice models
 - High-resolution coupled experiments
 - Ocean biogeochemistry models
- Lawrence Livermore National Laboratory
 - Comparison and validation of new models
 - Scaled, distributed analysis infrastructure
 - Development and testing of high-resolution atmosphere models

Roles within the Climate Science Computational End Station

- Pacific Northwest National Laboratory
 - Downscaling to investigate regional water resources
 - Embedded cloud-resolving models
 - Physically based replacements for cloud parameterizations
- NASA Goddard Space Flight Center
 - New observations and measurements to evaluate models
 - Advanced data-assimilation technologies
 - Improvements for policy formulation and impact planning
- Oak Ridge National Laboratory
 - Software integration
 - Coupled carbon-cycle simulation
 - Biogeochemistry feedbacks
- Additional experiments by university partners

CCSM development (Peter Gent)

- Three 100-year control runs of new CCSM 3.5
- Tuned snow albedos for best simulation of Arctic sea ice
- Much-improved El Nino / Southern Oscillation
- Critical-path development of CCSM4 for the IPCC AR5

National Laborator

Dynamic-ecosystem feedback simulation (Hoffman)

- Tests of ocean advection schemes on ecosystem tracers
- Spin up of terrestrial carbon in CLM-CASA and CLM-CN for Carbon Land Model Intercomparison Project

Courtesy of Jamison Daniel, ORNL

Regional downscaling

- Goal: Improve simulation and surface hydrology in regions of complex orography
- Simulations of orographic effects on western United States
 - Regional simulation with Weather Research and Forecasting (WRF) model
 - Subgrid parameterization with global Community Atmosphere Model (CAM)

Regional downscaling

Resolution studies

- Fully coupled simulations at T170 resolution (versus T85 for last IPCC)
- Improved simulation of tropical cyclones and transients
- Better input for regional models T170 2008-2011 т85 т42

High-resolution ocean

- Several simulated years of spinup at 0.1° resolution
- Resolve inconsistency in surface forcing
- Tested new modules
 - Lagrangian particles
 - High-frequency time-series output
 - Passive-tracer transport

Courtesy of Jamison Daniel, ORNL

Emissions-reduction scenarios

- 450 ppm CO₂ case
- First of a series of Climate Change Science Program scenarios examining alternative future energy and emissions reduction pathways

AK RIDGE National Laboratory

Contact

James B. White III (Trey)

Scientific Computing National Center for Computational Sciences (865) 241-2103 trey@ornl.gov

