Scientific Annotation Middleware Software infrastructure to support rich scientific records and the processes that produce them

Presented by

Jens Schwidder Tara D. Gibson

Computer Science Research Group Computer Science and Mathematics Division

James D. Myers

National Center for Supercomputing Applications

Scientific Annotation Middleware (SAM) objectives

- Develop a lightweight, flexible middleware to support the creation and use of metadata and annotations
- Support sharing of annotations among scientific applications, portals, problem-solving environments, and electronic notebooks
- Improve the completeness, accuracy, and availability of the scientific record
- Support mapping between the annotation schemas of different scientific domains, thus enabling collaboration

Middleware approach

 Various client and storage interfaces provide transparent integration of legacy applications as well as new applications using new, more powerful semantics

Characteristics

- Middleware design capable of integrating into multiple service architectures
- "Schema-less" store that accepts arbitrary content and metadata
- Dynamic metadata/data translations to support evolving standards and lightweight integration
- Layered design to allow basic and advanced clients and interactions between them

Features

- Meta-data translation/extraction
- Semantic services
- Distributed Authoring and Versioning (DAV)
- Notebook services and user interfaces
- Event notification using Java Messaging Service (JMS)
- Prototype implementation of Java Content Repository (JCR)(JSR 170)
 -based SAM layer that allows adding SAM capabilities to JCRs

Benefits of the SAM system

- Rich, accessible, integrated scientific records
- Support for system-science cyber environments and collaboration across disciplines
- Increased automation of metadata capture and data/metadata translation
- Integrated electronic notebook, semantic relationship (e.g., provenance) tracking, and third-party annotation services
- Open source, standards-based scientific content management services
- Flexible authentication and authorization support

SAM-based electronic notebooks

- Take advantage of advanced SAM features, such as data translation
- Provide hierarchical chapters/pages/notes
- Provide add/view/search notes
- Provide multiple client interfaces
 - Internationalized Electronic Laboratory Notebook (ELN) client
 - HTML-based Web interfaces
- Enable applications to provide notebook functionality using SAM notebook API/components
- Can serve as record with electronic signatures
- Allow scientists to share notes in distributed teams
- Allow email notifications

Community interactions

Collaboratory for Multiscale Chemical Science (CMCS)—using SAM to support a portal-based community knowledge grid

SAM-based internationalized grid-capable notebook

Mid-America Earthquake Center MAEviz—"Consequence-based Risk Management Cyberenvironment"—using SAM to support shared data and provenance

Automated experiment records, user annotations, and customized instrument logs

- Data Format Description Language (DFDL) standardization within the Global Grid Forum
- JCR (JSR 170) standardization within the Java Community Process
- Battelle records managers
- DOE2000 electronic notebook (Enote and ELN) communities
- PNNL Computational Science and Mathematics Division
- Semantic data grid to store, generate, and query provenance information

CMCS use of **SAM**

- Powers CMCS knowledge management
- Provides a node plus metadata/relationship view of underlying data sources
- Supports put/get/search/access control of arbitrary data/metadata
- Enables configurable metadata extraction from binary/ASCII/XML files
- Enables semantic/graph queries

More information on CMCS at http://cmcs.org

DAV

Fortran

application

'Local disk'

SAM 2.1.4 release

- DFDL, Web service, and XSLT-based metadata extraction and data translation capabilities
- Improved semantic search capabilities using an extension of DAV searching and location and Lucene indexing
- JDBC databases, file systems as data/metadata stores
- Simple Web-based SAM and notebook administration
- Internationalized ELN client (accepts UNICODE for Chinese/Japanese character sets)
- Optional fully Web-based version of the ELN client
- JAAS-based single-sign-on capabilities
- Notarization server and proxy implementation
- Command-line client and client API library
- Jakarta Slide 2.1 code base
- Requirements: Java 1.4 (or higher) and Tomcat 5.x

Spallation Neutron Source (SNS) Notebooks

- The electronic notebook software for the SNS is being developed based on the research done in the SAM project.
- Support for different types of notebooks:
 - Instrument notebooks
 - Record events and annotations regarding an instrument.
 - Structure fixed; entries can't be edited, but can be annotated.
 - Proposal notebooks
 - Contain research annotations for a proposal and its experiments.
 - Structure and editing policies under control of proposal PI.
- Layered access control for SNS users and groups:
 - Personal notebooks.
 - Shared proposal and instrument notebooks.
- Web-based user interfaces using AJAX.
- Support for Wiki-formatting to support easy input of structured text.
- JCR-based storage system.

More information about SAM

- Project information at http://www.scidac.org/SAM
- SAM source code hosted at http://sourceforge.net/projects/sam
- BSD/Apache-style open source license

Contact

Jens Schwidder

Computer Science and Mathematics Division Computer Science Research Group (865) 576-7928 schwidderj@ornl.gov

