Parallel Discrete Event Simulation (PDES) at ORNL

Presented by

Kalyan S. Perumalla, Ph.D.

Modeling & Simulation Group Computational Sciences & Engineering

PDES: Selected application areas

Emergencies

Global and local events

Current and future defense systems

Protection and awareness systems

- Network simulation
 - Internet protocols, security, P2P designs, …
- Traffic simulation
 - Emergency planning/response, environmental policy analysis, urban planning, ...
- Social dynamics simulation
 - Operations planning, foreign policy, marketing, …
- Sensor simulations
 - Wide area monitoring, situational awareness, border surveillance, …
- Organization simulations
 - Command and control, business processes, ...

High-performance PDES kernel requirements

- Global time synchronization
 - Total time-stamped ordering of events
 - Paramount for accuracy
- Fast synchronization
 - Scalable, application-independent, time-advance mechanisms
 - Critical for real-time and as-fast-as-possible execution
- Support for fine-grained events
 - Minimal overhead relative to event processing times
 - Application computation is typically only 5 µs to 50 µs per event
- Conservative, optimistic, and mixed modes
 - Need support for the principal synchronization approaches
 - Useful to choose mode on per-entity basis at initialization
 - Desirable to vary mode dynamically during simulation
- General-purpose API
 - Reusable across multiple applications
 - Accommodates multiple techniques
 - Lookahead, state saving, reverse computation, multicast, etc.

µsik—unique PDES "micro-kernel"

Unique mixed-mode kernel

- The only scalable mixed-mode kernel in the world
- Supports conservative, optimistic, and mixed modes in a single kernel

Used in a variety of applications

- DES-based vehicular traffic models
- DES-based plasma physics models
- DES-based neurological models
- Largest Internet simulations

- Some recent results of fine-grained PDES benchmark (phold)
- Among the largest/fastest scalability results in parallel discrete event simulation

µsik scaled to more than 10⁴ processors

- Some recent results of **fine-grained** PDES benchmark
 - On Blue Gene Watson (BGW) at IBM TJ Watson Research Center
 - Well-known PHOLD benchmark, with 1 million logical processes, 10 million pucks
- The largest and fastest scalability results in PDES recorded to date

µsik micro-kernel internals

libSynk: µsik's synchronization core

µsik micro-kernel capabilities

- µsik is currently able to support the following:
 - Lookahead-based conservative and/or optimistic execution
 - Reverse computation-based optimistic execution
 - Checkpointing-based optimistic execution
 - Resilient optimistic execution (zero rollbacks)
 - Constrained, out-of-order execution
 - Preemptive event processing
 - Any combinations of the above
 - Automated, network-throttled flow control
 - User-level event retraction
 - Process-specific limits to optimism
 - Dynamic process addition/deletion
 - Shared and/or distributed memory execution
 - Process-oriented views
- It accommodates addition of the following:
 - Synchronized multicast
 - Optimistic dynamic memory allocation
 - Automated load-balancing

SensorNet: Parallel simulation/ immersive test-bed

- Seamless integrated testbed to incorporate a variety of important simulations, stimulations, and live devices
- Achieves unified capabilities and significant fidelity for test and evaluation of CB sensor device-based designs, concepts, and operations

SensorNet: Simulation-based analysis for plume tracking

- Environmental phenomenon exhibits high variability.
- Phenomenon drives the sensor network's computation and communication.
- Trace gathered at base station of sensed phenomenon reflects high variability.
- Communication effects induce unpredictable gaps in series.
- Accurate, integrated simulation of phenomenon and communication captures complex interdependencies.

SCATTER: Ultra-scale PDES-based mobility simulations

- Scalable tool for transportation and energy/event/emergency research
- Regional scale: multiple states
 - $-10^{6}-10^{7}$ intersections
- Current tool capabilities
 - At most 10⁴ intersections
- Faster than real time is very useful

Our approach: SCATTER DES models

- vs time-stepped Parallel execution vs sequential Scalability to highperformance computing
 - 10²-10³ CPUs
- Important behaviors
 - kinetic + non-kinetic

SCATTER: Benchmark performance

Contact

Kalyan S. Perumalla

Modeling & Simulation Group Computational Sciences & Engineering (865) 241-1315 perumallaks@ornl.gov

