
Presented by

Jeremy S. Meredith

Sadaf R. Alam

Jeffrey S. Vetter

Future Technologies Group

Computer Science and Mathematics Division

Research supported by the Department of Energy’s Office of Science

Office of Advanced Scientific Computing Research

Programming the Cell Processor:
Achieving High Performance and Efficiency

2 Meredith_Cell_SC07

• One POWER architecture processing element (PPE)

• Eight synergistic processing elements (SPEs)

• All connected through a high-bandwidth element

interconnect bus (EIB)

• Over 200 gigaflops (single precision) on one chip

Cell broadband engine processor:
An overview

3 Meredith_Cell_SC07

Cell broadband engine processor:
Details

Eight

SPEs

• Dual-threaded

• Vector instructions (VMX)

• Dual-issue pipeline

• Simple instruction set heavily focused on

single instruction multiple data (SIMD)

• Capability for double precision, but

optimization for single

• Uniform 128-bit 128-register file

• 256-K fixed-latency local store

• Memory flow controller with direct memory

access (DMA) engine to access main memory

or other SPE local stores

One

64-bit PPE

4 Meredith_Cell_SC07

Genetic algorithm, traveling salesman:
Single- vs. double-precision performance

• The cell processor has a much higher latency for

double-precision results.

• The “ if ” test in the sorting predicate is highly penalized

for double precision.

0.0

0.5

1.0

1.5

2.0

2.5

Pentium 4

2.8 GHz
PPE only 1 SPE 1 SPE,

avoiding “ if ”
test

R
u
n
ti
m

e
 (

s
e

c
)

Single precision

Double precision

Replacing this test
with extra arithmetic

results in a large
speedup

5 Meredith_Cell_SC07

Genetic algorithm, Ackley’s function:
Using SPE-optimized math libraries

Ackley’s function involves
cos, exp, sqrt

0.047

0.681

0.248

0.064

0.01

0.1

1

Original Fast
cosine

Fast
exp/sqrt

SIMD

R
u

n
ti
m

e
 (

s
e

c
)

[l
o

g
 s

c
a

le
]

Switching to a math

library optimized for

SPEs results in a

more than 10x

improvement for

single precision

6 Meredith_Cell_SC07

• The cell processor can
overlap communication
with computation.

• Covariance matrix
creation has a low ratio
of communication to
computation.

• However, even with an
SIMD-optimized
implementation, the high
bandwidth of the cell’s
EIB makes this
overhead negligible.

0

5

10

15

20

25

30

35

Scalar SIMD

Optimizations

R
u
n
ti
m

e
 u

s
in

g
 1

 S
P

E
 (

s
e
c
)

Synchronous DMA

Overlapped DMA

6 Meredith_Cell_CS07

Covariance matrix creation:
DMA communication overhead

7 Meredith_Cell_SC07

Stochastic Boolean SAT solver:
Hiding latency in logic-intensive apps

PPE: attempting to hide latency

manually works against the compiler

SPE: manual loop unrolling and instruction

reordering achieved speedups although no

computational SIMD optimizations were possible

8 Meredith_Cell_SC07

Support vector machine:
Parallelism and concurrent bandwidth

• As more simultaneous

SPE threads are added,

the total runtime

decreases.

• Total DMA time also

decreases, showing that

the concurrent bandwidth

to all SPEs is higher than

to any one SPE.

• Thread launch time

increases, but the latest

Linux kernel for the cell

system does reduce this

overhead.

Full execution

Launch + DMA

Thread launch

8 Meredith_Cell_SC07

9 Meredith_Cell_SC07

Threads launched only on first call

Molecular dynamics:
SIMD intrinsics and PPE-to-SPE signaling

• Using SIMD intrinsics easily achieved 2x speedups in total runtime.

• Using PPE-SPE mailboxes, SPE threads can be reused across

iterations.

• Thus, thread launch overheads will be completely amortized on

longer runs.

0.0

0.5

1.0

1.5

2.0

2.5

1 SPE,
original

1 SPE,
SIMDized

1 SPE 2 SPEs 4 SPEs 8 SPEs

R
u
n
ti
m

e
 (

s
e
c
) Full runtimeFull runtime

Thread launch overheadThread launch overhead

10 Meredith_Cell_SC0710 Meredith_Cell_SC07

Conclusion

• Be aware of arithmetic costs.
Use the optimized math libraries from the SDK if it helps.

Double precision requires different kinds of optimizations.

• The cell has a very high bandwidth to the SPEs.
Use asynchronous DMA to overlap communication and
computation for applications that are still bandwidth bound.

• Amortize expensive SPE thread launch overheads.
Launch once, and signal SPEs to start the next iteration.

• Use of SIMD intrinsics can result in large speedups.
Manual loop unrolling and instruction reordering can help
even if no other SIMDization is possible.

11 Meredith_Cell_SC07

Contact

Jeremy Meredith

Future Technologies Group

Computer Science and Mathematics Division

(865) 241-5842

jsmeredith@ornl.gov

11 Meredith_Cell_SC07

