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• One POWER architecture processing element (PPE)

• Eight synergistic processing elements (SPEs)

• All connected through a high-bandwidth element

interconnect bus (EIB)

• Over 200 gigaflops (single precision) on one chip

Cell broadband engine processor:
An overview
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Cell broadband engine processor:
Details

Eight

SPEs

• Dual-threaded

• Vector instructions (VMX)

• Dual-issue pipeline

• Simple instruction set heavily focused on

single instruction multiple data (SIMD)

• Capability for double precision, but

optimization for single

• Uniform 128-bit 128-register file

• 256-K fixed-latency local store

• Memory flow controller with direct memory

access (DMA) engine to access main memory

or other SPE local stores

One

64-bit PPE
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Genetic algorithm, traveling salesman:
Single- vs. double-precision performance

• The cell processor has a much higher latency for

double-precision results.

• The “ if ” test in the sorting predicate is highly penalized

for double precision.
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Genetic algorithm, Ackley’s function:
Using SPE-optimized math libraries

Ackley’s function involves
cos, exp, sqrt
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Switching to a math

library optimized for

SPEs results in a

more than 10x

improvement for

single precision
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• The cell processor can
overlap communication
with computation.

• Covariance matrix
creation has a low ratio
of communication to
computation.

• However, even with an
SIMD-optimized
implementation, the high
bandwidth of the cell’s
EIB makes this
overhead negligible.
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Covariance matrix creation:
DMA communication overhead
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Stochastic Boolean SAT solver:
Hiding latency in logic-intensive apps

PPE:  attempting to hide latency

manually works against the compiler

SPE:  manual loop unrolling and instruction

reordering achieved speedups although no

computational SIMD optimizations were possible
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Support vector machine:
Parallelism and concurrent bandwidth

• As more simultaneous

SPE threads are added,

the total runtime

decreases.

• Total DMA time also

decreases, showing that

the concurrent bandwidth

to all SPEs is higher than

to any one SPE.

• Thread launch time

increases, but the latest

Linux kernel for the cell

system does reduce this

overhead.

Full execution

Launch + DMA

Thread launch
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Threads launched only on first call

Molecular dynamics:
SIMD intrinsics and PPE-to-SPE signaling

• Using SIMD intrinsics easily achieved 2x speedups in total runtime.

• Using PPE-SPE mailboxes, SPE threads can be reused across

iterations.

• Thus, thread launch overheads will be completely amortized on

longer runs.
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Conclusion

• Be aware of arithmetic costs.
Use the optimized math libraries from the SDK if it helps.

Double precision requires different kinds of optimizations.

• The cell has a very high bandwidth to the SPEs.
Use asynchronous DMA to overlap communication and
computation for applications that are still bandwidth bound.

• Amortize expensive SPE thread launch overheads.
Launch once, and signal SPEs to start the next iteration.

• Use of SIMD intrinsics can result in large speedups.
Manual loop unrolling and instruction reordering can help
even if no other SIMDization is possible.
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