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Physics in tokamak plasma edge

• Plasma turbulence (L-mode)
• Turbulence suppression (H-mode)
• Edge localized mode and its cycle
• Density and temperature pedestal
• Diverter magnetic field geometry
• Plasma rotation
• Neutral recycling 

ITER (www.iter.org)

Edge turbulence in NSTX 
(@ 100,000 frames/s)

Diverted 
magnetic field

3   Klasky_XGC_0711         



XGC development roadmap

Black: Achieved   •   Blue: In progress   •   Red: To be developed

Full-f PIC 1-D equilibrium code 
in 3-D magnetic field (XGC0)

1-D neoclassical pedestal buildup 
by neutral ionization, with DANOM

Full-f 3-D ion-electron 
electrostatic turbulence code 
(XGC1)

3-D neoclassical solution

Electrostatic turbulence solution

Full-f electromagnetic code (XGC2)

Study L-H transition

Multiscale simulation of 
pedestal growth in H-mode

XGC-MHD coupling for pedestal-ELM cycle
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XGC1 code
• Particle-in-cell code
• 5-dimensional (3-D real 

space + 2-D velocity space)
• Conserving plasma 

collisions
• Full-f ions, electrons, 

and neutrals
• Gyrokinetic Poisson 

equation for neoclassical 
and turbulent electric field

• PETSc library for 
Poisson solver

• MPI for parallelization
• Realistic magnetic 

geometry containing 
X-point

• Particle source from 
neutral recycling
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Routine Time % Peak performance

Total 100% 6%

Poisson 7% ~1.5%

Pushing 37% ~8%

Charging 50% ~4%

Peak performance of XGC1 on Jaguar

• 131 M ions and 131 M electrons, 200 K nodes 
• Peak performance with 2048 cores, using strong scaling results
• Working with team members to increase peak performance to 18%
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Scalability of XGC1 on Jaguar:
Near linear scaling for weak scaling

XGC1—30 K ions and electrons/core
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Neoclassical potential and flow of 
edge plasma from XGC1

Electric potential Parallel flow and particle positions 
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ITG turbulence simulation in concentric 
circular geometry

3-D electric potential  of linear growth phase 
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ITG turbulence simulation in concentric 
circular geometry

3-D electric potential  of turbulent phase 
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Phs-0: 
Simple coupling:

with M3D and NIMROD

XGC-0 grows pedestal along 
neoclassical+anomalous diff root 

MHD checks instability and 
crashes the pedestal

The same with XGC-1 and 2  

Phs-2: Kinetic coupling:

MHD performs the crash

XGC supplies closure information 
to MHD during crash

Phs-3: Advanced coupling:

XGC performs the crash

M3D supplies the B crash 
information to XGC during the 
crash

XGC-MHD coupling plan

Black: Developed  •  Red: To be developed
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Data replication

XGC-M3D code coupling
Code coupling framework with 
Kepler-HPC

XGC on Cray XT3
End-to-end system 160p, M3D 
runs on 64P
Monitoring routines here

Ubiquitous and 
transparent data access 
via logistical networking

User monitoring Data replication

Post-processing

40 Gb/s

Data
 ar

ch
ivin

g 
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Pressure profile development 
from XGC0  at 0, 10, 70, and 
100 toroidal transit times

Elite growth rates showing an 
approximate stability boundary near 

65τ  after the diamagnetic ω∗ 
stabilization

XGC0–Elite coupling: 
Pressure profile hits the linear stability boundary
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M3D simulation :
Time development of ELM crash
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