XGC: Gyrokinetic Particle Simulation of Edge Plasma

Presented by

Center for Plasma Edge Simulation Team

Physics and Applied Math Computational Science

CPES team

Physics and applied math

New York University

Chang, Greengard, Ku, Park, Strauss, Weitzner, Zorin

Oak Ridge National Laboratory Schultz, D'Azevedo, Maingi

Princeton Plasma Physics Laboratory Hahm, Lee, Stotler, Wang, Zweben

Columbia University Adams, Keyes

Lehigh University Bateman, Kritz, Pankin

University of Colorado

Parker, Chen

University of California–Irvine Lin, Nishimura

Massachusetts Institute of Technology Sugiyama, Greenwald

Hinton Associates Hinton

Computational science

- California Institute of Technology J. Cummings
- Lawrence Berkeley National Laboratory Shoshani

Oak Ridge National Laboratory

- R. Barreto, S. Klasky, P. Worley
- Princeton Plasma Physics Laboratory S. Ethier, E. Feibush
- Rutgers M. Parashar, D. Silver

University of California–Davis B. Ludäscher, N. Podhorszki

University Tennessee-Knoxville M. Beck

University of Utah S. Parker

Physics in tokamak plasma edge

- Plasma turbulence (L-mode)
- Turbulence suppression (H-mode)
- Edge localized mode and its cycle
- Density and temperature pedestal
- Diverter magnetic field geometry
- Plasma rotation
- Neutral recycling

Edge turbulence in NSTX (@ 100,000 frames/s)

Diverted magnetic field

VAK RIDGE National Laboratory

XGC development roadmap

Full-f PIC 1-D equilibrium code in 3-D magnetic field (XGCO)	1-D neoclassical pedestal buildup by neutral ionization, with D _{ANOM}
Full-f 3-D ion-electron electrostatic turbulence code (XGC1)	3-D neoclassical solution
	Electrostatic turbulence solution
	Study L-H transition
	Multiscale simulation of pedestal growth in H-mode
XGC-MHD coupling for pedestal-	ELM cycle
Full-f electromagnetic code (XGC	22)
Black: Achieved • Blue: In proc	ress • Red: To be developed

XGC1 code

- Particle-in-cell code
- 5-dimensional (3-D real space + 2-D velocity space)
- Conserving plasma collisions
- Full-f ions, electrons, and neutrals
- Gyrokinetic Poisson equation for neoclassical and turbulent electric field
- PETSc library for Poisson solver
- MPI for parallelization
- Realistic magnetic geometry containing X-point
- Particle source from neutral recycling

Peak performance of XGC1 on Jaguar

- 131 M ions and 131 M electrons, 200 K nodes
- Peak performance with 2048 cores, using strong scaling results
- Working with team members to increase peak performance to 18%

Routine	Time %	Peak performance
Total	100%	6%
Poisson	7%	~1.5%
Pushing	37%	~8%
Charging	50%	~4%

Scalability of XGC1 on Jaguar: Near linear scaling for weak scaling

XGC1—30 K ions and electrons/core

Neoclassical potential and flow of edge plasma from XGC1

Electric potential

Parallel flow and particle positions

ITG turbulence simulation in concentric circular geometry

3-D electric potential of linear growth phase

ITG turbulence simulation in concentric circular geometry

3-D electric potential of turbulent phase

XGC-MHD coupling plan

Phs-0: Simple coupling: with M3D and NIMROD	XGC-0 grows pedestal along neoclassical+anomalous diff root MHD checks instability and crashes the pedestal
	The same with XGC-1 and 2
Phs-2: Kinetic coupling: MHD performs the crash	XGC supplies closure information to MHD during crash
Phs-3: Advanced coupling: XGC performs the crash	M3D supplies the B crash information to XGC during the crash

Black: Developed • Red: To be developed

XGC-M3D code coupling Code coupling framework with Kepler-HPC

XGC0–Elite coupling: Pressure profile hits the linear stability boundary

Pressure profile development from XGC0 at 0, 10, 70, and 100 toroidal transit times

Elite growth rates showing an approximate stability boundary near 65τ after the diamagnetic ω* stabilization

M3D simulation : Time development of ELM crash

Contact

Scott A. Klasky Lead, End-to-End Solutions National Center for Computational Sciences (865) 241-9980 klasky@ornl.gov

