Building Nuclei from the Ground Up: Nuclear Coupled-cluster Theory

Presented by **David J. Dean** Oak Ridge National Laboratory

Nuclear Coupled-cluster Collaboration: T. Papenbrock, K. Roche, Oak Ridge National Laboratory P. Piecuch, M. Wloch, J. Gour, Michigan State University M. Hjorth-Jensen, Oslo

A. Schwenk, Triumf

Funding: DOE-NP, SciDAC, DOE-ASCR

"Given a lump of nuclear material, what are its properties, and how does it interact?"

How do we describe nuclei we cannot measure?

- Robust, predictive nuclear theory exists for structure and reactions.
- Nuclear data needed to constrain theory.
- · Goal is the Hamiltonian and nuclear properties:
 - Bare intra-nucleon Hamiltonian.
 - Energy density functional.
- Mission relevant to NP, NNSA.
- Half of all elements heavier than iron produced in r-process where limited (or no) experimental information exits.
- Nuclear reaction information relevant to NNSA and AFCI.

Pushing the nuclear boundaries

All Regions: Nuclear cross-section efforts (NNSA, SC/NP, Nuclear Energy)

Nuclear interactions: Cornerstone of the entire theoretical edifice

Depends on spin, angular momentum, and nucleon (proton and neutron) quantum numbers. Complicated interactions

 $H = \sum_{i=1}^{n} \frac{-h^2}{2M_i} \nabla_i^2 + \sum_{i \le j} V(r_i, r_j) + V_{NNN}$

Solved up to mass 12 with GFMC, converged mass 8 with diagonalization. We want to go much further!

 $H|\Psi\rangle = E|\Psi\rangle$ Real three-b derived fro effective

Real three-body interactions derived from QCD-based effective theories

Method of Solution: Nuclear Coupled-Cluster Theory

Coupled-cluster theory: Ab initio in medium mass nuclei

- It boils down to a set of coupled, nonlinear algebraic equations (odd-shaped tensor-tensor multiply).
- Storage of both amplitudes and interactions is an issue as problems scale up.
- Largest problem so far: ⁴⁰Ca with 10 million unknowns, 7 peta-ops to solve once (up to 10 runs per publishable result).
- Breakthrough science: Inclusion of 3-body force into CC formalism (6-D tensor) weakly bound and unbound nuclei.

Coupled cluster theory for nuclei

 $|\Psi\rangle = \exp(T)|\Phi\rangle$ $T = T_1 + T_2 + T_3 + \dots$ $E = \langle \Phi | \overline{H} | \Phi \rangle = \langle \Phi | e^{-T} H e^{T} | \Phi \rangle$ $\langle \Phi_{ii...}^{ab...} | \overline{H} | \Phi \rangle = 0$ $R\overline{H}|\Phi\rangle = E^*R|\Phi\rangle$ R = excitation operatorPOLYNOMIAL SCALING!! (good)

Ab initio in medium mass nuclei

Inclusion of full TNF in CCSD: F-Y comparisons in ⁴He

Hagen, Papenbrock, Dean, Schwenk, Nogga, Wloch, Piecuch, *Phys. Rev. C* **76**, 034302 (2007)

Solution at CCSD and CCSD(T) levels involve roughly 67 more diagrams...

National Laboratory

Coupling of nuclear structure and reaction theory (microscopic treatment of open channels)

Introduction of continuum basis states (Gamow, Berggren)

Ab initio weakly bound and unbound nuclei

Challenge: Include 3-body force

Single-particle basis includes bound, resonant, non-resonant continuum, and scattering states ENORMOUS SPACES....almost 1k orbitals. 10²² many-body basis states in ¹⁰He

National Laboratory

Solution of coupled-cluster equation

c.d=n+1.N

Basic numerical operation:

 $t_{new}(ab, ij) = \sum_{k l=1, n} V(kl, cd)t_{old}(cd, ij)t_{old}(ab, kl)$

- System of non-linear coupled algebraic equations → solve by iteration
- n = number of neutrons and protons
- N = number of basis states
- Solution tensor memory
 - (N-n)**2*n**2
- Interaction tensor memory
 - N**4
- Operations count scaling
 - O(n**2*N**4)
 - O(n**4*N**4) with 3-body
 - O(n**3*N**5) at CCSDT

Many such terms exist.
Cast into a matrix-matrix multiply algorithm.
Parallel issue: block

sizes of V and t.

Code parallelism

Future direction

- Current algorithm scales to 1K processors with about 20% efficiency. Attacking problems in mass 40 region is doable with current code.
- Develop algorithm that spreads both the 2-body matrix elements and the CC amplitudes (in collaboration with Ken Roche) → Enables nuclei in the mass 100 region and should scale to 100K processors (under way).
- Designing further parallel algorithms that calculate nuclear properties to calculate densities and electromagnetic transition amplitudes.
- Eventual time-dependent CC for fission dynamics.

Contact

David J. Dean

Physical Sciences Directorate Nuclear Theory (865) 576-5229 deanj@ornl.gov

References:

Dean and Hjorth-Jensen, PRC 69, 054320 (2004); Kowalski, Dean, Hjorth-Jensen, Papenbrock, Piecuch, PRL 92, 132501 (2004); Wloch, Dean, Gour, Hjorth-Jensen, Papenbrock, Piecuch, PRL 94, 21501 (2005); Gour, Piecuch, Wloc, Hjorth-Jensen, Dean, PRC (2006); Hagen, Dean, Hjorth-Jensen, Papenbrock, PLB (2007);

Hagen, Dean, Hjorth-Jensen, Papenbrock, Schwenk, PRC 76, 044305 (2007); Hagen, Papenbrock, Dean, Schwenk, Nogga, Wloch, Piccuch, PRC 76, 034302(2007); Dean, Physics Today (November 2007)

