
Presented by

Building Nuclei from the Ground Up:
Nuclear Coupled-cluster Theory

David J. Dean
Oak Ridge National Laboratory

Nuclear Coupled-cluster Collaboration:
T. Papenbrock, K. Roche, Oak Ridge National Laboratory
P. Piecuch, M. Wloch, J. Gour, Michigan State University

M. Hjorth-Jensen, Oslo
A. Schwenk, Triumf

Funding: DOE-NP, SciDAC, DOE-ASCR



2  Dean_NCCT_SC07

How do we describe nuclei we cannot
measure?

• Robust, predictive nuclear theory exists for structure and
reactions.

• Nuclear data needed to constrain theory.
• Goal is the Hamiltonian and nuclear properties:

– Bare intra-nucleon Hamiltonian.
– Energy density functional.

• Mission relevant to NP, NNSA.
• Half of all elements heavier than iron produced in r-process

where limited (or no) experimental information exits.
• Nuclear reaction information relevant to NNSA and AFCI.

“Given a lump of nuclear material, what are its
properties, and how does it interact?”

Supernova

E0102-72.3
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The Leadership Computing
Facility effort will

• Enlarge ab-initio square to
mass 100

• Enable initial global DFT
calculations with restored
symmetries

Pushing the nuclear boundaries

All Regions: Nuclear cross-section efforts (NNSA, SC/NP, Nuclear Energy)

Nuclear DFT effortThermal properties regions

Nuclear Coupled Cluster effort
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Solved up to mass 12 with
GFMC, converged mass 8
with diagonalization.  We
want to go much further!

Nuclear interactions: Cornerstone of the
entire theoretical edifice

Real three-body interactions
derived from QCD-based

effective theories

Method of Solution:
Nuclear Coupled-Cluster Theory

Depends on spin, angular momentum, and nucleon
(proton and neutron) quantum numbers. Complicated interactions
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• It boils down to a set of coupled, nonlinear algebraic equations (odd-shaped tensor-tensor multiply).
• Storage of both amplitudes and interactions is an issue as problems scale up.
• Largest problem so far: 40Ca with 10 million unknowns, 7 peta-ops to solve once

(up to 10 runs per publishable result).
• Breakthrough science: Inclusion of 3-body force into CC formalism (6-D tensor)

weakly bound and unbound nuclei.

Coupled-cluster theory: Ab initio in
medium mass nuclei

Ψ〉 = exp(Τ )Φ〉
Correlated ground-state

wave function
Correlation

operator
Reference Slater
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Energy

Amplitude equations

…+++= 321 TTTT

!

!

>

<

++

>

<

+

=

=

f

f

f

f

ab

ij

ijbaabij

a

i

iaai

aaaatT

aatT

"
"

"
"

2

1
( )Φ−Φ= THTE exp)exp(

( ) 0exp)exp( =ΦΦ=Φ−Φ HTHT ab…
ij…

ab…
ij…



6  Dean_NCCT_SC07

Ψ〉 = exp(T)Φ〉

T = T1 + T2 + T3 + …

R = excitation operator

POLYNOMIAL SCALING!! (good)

Early results
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Wolch et al PRL 94, 24501 (2005)

E* (0+) = 19.8 MeV

E* (3-) = 12.0 MeV

*Eg.s. = –120.5
MeV

CCSD
CR-CCSD(T)

Coupled cluster theory for nuclei

E = 〈ΦHΦ〉 = 〈Φe-THeTΦ〉

〈Φab…HΦ〉 = 0ij…

RHΦ〉 = E*RΦ〉
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Ab initio in medium mass nuclei

Fast convergence
 w

ith cluster rank
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Hagen et al., Phys. Rev. C 76,
044305 (2007)
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Hagen, Papenbrock, Dean, Schwenk, Nogga,
Wloch, Piecuch, Phys. Rev. C  76, 034302 (2007)

Solution at CCSD and CCSD(T) levels
involve roughly 67 more diagrams…

Challenge:  Do we really need the
full 3-body force, or just its density

dependent terms?

2-body only

0-body 3NF

1-body 3NF

2-body 3NF

Residual 3NF

1 2 3 4 5


Δ
Ε

 / 
Ε

C
C

SD


10-4

10-3

10-2

100

10-1

estimated triples corrections

N

Inclusion of full TNF in CCSD: F-Y comparisons in 4He

<E>=-28.24 MeV 
+/- 0.1MeV (sys)

-28

-27

-26

-25

-24

-23

-22

E C
C

SD
(T

) (
M

eV
)

3 4 5 6
N

+ +0   =

+ ++

+ ++

+ ++

+ ++



9  Dean_NCCT_SC07

Introduction of 
continuum basis states (Gamow, Berggren)

Correlation
dominatedSn=0

Sn

λn ~ Δn

Open QS

Closed QS

Neutron number
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Coupling of nuclear structure and reaction
theory (microscopic treatment of open channels)
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Ab initio weakly bound and unbound nuclei

Single-particle basis includes
bound, resonant, non-resonant
continuum, and scattering states
ENORMOUS SPACES….almost 1k orbitals.
1022 many-body basis states in 10He

He Chain Results
(Hagen et al)

[feature article in Physics Today (November 2007)]

Challenge:  Include 3-body force

Gamov states
capture the halo
structure of drip-
line nuclei
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•System of non-linear coupled algebraic
equations → solve by iteration

• n = number of neutrons and protons
•N = number of basis states
•Solution tensor memory

−  (N-n)**2*n**2
• Interaction tensor memory

−  N**4
•Operations count scaling

−  O(n**2*N**4)
−  O(n**4*N**4) with 3-body
−  O(n**3*N**5) at CCSDT

Solution of coupled-cluster equation

•Many such terms exist.
•Cast into a matrix-matrix
multiply algorithm.

•Parallel issue: block
sizes of V and t.

Basic numerical operation:

tnew (ab, ij) =      ∑ V  (kl, cd)told (cd, ij)told (ab, kl)
k,l=1, n
c,d=n+1,N



12  Dean_NCCT_SC07

Partial sum t2 reside on each processor

Memory distribution across processors

V(ab, c1, d1)
t2 partial sum

V(ab, c1, d2)
t2 partial sum +…V(ab, c2, d2)

t2 partial sum
V(ab, c2, d1)

t2 partial sum

+…V(ab, c1, d1)
t2 partial sum

V(ab, c1, d2)
t2 partial sum

V(a, b, c2, d2)
t2 partial sum

V(ab, c2, d1)
t2 partial sum

Code parallelism

Global reduce (sum) t2, distribute

t2(ab, ij) =  ∑V (kl,cd)tij  tkl
kl <εf
cd >εf

cd ab
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Future direction

• Current algorithm scales to 1K processors with about
20% efficiency. Attacking problems in mass 40 region is
doable with current code.

• Develop algorithm that spreads both the 2-body matrix
elements and the CC amplitudes (in collaboration with
Ken Roche) → Enables nuclei in the mass 100 region
and should scale to 100K processors (under way).

• Designing further parallel algorithms that calculate
nuclear properties to calculate densities and
electromagnetic transition amplitudes.

• Eventual time-dependent CC for fission dynamics.
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Contact

David J. Dean
Physical Sciences Directorate
Nuclear Theory
(865) 576-5229
deanj@ornl.gov
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