The Neutron Science TeraGrid Gateway: TeraGrid Cyberinfrastructure at ORNL

Presented by John W. Cobb, Ph.D. Computer Science and Mathematics Office of Cyberinfrastructure National Science Foundation

In collaboration with many teams:

NSTG, SNS, McStas group, Open Science Grid, Earth Systems Grid, TechX Corp, OGCE, UK eScience effort, and the TeraGrid Partners teams.

Outline

- 1. Cyberinfrastructure (CI)
- 2. TeraGrid
- 3. The Spallation Neutron Source
- 4. The Neutron Science TeraGrid Gateway (NSTG)
- 5. Other collaborations

Outline

- 1. Cyberinfrastructure (CI)
- 2. TeraGrid
- 3. The Spallation Neutron Source
- 4. The Neutron Science TeraGrid Gateway (NSTG)
- 5. Other collaborations

Cyberinfrastructure overview (from 2006)

Personal view: A hierarchy of needs⁺

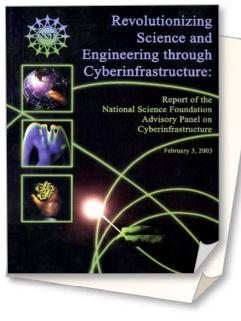
Scientific discovery enabled

Applications and user consulting

Software stack/middleware

Resources: CPU, storage, ...

Networking/connectivity


Physical Infrastructure: Space, Power, Cooling, Security,

†Maslow, A. H. (1943). A Theory of Human Motivation. Psychological Review, 50, 370-396.

‡ David Hart in NCSA News release "National Science Foundation Releases New Report from Blue-Ribbon Advisory Panel on Cyberinfrastructure" February 3, 2003 http://access.ncsa.uiuc.edu/Releases/03Releases/02.03.03_National_S.html as quoted on Cyberinfrastructure Wikipedia entry.

2003 Blue Ribbon Panel: "Atkins Report"

"Like the physical infrastructure of roads, bridges, power grids, telephone lines, and water systems that support modern society, **"Cyberinfrastructure"** refers to the distributed computer, information and communication technologies combined with the personnel and integrating components that provide a long-term platform to empower the modern scientific research endeavor" ‡

Cyberinfrastructure (CI) Maturing

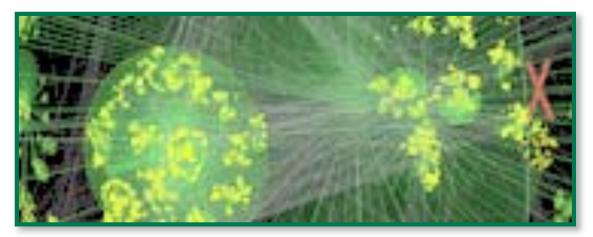
Tera Grid

- CI is now more understood
- Infrastructure is recognized as critical to service and research success
- "We believe, we get tremendous competitive advantage by essentially building our own infrastructures." Eric Schmidt, Google CEO*
- National focus now shifting to enabling scientific discovery
 - From data to knowledge: Enhancing human cognition and generating new knowledge from a wealth of heterogeneous digital data
 - Understanding complexity in natural, built, and social systems: Deriving fundamental insights on systems comprising multiple interacting elements
 - Building virtual organizations: Enhancing discovery and innovation by bringing people and resources together across institutional, geographical and cultural boundaries
- Cyber Enabled Discovery is predicated upon advanced, national-scale cyberinfrastructure

* Source The New York Times online edition, Sept. 30, 2007

Outline

- 1. Cyberinfrastructure (CI)
- 2. TeraGrid
- 3. The Spallation Neutron Source
- 4. The Neutron Science TeraGrid Gateway (NSTG)
- 5. Other collaborations

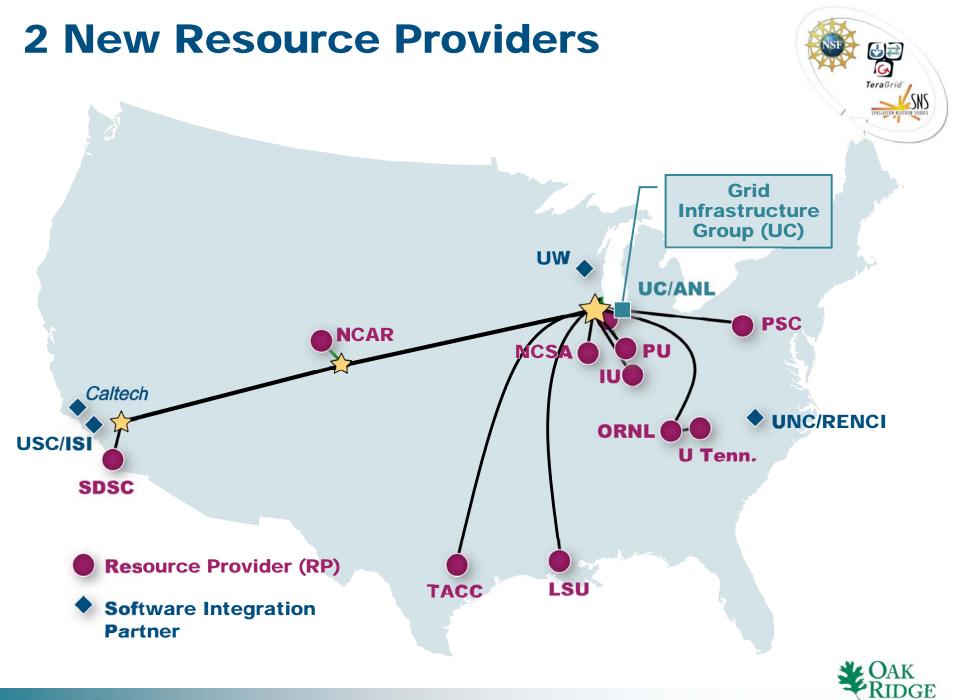

TeraGrid overview

"The TeraGrid is the world's largest, most powerful and comprehensive distributed cyberinfrastructure for open scientific research. It currently supports more than 1,000 projects and over 4,000 researchers geographically spanning the entire United States."

National Science Foundation in press release 07-09

- Noun: Cyberinfrastructure
- Adjectives
 - Most powerful
 - Comprehensive
 - Distributed
 - For open research

TeraGrid network



- Dedicated Links
- Resource to Resource
- Bandwidth unit: 10 Gbps
- Substrate for high performance high quality data movement and communications

And ...

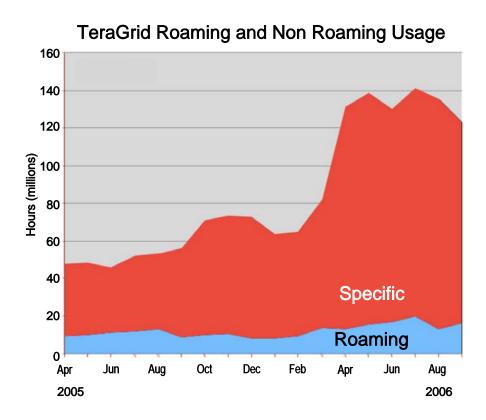
National Laboratory

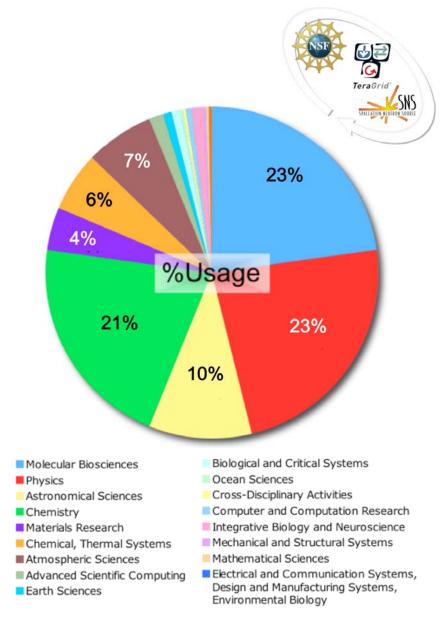
TeraGrid resources

1	al.teragrid.org/gridsphere				, 104 '40 '					unis » igin ie, Gue
1	Us	er Portal								ser
Resources	Documentation	Training Consulting A	llocations							
ns Monitor	Science Gateways	Data Collections HPC Que				j.		_	_	
sh			eraGnd S	ystems M	onitor					
		High Pe	erforman	ce Compu	ting Syste	ms				_
Name	Institution	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	CPUs	Peak TFlops	Memory TBytes	Disk TBytes	Load	R	lobs*† Q	0
Abe	NCSA	Dell Intel 64 Linux Cluster	9600	89.47	9.38	100.00	-	85	9	12
Lonestar	TACC	Dell PowerEdge Linux Cluster	5840	62.16	11.60	106.50	-	123	77	2
Big Red	IU	IBM e1350	3072	30.60	6.00	266.00	=	26	0	228
BigBen	PSC	Cray XT3	4136	21.30	4.04	100.00	-	11	53	81
Blue Gen	e SDSC	IBM Blue Gene	6144	17.10	1.50	19.50		5	0	44
Tungsten	NCSA	Dell Xeon IA- 32 Linux Cluster	2560	16.38	3.75	109.00	-	106	0	61
DataStar p655	SDSC	IBM Power4+ p655	2176	14.30	5.75	115.00	—	18	137	29
TeraGrid Cluster	NCSA	IBM Itanium2 Cluster Dell EM64T	1744	10.23	4.47	60.00	-	45	3	5
Lear	Purdue	Linux Cluster	1024	6.60	2.00	28.00		194	302	1
Cobalt	NCSA	SGI Altix	1024	6.55	3.00	100.00		65	88	1
Frost	NCAR	IBM BlueGene/L	2048	5.73	0.51	6.00		7	2	0
TeraGrid Cluster	SDSC	IBM Itanium2 Cluster	524	3.10	1.02	48.80	=	6	0	0
Copper	NCSA	IBM Power4 p690	384	2.00	1.44	30.00	-	21	0	63
DataStar p690 TeraGrid	SDSC	IBM Power4+ p690 IBM Itanium2	192	1.30	0.88	115.00	-	5	38	4
Cluster	UC/ANL	Cluster IBM IA-32	128	0.61	0.24	4.00		5	2	0
NSTG	ORNL	Cluster	56	0.34	0.07	2.14		0	0	0
Rachel	PSC	HP Alpha SMP Total:	128 40780	0.31 288.08	0.50 56.15	6.00 1215.94		7 729	32 743	12 543
					ting Syster					
Name	Institution 4	Active/Available Nodes	Active/	Available PUs	Peak TFlops	Memory GBytes	Disk GByte		tesour Details	
Condor Pool	Purdue	5042 / 5799	883	6 / 11195	14	968	8 28297	9	Q	
	Total:	5042 / 5799	8836	5 / 11195	14	968	3 28297	9		
		Adv	anced Vi	sualizatio	n Systems					
Name	Institutio		CPUs	Peak TFlops	Memory TBytes	Disk TBytes		phics		
TeraGrid Cluster	UC/ANL	Intel Xeon Cluster	192	0.61	0.38	4.00	VIDIA Gef AGP graphi 16 nVIDIA	cs car	ds	
Maverick	TACC	Sun E25K	128	0.27	0.50		graphics ca		IOFX 3L	000
*Jobs Ke	ey: R - Number	Total: of Jobs Running, †Detailed j				- Number	of Jobs in	an Ot	ther Sta	ate

- 9 distributed centers (soon 11)
- > 300 TFlops today +400 TF in January +1 PF in late 2008 On path to double every year
- > 1.5 PB disk
- Multi PB archive
- Different Resource types
 - Capability
 - Capacity
 - High throughput
 - Visualization
 - Specialized use
- Common user environments
- Tuned data transfer

TeraGrid distributed and unified management


- All TeraGrid resources are allocated via a peer-reviewed, unified national process, XRAC
- Proposals: POPS See "Allocations" tab on portal
- Single sign-on across TeraGrid (GSI)
- Common software stack across the sites
- TeraGrid portal for computer user access and ease
 - Unified user support TeraGrid-wide
 - Unified ticket system (7x24 coverage)
 - User services
- Advanced support for TeraGrid applications (ASTA)
- Coordinated high performance data movement
 - GridFTP
 - Wide area file systems (GPFS in production, Lustre, pNFS in pilots)


https://portal.teragrid.org

TeraGrid serves NSF users and the open science community

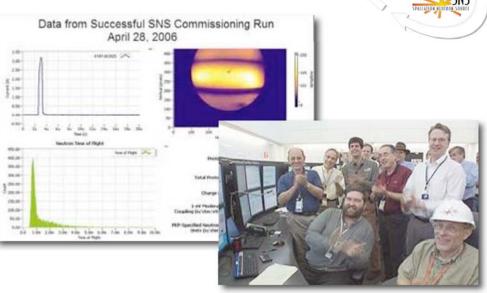
Science gateways

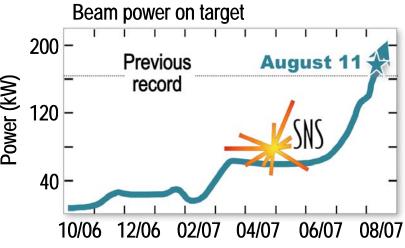
- TeraGrid size: How can we manage it?
 - Today: 4000+ user accounts across 20 resources
 - Target: 10–100× increase in user base; increase in number of resources
- TeraGrid Science Gateways
 - 1. Web portal with users in front and TeraGrid services in back
 - 2. Grid-bridging gateways: Extending the reach of a community grid (devoted to a single area of science) so it can use TeraGrid resources
 - Application programs running on users' machines (e.g., workstations and desktops) that access TeraGrid (and other) services
- The NSTG is one of 20+ existing gateways

Charting new territory for wide cyberinfrastructure services:

- Federated user management
- Callback end-user identification with automated service auditing across federated identity space "gateway community accounts"
- Grid interoperability
- Participation in attribute-based authorization

Outline


- 1. Cyberinfrastructure (CI)
- 2. TeraGrid
- 3. The Spallation Neutron Source
- 4. The Neutron Science TeraGrid Gateway (NSTG)
- 5. Other collaborations



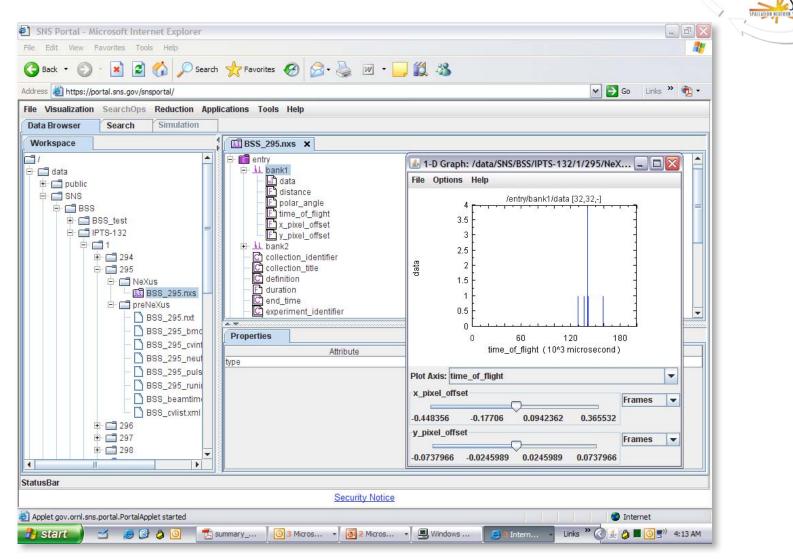
Spallation Neutron Source

"The next generation of materials research"

Large world-class user facility	 Neutrons as a probe of matter 	Data
Construction complete	 1998–2006, TPC \$1.4 billion 	100 100 100 100 100 100 100 100
Accelerator power-up	 Ongoing, 183 kW record set in August 2007 	ena ma sha jana ma na ha sha sha sha sha sha sha sha sha sha
instruments	 Commissioning 3 to 4 per year 	
User program	 3 allocated instruments in Fall 2007 : 	2
	 Backscattering spectrometer 	Power (kW) L
	 Liquids reflectometer Magnetism reflectometer 	Pow

TeraGrid

SNS data access via portal (Reduction, analysis, and simulation as well)


Turnkey solutions are being requested by users and user groups

SNS approach Problem Providing advanced tools in an easy Neutron Science User Portal fashion while retaining customizability Totally in Java _ Se ViewDisplay1D File Options Help data [-] - - -0 1 2 6 Pour grown @ 2-3 1 - 5 1 3 OAK RIDGE NATIONAL LABORATORY Function deployment order 101.01 First: Data acquisition U pixel_offset (metre) and storage/stewardship Then: Reduction, analysis, • simulation, proposals for one-stop access

Acknowledgement: S. Miller and SNS Advisory SW group; J. Kohl, S. Vazhkudai and ORNL/CSM division)

Neutron science portal view

TeraGrid

NeXus A community-driven standards process

- Data format for neutron, X-ray, and muon science
- Based on HDF5
- Self-describing
- Use increasing as new facilities come online
 - SNS
 - OPAL at ANSTO
 - ISIS second target station
 - J-SNS
- McStas (neutron Monte Carlo ray-trace simulation tool) can read and write NeXus format

http://www.nexusformat.org/

SNS cyberinfrastructure to enable the Neutron Science Portal

Software and systems	 Data acquisition system (DAS) at each instrument iCAT captures raw data Stores data locally to instrument in a pre-NeXus format Broadcast data downstream to analysis team Catalogues raw data Translation service: Raw data to NeXus formats Messaging service Application orchestration Integrated authentication with facility software XCAMS
Hardware	 Instrument local DAS and analysis machines Facility centralized services including storage, application hosting, execution servers
TeraGrid	Opportunity to access HPC resources via the Neutron Science Portal

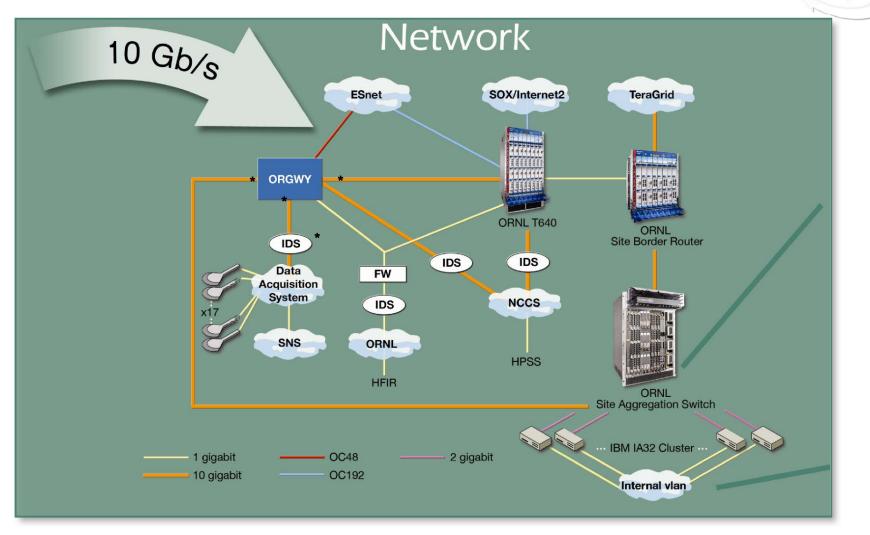
Outline

- 1. Cyberinfrastructure (CI)
- 2. TeraGrid
- 3. The Spallation Neutron Source
- 4. The Neutron Science TeraGrid Gateway (NSTG)
- 5. Other collaborations

Neutron Science TeraGrid Gateway (NSTG) One of 9 TeraGrid partner Resource Providers

Focus areas	Resources provided
 Focus areas Neutron science Connecting facilities with cyberinfrastructure Bridging cyberinfrastructures Data movement within and across TeraGrid 	 Resources provided Outreach to a specific science community (neutron science) Expertise Technology transfer Education, in a broad sense User outreach A science gateway interface
	 For neutron science Exploration of large science facility integration with national-scale cyberinfrastructure Combine TeraGrid computational resources with available neutron scattering datasets for analysis

and simulation comparison


NSTG operational components

- Wide area network connections to TeraGrid
- Local connections, at maximum bandwidth, to local facilities (SNS and HFIR)
- Modest local cluster with complete TeraGrid environment for small local TeraGrid jobs
- Long-term HPSS archival storage via ORNL's LCF/NCCS
- System operations
- Application consulting

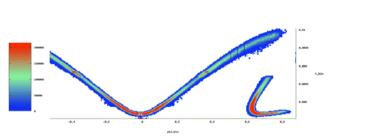
TeraGrid footprint: ORNL

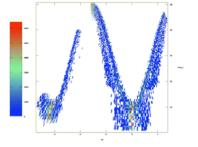
TeraGrid

NSTG results: Highlight

First principles sample kernel simulations of experimentally relevant materials (E. Farhi, ILL)

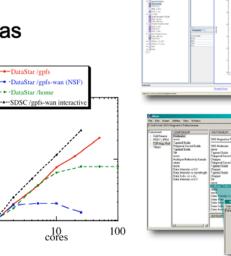
- Ability to launch McStas neutron Monte Carlo ray tracing instrument simulations on the TeraGrid directly from Neutron Science Portal
- Production use of TeraGrid community account "Jimmy Neutron"
 - New TeraGrid science gateway scaling technology
- In development: A generalized fitting service for experimental data integrated into neutron science portal and using TeraGrid computational resources
- Deployment of wide area Lustre pilot client; write speeds of 9.72 Gbs over a 10-Gbs wide area connection
- Testing of GridFTP servers with 10-Gbs end-to-end (NIC-switch-router-WAN-router-switch-NIC); >90% of theoretical maximum


Neutron science simulations Next step: Provide analysis and relevant


simulations in support of neutron science

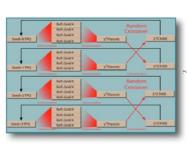
Instrument design optimization:

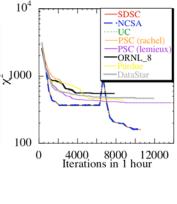
Moving simulations to TeraGrid allows larger runs and faster turnaround. Assisted in effort to redesign instrument to lower cost. Simulations provided confidence that resolution would not be sacrificed.



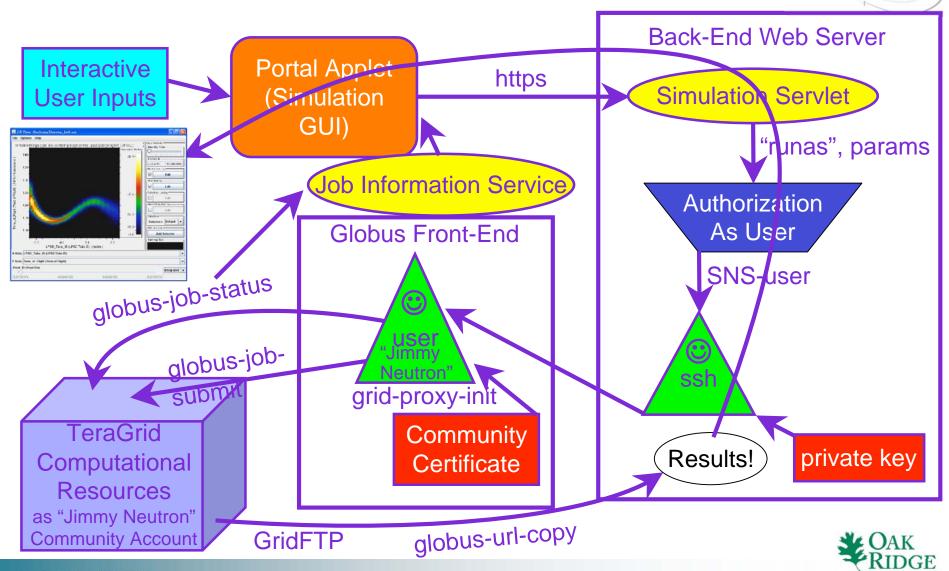
Porting and deployment of simulation tools to TeraGrid cyberinfrastructure: McStas and IDEAS

100


10


Many codes currently I/O limited. Next step is to modify I/O strategy in codes to take advantage of I/O architectures.

Improved and faster data analysis: Reflectometry


Faster and better $\chi^{\scriptscriptstyle 2}$ minimization.

Portal-initiated simulations . . . under the covers!

TeraGri

National Laborator

NSTG was and is "ahead of the curve"

- Proposed a Science Gateway as part of ORNL RP in 2003, before creation of TG science gateways program
- Included a focus on cyber-enabled science from the outset: Enabling neutron science
- Early (but not first) intergrid production operation
- Early (but not first) concentration on intra-TeraGrid high-performance wide area data transfer
- Concentration on high-performance transfer between TeraGrid and external endpoints
- Early adopter and pathfinder postures fit with NSTG RP role

Outline

- 1. Cyberinfrastructure (CI)
- 2. TeraGrid
- 3. The Spallation Neutron Source
- 4. The Neutron Science TeraGrid Gateway (NSTG)
- 5. Other collaborations

NSTG participates in several collaborative areas

Neutron science:

- SNS and other facilities
- McStas instrument simulation software
- Portal development tools and deployments
 - OGCE, GumTree Eclipse RCP

Data transport:

- Within TeraGrid partners
- In wider area (REDDnet)

Inter-grid operation:

- Open Science Grid
- Earth Systems Grid

McStas

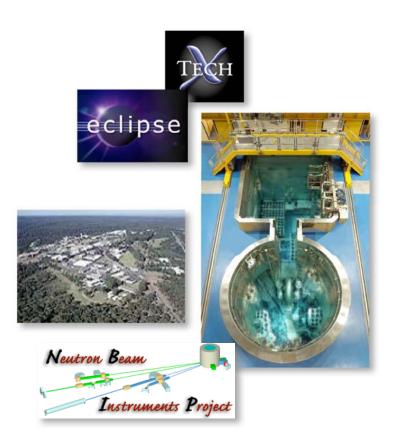
- Widely used neutron instrument simulation package for instrument design and experiment planning
- Development team at Risø National Laboratory (Denmark) and Institut Laue-Langevin (France)
- Monte Carlo ray tracing of neutron path through beamline elements
- Many advanced features
- Use cases:
 - Instrument design and construction
 - Experiment interpretation
 - Experiment planning
 - Experiment proposal evaluation
- Challenge: Simulation of sample and sample environment.
- E. Farhi (largest NSTG cluster user) has just completed a preliminary study to computationally compute scattering kernels using VASP (private communication)

http://neutron.risoe.dk/

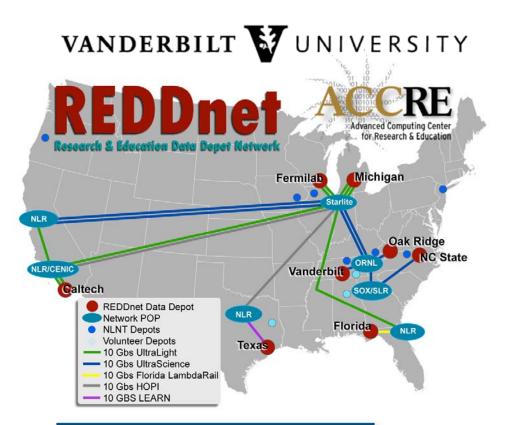
McStas: Sample kernel simulations (private communication, E. Farhi, ILL)

Re: NS	STG usage for McStas - Message (HTML)	
Eile E	dit <u>V</u> iew Insert F <u>o</u> rmat <u>T</u> ools <u>A</u> ctions <u>H</u> elp	
	y 🙈 Reply to All 🙈 Forward 🍓 🗈 🗏 🤻 🏠 🎦 🔀 🗛 + 🔹 + A* 🐁 🞯 💂	
From: To: Cc: Subject:	Emmanuel FARHI [farhi@ill.eu] Cobb, John W. Emmanuel FARHI; Lynch, Vickie E.; Chen, Meili; cobbjw@sns.govj; Hagen, Mark E.; Mark Johnson Re: NSTG usage for McStas	1
Attachm	ents: 🔀 report-TG.pdf (2 MB)	
over, a ILL Everyti	true, 10 kSU starts to be significant. And these were definitively useful. The current study is as all required and reasonable <i>ab-initio</i> MD have been computed, both on the TG and at th hing went perfectly well, and I attach a simulation report from this recent work. I'm pretty su will like it, as this is related to $S(q, w)$ computations, mainly in powders.	e
To ans	wer your 'status' questions, I would say:	
2- the scatter	fect. The ORNL TG cluster is nice, and I really appreciate this resource. Thanks again. results have produced structure dynamic factors for common powders found in neutron ing. These were simulated using VASP, then nMoldyn and McStas, and finally compared ever possible) to measurements.	
	ill notice that the 'computation side' is purely ab-initio i.e. there is no adjustable parameter,	and
	reement with measurements is astonishing, specially for Al, In and Cu. Read the attached rep	port
for mo	re.	×
<		>

TeraGrid


GumTree

http://gumtree.codehaus.org/


- An integrated scientific workbench
- Eclipse-based rich client
- Neutron science data acquisition and analysis software
- Under development at Australian Nuclear Science and Technology Organisation's (ANSTO) Bragg Institute for instruments on the OPAL reactor source
- ANSTO Team: Nick Hauser, Tony Lam
- Mark Green (TechX, Buffalo) looking to integrate into SNS portal and application efforts
- See OGCE workshop
 - November 11-12, 2007

REDDnet Research and Education Data Depot Network

ORNL REDDnet nodes in NSTG and LCF

See Vanderbilt research booth for SC'07 demo and more details http://www.reddnet.org/

- TeraGrid
- National-scale logistical storage network
- Distributed (but acts local!)
- Funding from NSF and Library of Congress
- >700 TB (500 disk, 200 tape)
- Multiple application domains
 - Satellite imagery (AmericaView)
 - High energy physics: LHC
 - Terascale Supernova Initiative
 - Structural biology
 - Vanderbilt TV news archive
 - National Geospatial Data Archive
- Data everywhere (under the cover tools to manage movement, replication, ...)

Open Science Grid (OSG)

- Similar to TeraGrid in many ways:
 - Distributed resources
 - Includes Globus toolkit in software stack
 - Science focus
- Significant operational differences and culture from TeraGrid
- NSTG cluster is "dual deployed": Both a TeraGrid and an OSG resource
 - Supports production jobs on both grids
 - Reports usage accordingly
 - Serves TG roaming accounts and most OSG Vos
 - Pick TG or OSG environment using "@" macros
- Pursued at request of neutron science community
- Significant overlap with REDDnet partners
- Purdue TeraGrid partner: Another TG/OSG integration case

http://www.opensciencegrid.org/

Earth Systems Grid (ESG)

- TeraGrid transport for backend transport (ORNL ⇔ NCAR)
- ESG host in NSTG TeraGrid is at ORNL
- ESG host talks to HPSS at ORNL and launches GridFTP transfers for ESG
- See other TeraGrid partners: NCAR

Acknowledgements and thanks

Staff and Effort

- NSTG: M. Chen¹, J. Cobb¹, V. Hazlewood¹, S. Hicks¹, G. Hinkel¹, V. Lynch¹, P. Newman¹, J. Nichols¹, D. Pack¹, G. Pike¹, Jim Rome¹, Bill Wing¹
- SNS: J. Bilheux¹, G. Granroth¹, M. Hagen¹, J. Kohl¹, D. Mikkelson⁹, R. Mikkelson⁹, S. Miller¹, P. Peterson¹, S. Ren¹, M. Reuter¹, J. Schwidder¹, B. Smith⁸, T. Swain⁸, J. Trater¹, S. Vazhkudai¹
- McStas group: E. Farhi³, K. Lefmann⁵, P. Willendrup⁵
- TechX Corp.: M. Green⁶
- OSG: R. Pourdes²
- ESG: D. Bernholdt¹, D. Middleton⁴
- UK eScience: L. Sastry⁷
- TeraGrid partners and others

Support

- National Science Foundation
- Department of Energy
- ORNL Laboratory Director's
 research and development fund

Organization

¹ORNL, ²Fermilab, ³ILL, ⁴NCAR, ⁵RISO, ⁶TechX Corp., ⁷UK eScience, ⁸UT, ⁹U Wisc., Stout

Contact

Tera Grid

John W. Cobb, Ph.D.

Computer Science and Mathematics (865) 576-5439 cobbjw@ornl.gov

21221

