Collaboration for Advanced Nuclear Simulation: Predictive Reactor Simulation for GNEP

Presented by Kevin Clarno Reactor Analysis, NST

Nuclear Science and Technology Division

Nuclear reactors have operated safely for decades throughout the world.

Many operating nuclear reactors worldwide

- More than 400 commercial power plants worldwide
- Approximately 200 nuclearpropulsion plants on Navy vessels worldwide
- More than 100 research reactors on every continent

Carl Internation

Immediate response to global warming

- No CO₂, sulfur, or mercury releases to the atmosphere
- The only carbon-free, high-energy-density electricity source
- Greenpeace founder Patrick Moore supports expansion of nuclear energy

Designs static for 20 years

- Mostly water-cooled "thermal" reactors fueled by uranium from ore
- Optimized using more than 10,000 reactor-years of experience
- Not sustainable now because they use more fuel than they produce

Global Nuclear Energy Partnership (GNEP) will expand sustainable nuclear energy worldwide.

International consensus

- Enables expanded use of economical, carbon-free nuclear energy
- Recycles nuclear fuel for energy security and international safety
- Establishes user-supplier nuclear fuel services strategy:
 - Supplier nations provide fresh fuel and recovery of used fuel
 - User nations receive economical reactors and fuel for power generation purposes only

Global benefits

- Provides abundant energy without generating greenhouse gases
- Recycles used nuclear fuel to minimize waste and reduce proliferation concerns
- Safely and securely allows developing nations to deploy nuclear power to meet energy needs
- Maximizes energy recovery from still-valuable used nuclear fuel
- Requires only one U.S. geologic waste repository for the rest of this century

The GNEP reactor consumes nuclear "waste" and produces power, but needs more analysis.

• Fast reactors are fueled by the waste from used fuel.

- Burning the worst of the radioactive isotopes (plutonium, americium, curium, etc.) to produce heat.
- Allowing reuse of the uranium in traditional reactors, potentially creating a sustainable energy cycle.
- Providing electricity from traditional "waste" source.

• Fast reactors have operated safely worldwide.

- Eighteen reactors in 9 countries, including 9 in the United States.
- World's first nuclear electricity generated by EBR-I in Idaho.
- Over 250 reactor-years of experience.

• Fast reactors are not (presently) competitive in an unregulated electricity market.

- Electricity costs are 25 to 50% higher than present cost from coal.
- Optimization for economics often counters improved safety.
- Use is not sustainable if reliant upon subsidies for competitiveness.
- Risk is increased for licensing of a novel reactor concept in the United States.

GNEP will not succeed without optimization of fast reactors for safety and economics.

Optimization through experience

- Thermal reactors have >10,000 years of commercial experience.
 - It took decades of poor performance to learn best practices.
- Fast reactors have very little commercial experience.
 - Test reactor experience does little to help a commercial entity optimize.

Inherent versus engineered safety

- Thermal reactors have added expensive engineered safety systems because of high-profile accidents.
 - New thermal reactor designs incorporate inexpensive systems designed to be inherently safe.
 - Fast reactors must reduce their reliance on engineered systems for additional safety and improved economics.

Predictive simulation of fast reactors to aid competitiveness

- High-fidelity simulation replicates years of operating experience.
 - Incorporate all of the physics that are integrated within the system.
 - Uses an as-built design with accurate data.
- Offers a flexible simulation tool for optimization of many concepts.
 - May require thousands of independent computations of the full system.
 - Easily scalable, but how many CPU-hours would be required to be predictive?

CANS: Collaboration for Advanced Nuclear Simulation

- Explore scientific phenomena.
 - Complex interaction of nuclear, mechanical, chemical, and structural processes in fission reactors.
- Simulate severe accidents.
 - Multiphysics transients with advanced materials at high temperature and pressure in a changing radiation spectrum.
- Optimize nuclear designs.
 - Nuclear facilities are expensive in cost and time.
 - Radiation activation prevents retrofits.

Georgia

Tech

Operate as a multilaboratory, multiuniversity collaboration

THE UNIVERSITY

EMPRESS: All-speed CFD and conjugate heat transfer

Conjugate heat transfer

- Conduction and convection with all-speed computational fluid dynamics (CFD)
 - Three coupled, transient governing equations: conservation of mass, momentum, and energy
 - Multiscale simulation spans: 7 orders of magnitude in space, 10 orders in time
 - Solutions required for coupled equations, each with 10¹⁰ degrees of freedom per time-step
- Radiative heat transfer: nonlinear Boltzmann transport and Planck emission
 - Coupled through quartic temperature dependence
 - Span similar orders of magnitude as convection
 - To be coupled with CFD and heat transfer
- High-fidelity distribution of heat generation

EMPRESS: Parallel CFD and conjugate heat transfer

- Development of advanced algorithms: pressure-corrected implicit continuous Eulerian CFD
- Multilaboratory code development
 - Idaho: CFD and nonlinear coupling
 - Argonne: numerical solvers/parallelization
 - Los Alamos: radiative heat transfer

NEWTRNX: High-fidelity transport for heat generation

Heat generation

- Neutron-induced nuclear fission
 - 6-D neutron distribution (3-D space and momentum) defined by the linear Boltzmann transport equation
 - Multiscale simulation spans: 5 orders of magnitude in space, 10 orders in momentum
 - 10¹²–10²¹ degrees of freedom required per time-step
- Radiation capture from radioactive decay
 - Coupled production/destruction of 1600 isotopes in time
 - 6-D photon distribution also defined by linear Boltzmann transport equation
 - Space scales similar to neutron distribution
- Dependency upon accurate temperature and density distribution

NEWTRNX: Parallel transport coupled to accurate nuclear data

- Initial testing
 - Up to 10¹² degrees of freedom on more than 2000 processors
- Utilizing advanced software tools
 - ORNL's SCALE: world-leading nuclear data processing software
 - Advanced HPC software from SciDAC: CCA, PETSc
- Developing advanced mathematical algorithms
 - Slice-balance spatial discretization
 - Nonlinear multilevel, multigrid acceleration techniques

NEWTRNX: Scalable algorithms for 6-D transport

Memory and computation decomposition

- Spatial domain decomposition
 - Parallel Block-Jacobi algorithm executed on up to 2000 processors
 - 85% parallel efficiency on 512 processors with 10¹² degrees of freedom
 - Efficient terascale scaling for full reactor simulations
- Space/momentum decomposition in the future
 - Required for petascale computing, subsets of the full reactor, or other systems
 - Collaboration with Los Alamos National Lab for additional development

Asynchronous MPI communication

- Well suited for weakly dependent domains
- Provides a level of builtin load balancing
- Continues improvement with PEAC end station

Initial testing and verification

- Demonstration on the High-Temperature Test Reactor in Japan
- Incorporation of as-manufactured facility design with a CAD interface
- Use of fine-mesh discretization in space (10⁶ elements) and momentum (10⁶)
- Replication of Monte Carlo for simple problems

National Laboratory

Collaboration for Advanced Nuclear Simulation: Predictive reactor simulation for GNEP

GNEP seeks to revolutionize the global energy market.

- Provides abundant energy without generating greenhouse gases.
- Recycles used nuclear fuel to minimize waste and reduce proliferation.
- Allows developing nations to deploy nuclear power to meet energy needs safely.
- Maximizes energy recovery from still-valuable used nuclear fuel.
- Requires only one U.S. geologic waste repository for the rest of this century.

The "fast" reactor concept must be optimized for economics and safety.

- Decades are not available to overcome shortfalls in commercial operating experience.
- The job can be done only with predictive simulation tools that require coupling high-fidelity solvers for each physics domain and using leadership-class hardware.

The Collaboration for Advanced Nuclear Simulation.

- Integrate advanced tools for high-performance computing.
- Develop advanced algorithms and solvers where present tools are lacking.
- Couple all of the appropriate physics domains on relevant scales.
- Collaborate among premier institutions to use the **best in class**.

Global Nuclear Energy Partnership

Contact

Kevin Clarno

Reactor Analysis, NST Nuclear Science and Technology Division (865) 241-1894 clarnokt@ornl.gov

The team

