
Presented by

Dealing with the Scale Problem

Innovative Computing Laboratory

MPI Team

2 Dongarra_KOJAK_SC072 Bosilca_OpenMPI_SC07

3 Dongarra_KOJAK_SC073 Bosilca_OpenMPI_SC07

Runtime scalability

Undirected graph G:=(V, E), |V|=n (any size)
Node i={0,1,2,…,n-1} has links to a set of nodes U
U={i±1, i±2,…, i±2k | 2k ≤ n} in a circular space
U={ (i+1)mod n, (i+2)mod n,…, (i+2k)mod n | 2k ≤ n } and
 { (n+i-1)mod n, (n+i-2)mod n,…, (n+i-2k)mod n | 2k ≤ n }

Merging all links
create binomial graph
from each node of the
graph

Broadcast from any
node in Log2(n)
steps

Binomial graph

4 Dongarra_KOJAK_SC074 Bosilca_OpenMPI_SC07

Degree = number of neighbors
 = number of connections
 = resource consumption

Node-Connectivity (κ)
Link-Connectivity (λ)
Optimally Connected
κ = λ =δmin

Diameter ! ")(
2

)(log2

##
"

$$
! n

O Average Distance
3

)(log
2
n

!

Binomial graph properties

Runtime scalability

5 Dongarra_KOJAK_SC075 Bosilca_OpenMPI_SC07

• Broadcast: optimal in number of steps
log2(n) (binomial tree from each node)

• Allgather: Bruck algorithm log2(n) steps
− At step s:

• Node i send data to node i-2s
• Node i receive data from node i+2s

Routing cost

Runtime scalability

• Because of the counter-
clockwise links the routing
problem is NP-complete.

• Good approximations
exist, with a max overhead
of 1 hop.

6 Dongarra_KOJAK_SC076 Bosilca_OpenMPI_SC07

Self-Healing BMG

of nodes

of added
nodes

of new
connections

Runtime scalability

Dynamic environments

7 Dongarra_KOJAK_SC077 Bosilca_OpenMPI_SC07

Optimization process

• Run-time selection process
− We use performance models, graphical encoding, and statistical

learning techniques to build platform-specific, efficient, and fast
runtime decision functions.

Collective communications

8 Dongarra_KOJAK_SC078 Bosilca_OpenMPI_SC07

Collective communications

Model prediction

(A) (B)

(C) (D)

9 Dongarra_KOJAK_SC079 Bosilca_OpenMPI_SC07

Model prediction

Collective communications

(A) (B)

(C) (D)

10 Dongarra_KOJAK_SC0710 Bosilca_OpenMPI_SC07

64 Opterons with1Gb/s TCP

Tuning broadcast

Collective communications

11 Dongarra_KOJAK_SC0711 Bosilca_OpenMPI_SC07

Tuning broadcast

Collective communications

12 Dongarra_KOJAK_SC0712 Bosilca_OpenMPI_SC07

Application tuning

• Parallel Ocean Program (POP) on a Cray XT4.
− Dominated by MPI_Allreduce of 3 doubles.

• Default Open MPI select recursive doubling
− Similar with Cray MPI (based on MPICH).
− Cray MPI has better latency.
− I.e., POP using Open MPI is 10% slower on 256 processes.

• Profile the system for this specific collective and determine
that “reduce + bcast” is faster.
− Replace the decision function.
− New POP performance is about 5% faster than Cray MPI.

Collective communications

13 Dongarra_KOJAK_SC0713 Bosilca_OpenMPI_SC07

Fault tolerance

P1P1 P2P2 P3P3 P4P4 4 available processors

P1P1 P2P2 P3P3 P4P4 Add a fifth and perform
a checkpoint(Allreduce)PcPc+ P4P4+ + =

P1P1 P2P2 P3P3 P4P4 Ready to continuePcPcP4P4

....
P1P1 P2P2 P3P3 P4P4 FailurePcPcP4P4

P1P1 P3P3 P4P4 Ready for recoveryPcPcP4P4

P1P1 P3P3 P4P4 Recover the processor/dataPcPc P2P2- - - =

Diskless checkpointing

14 Dongarra_KOJAK_SC0714 Bosilca_OpenMPI_SC07

Diskless checkpointing

• How to checkpoint?
− Either floating-point arithmetic or binary arithmetic will work.

− If checkpoints are performed in floating‐point arithmetic then we can
exploit the linearity of the mathematical relations on the object to
maintain the checksums.

• How to support multiple failures?
− Reed-Salomon algorithm.

− Support p failures require p additional processors (resources).

Fault tolerance

15 Dongarra_KOJAK_SC0715 Bosilca_OpenMPI_SC07

Performance of PCG with different MPI libraries

For ckpt we
generate one

ckpt every 2000
iterations

Fault tolerance

PCG
• Fault tolerant CG
• 64x2 AMD 64 connected using GigE

16 Dongarra_KOJAK_SC0716 Bosilca_OpenMPI_SC07

Checkpoint
overhead in

seconds

PCG

Fault tolerance

17 Dongarra_KOJAK_SC0717 Bosilca_OpenMPI_SC07

Fault tolerance

Detailing event types to avoid
intrusiveness

18 Dongarra_KOJAK_SC0718 Bosilca_OpenMPI_SC07

Fault tolerance

Interposition in Open MPI

• We want to avoid tainting the base code
with #ifdef FT_BLALA.

• Vampire PML loads a new class of MCA
components.
− Vprotocols provide the entire FT protocol

(only pessimistic for now).
− You can use the ability to define

subframeworks in your components!

• Keep using the optimized low level and
zero-copy devices (BTL) for
communication.

• Unchanged message scheduling logic.

19 Dongarra_KOJAK_SC0719 Bosilca_OpenMPI_SC07

Fault tolerance

Performance overhead

• Myrinet 2G (mx 1.1.5)—Opteron
146x2—2GB RAM—Linux 2.6.18
—gcc/gfortran 4.1.2—NPB3.2—
NetPIPE.

• Only two application kernels show
non-deterministic events (MG,
LU).

20 Dongarra_KOJAK_SC0720 Bosilca_OpenMPI_SC07

Interactive Debugging

Testing

Release
Design
and code

Fault tolerance

Debugging applications

• Usual scenario involves
− Programmer design testing

suite
− Testing suite shows a bug
− Programmer runs the

application in a debugger
(such as gdb) up to
understand the bug and fix it

− Programmer runs the testing
suite again
• Cyclic debugging

21 Dongarra_KOJAK_SC0721 Bosilca_OpenMPI_SC07

Fault tolerance

Interposition Open MPI

• Events are stored (asynchronously on disk) during initial run.

• Keep using the optimized low level and zero-copy devices (BTL) for
communication.

• Unchanged message scheduling logic.

• We expect low impact on application behavior.

22 Dongarra_KOJAK_SC0722 Bosilca_OpenMPI_SC07

Fault tolerance

Performance overhead
• Myrinet 2G (mx 1.0.3)—Opteron 146x2—2GB RAM—Linux 2.6.18—gcc/gfortran

4.1.2—NPB3.2—NetPIPE
• 2% overhead on bare latency, no overhead on bandwidth.
• Only two application kernels show non-deterministic events.
• Receiver-based has more overhead; moreover, it incurs large amount of logged

data—350 MB on simple ping-pong (this is beneficial; it is enabled on-demand).

23 Dongarra_KOJAK_SC0723 Bosilca_OpenMPI_SC07

Log size per process on NAS Parallel Benchmarks (kB)

Fault tolerance

Log size on NAS parallel benchmarks

• Among the 7 NAS kernels, only 2 NPB generates
nondeterministic events.

• Log size does not correlate with number of processes.

• The more scalable is the application, the more scalable is the
log mechanism.

• Only 287KB of log/process for LU.C.1024 (200MB memory
footprint/process).

24 Dongarra_KOJAK_SC0724 Bosilca_OpenMPI_SC07

Contact

Dr. George Bosilca
Innovative Computing Laboratory
Electrical Engineering and Computer Science Department
University of Tennessee
bosilca@eecs.utk.edu

