Visualization at ORNL's National Center for Computational Sciences

Presented by

Sean Ahern

Visualization Task Leader National Center for Computational Sciences

We provide data analysis and visualization for ORNL's HPC users

- Many application domains:
 - Magnetic confinement fusion
 - Climate
 - Bioenergy
 - Material science
 - Nuclear energy
 - Astrophysics
 - Geographic information systems

- Focus on large data:
 - Large, distributed analysis cluster
 - Parallel tools: Vislt, Paraview, EnSight
 - Core competency in remote visualization
- Production visualization development team
 - Custom tools
 - New data exploration techniques
 - Movie/image generation
 - Large display support

Supporting climate dynamics

- "Embedded" visualization support for the Computational Earth Sciences Group
- Exploring coupled carbon cycle and nitrogen cycle models of long time scale climate systems

Magnetically confined fusion support

- RF heating of plasmas
- Topological analysis
 - Magnetic field line winding
 - Poincaré plot generation
 - Island extraction

Combined visualization of simulation results and CAD model of ITER

High dimensional filtering

- Information visualization technique (a.k.a. parallel coordinates)
- Consists of three linked capabilities
 - Parallel coordinates plot with summary view for large data
 - Restriction tool
 - Multivariate threshold operator

- Used to filter multivariate data from particle-in-cell fusion code
- Implemented in Vislt: http://www.llnl.gov/visit

Molecular dynamics

- Support MD data analysis for
 - Bioenergy
 - Material science
 - Drug modeling
- Vislt "Molecule" plot for data analysis

Interactive climate analysis with data-parallel R

- Data-parallel R interactive runtime environment:
 - NetCDF data-parallel readers
 - R/RMPI operations on distributed data

- Extremely broad range of analysis methods:
 - So far, binning, subsetting, univariate statistics, regression methods, and extreme value methods tested
 - Other analyses being tested

EVEREST facility

- 35 million pixel, 27-tile PowerWall
- 27 NVIDIA 8800 GTX GPUs, dedicated Linux cluster
- Interactive, large-scale, collaborative data analysis
- 30 feet by 8 feet

One of five institutions making up the SciDAC Visualization Center

 Meet the data Visualization and Analytics understanding traffic Egabling Technologies

Remote visualization for large data

- Largest datasets require use of institutional resources.
- Reduces data movement issues.
- Allows exploitation of multiple GPUs.
- Provides visualization to remote users.
- Exploited by Vislt, ParaView, EnSight.

Contact

Sean Ahern

Visualization Task Leader National Center for Computational Sciences (865) 241-3748 ahern@ornl.gov

