Management of Seriously Wounded Patients During Transport

Maj Napoleon Roux, MD, USAF, MC Chief of Anesthesia Critical Care Air Transport Team

779th Medical Group Andrews Air Force Base, MD

Disclosures

I have no financial disclosures.

Overview

- Familiarize audience with USAF Critical Care Air Transport Team (CCATT) Mission
- Review acute management goals of TBI
- Review acute management goals of other injuries
- Review and Questions

ICU in the sky

(picture from an article by Dr. T. Carter in ASA March 2006)

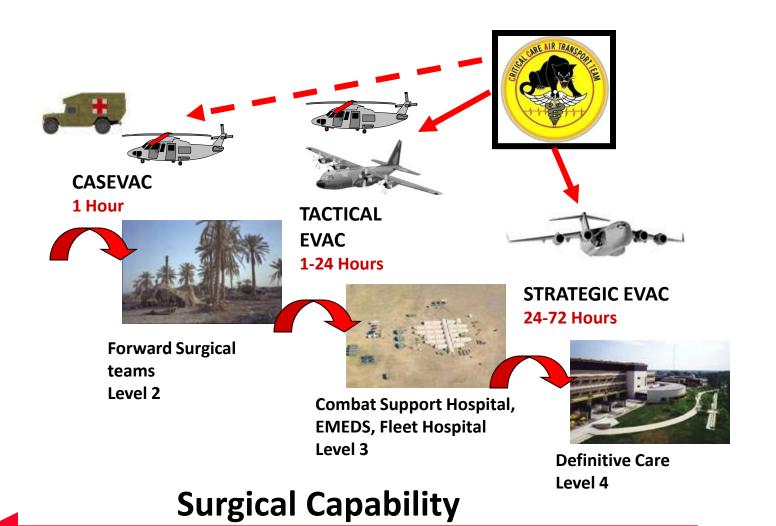
Mission

- CCATTs assist in carrying out the mission of the Aeromedical Evacuation (AE) system, which includes air transport of patients under medical supervision while delivering optimal care
- Enhance the AE of critically ill or injured patients who require continuous stabilization and advanced care during transport to the next level of care

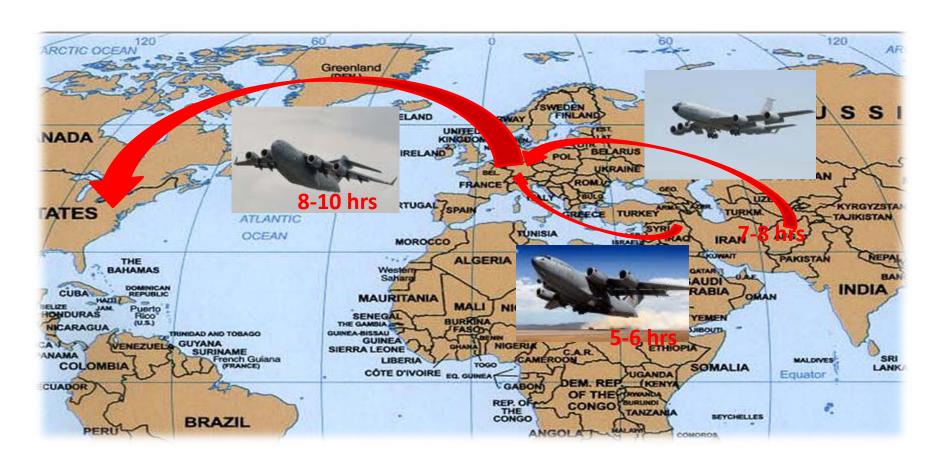
CCATT

- Critical Care Air Transport Team
 - Physician
 - Emergency Medicine, Anesthesiologist,
 Pulmonologist/Critical Care, Cardiologist
 - Critical Care Nurse
 - Respiratory Therapist

Scope of Care


- Upon arrival of the stabilized patient to the staging location the role of the CCATT is to prepare the critically ill or injured patient for AE
- The CCATT will accompany the patient to the aircraft and continue to monitor and intervene in-flight as required
- This team does <u>not</u> routinely provide primary stabilization and does <u>not</u> replace forward surgical or medical team capabilities
- Maximum patient load being three high acuity patients or care for up to six relatively low acuity stabilized patients for up to 72 hours (6 patients maximum)

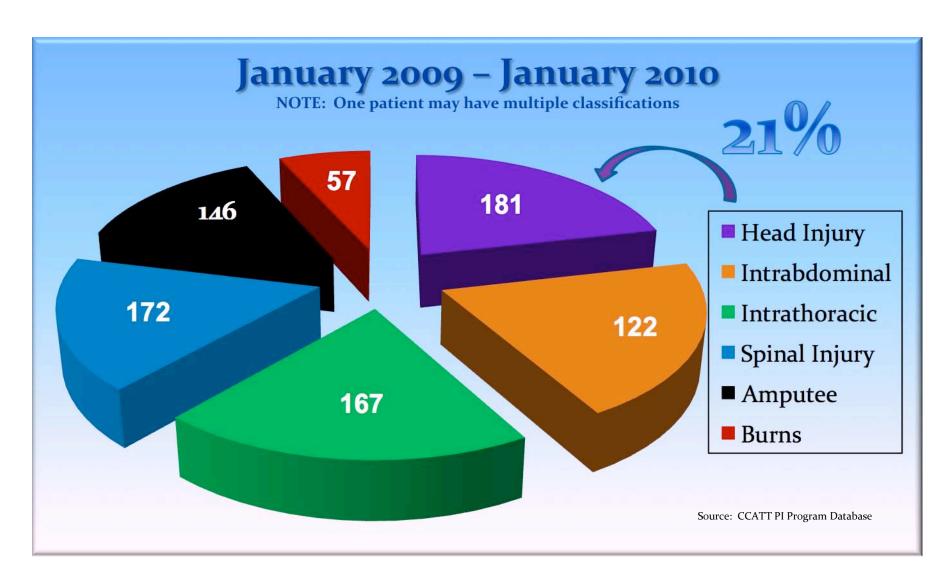
Types of Missions


 Operation Enduring Freedom, Operation Iraqi Freedom, and numerous peacetime and humanitarian missions, including:

- Hurricane Katrina/Rita evacuation
- Guantanamo detainee transport support
- Presidential international travel support
- Support for the earthquake in Haiti
- High-profile patient transport

Care En-route

Inter-Theater Routes


CCATT Equipment (585 pounds total)

Patient Setup on Aircraft

CCATT Transports - Trauma

Traumatic Brain Injury (TBI)

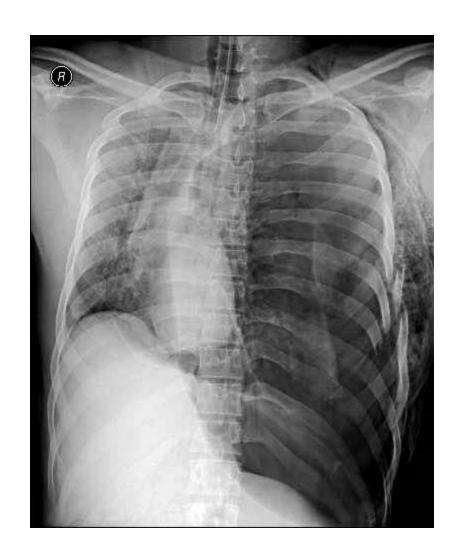
Traumatic Brain Injury Goals in Flight

- 65% mortality for Glasgow Coma Scale (GCS) 3-5
- 10% mortality for GCS 6-8
- Survivors of severe TBI, independent living statistics:
 - ->40% for GCS 3-5
 - 60% for GCS 6-8
- Goal is to prevent secondary brain injury
 - Hypoxia (keep SpO2 >93%)
 - Shock (keep systolic blood pressure > 90 mmHg)
- Document serial neurological examinations
- Avoid intracranial hypertension

TBI Management Goals in Flight

- Neurologic: ICP < 20 mm Hg, CPP > 60 mm Hg, seizure prophylaxis, elevate head of bed and prevent jugular vein obstruction
- Hemodynamic: Support MAP to maintain CPP goals
 CVP >5 mm Hg
- Pulmonary: SpO2 > 93% PaCO2 35-40 in 1st 24hr
 30-35 24hr 7 days
- Hematologic: avoid anemia, coagulopathy, & thrombocytopenia
- Metabolic: Glucose 80 150 mg/dl; avoid hyperthermia
- Renal: Serum Osmolality 280–320 mOsm
 Serum Sodium 138-165 mEq (3% saline protocol)

Intracranial Devices


Codman Ventricular Drain

Codman Intracranial Monitor

Thoracic Trauma

Thoracic Trauma

- Blunt vs Penetrating
- Cardiac and Pulmonary Contusions
 - Supportive care (arrythmias, cardiogenic shock, oxygenation and ventilations problems)
- Cardiac Tamponade
 - Pericardiocentesis
- Tension pneumothorax
 - Needle thoracostomy and chest tube placement
- Massive hemothorax
 - Adequate fluid resuscitation
 - May auto-transfuse shed blood

Thoracic Trauma Goals in Flight

- Monitor for central venous and arterial pressure, chest tube(s) output
- Maintain intravenous (IV) access with large bore peripheral IV's, central line
- Consider taking blood products for continued resuscitation
- Be prepared to perform needle thoracostomy and/or perform chest tube placement
- Maintain adequate oxygenation and ventilation (FiO2 at least 40%) (Tidal volumes of 6-8 ml/kg)

Damage Control Laparotomy after Abdominal Trauma

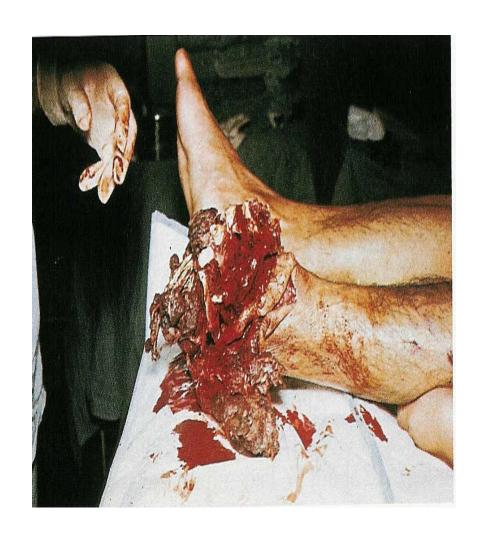
Abdominal Trauma

- Blunt vs Penetrating
- Frequently requires laparotomy
- Risk factors for massive transfusion (MT)
 - SBP < 110mmHg</p>

-Heart Rate > 105 bpm

- Hct < 32%

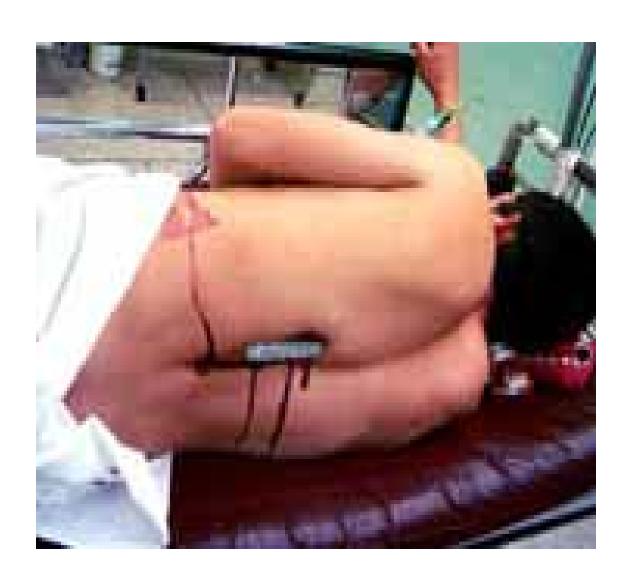
-pH < 7.25


- 3 of 4 have 70% risk of MT, 4 of 4 have 85% risk of MT
- Transport problems
 - Hemorrhage
 - Associated with injury to liver, spleen, kidney, vascular structures
 - Hypothermia
 - Open abdomen
 - Coagulopathy
 - Sepsis
 - Difficulty in ventilation (abdominal compartment syndrome)

Abdominal Trauma Goals in Flight

- Maintain intravenous (IV) access with large bore peripheral IV's and/or central line
- Consider continuous blood pressure monitoring
- Consider taking blood products for continued resuscitation
- Monitor for evidence of abdominal compartment syndrome (checking urine output, bladder pressures, and peak airway pressures)
- Monitor and treat for possible hypothermia and acidosis, coagulopathy, and sepsis

Orthopedic Trauma


- Blunt versusPenetrating
- May involve neurovascular injury
- Patients may require repeated care
- Many patients will have other injuries

Orthopedic Trauma Issues and Goals

- Pelvic Fractures
 - Significant blood loss (stabilize the pelvis and consider taking additional blood products)
 - Major hemodynamic swings
 - High mortality rates
 - 18-40% in civilian population
 - Major cause of death is exsanguination (70% venous, 30 arterial bleed)
 - Ensure pelvis is adequately stabilized (Surgical stabilization, Vacuum Spine Board use (VSB))
- Extremity injuries
 - Potential for significant blood loss
 - Neurovascular injuries evaluate prior to flight for baseline
 - Potential for fat embolism
 - Potential for compartment syndrome (consider pre-flight fasciotomies)
 - Potential for rhabdomyolysis

Spine Injury

Flight Considerations

- Carefully evaluate neurologic status pre-flight
 - Note deficits before flight
 - Consider pre-flight intubation
- Avoid hypotension
 - Consider taking blood products
 - Consider vasopressors to improve mean arterial pressure and subsequent spinal cord perfusion
- Ensure adequate oxygenation and ventilation
- Pre-flight surgical stabilization versus vacuum spine board
- Consider DVT prophylaxis (5-20% risk of clinically apparent DVT/PE)

Spine Injuries

Vacuum Spine Board

Aspen Collar

Review

- Maintain the same level of care as there is on ground (ICU in the Sky)
- CCATT care is door to door
- Understand and adjust for stressors in flight
- Preparation prior to flight will improve overall patient care

Literature

- American Society of Anesthesiologists. Dr. T. Carter in ASA March 2006.
- "Blunt Abdominal Trauma". Joint Theater Trauma System Clinical Practice Guidelines. 30 June 2010.
- Centers for Sustainment of Trauma and Readiness Skills Course.
 Cincinnati, Ohio. Oct-Nov 2009.
- "Compartment Syndrome (CS) and the Role of Fasciotomy in Extremity War Wounds". Joint Theater Trauma System Clinical Practice Guidelines. 30 Apr 2009.
- "Management of Patients with Severe Head Trauma". Joint Theater Trauma System Clinical Practice Guidelines. 30 June 2010.
- "Pelvic Fracture Care". Joint Theater Trauma System Clinical Practice Guidelines. 30 June 2010.
- "Spine Injury Surgical Management and Transport". Joint Theater Trauma System Clinical Practice Guidelines. 30 June 2010.

Any Questions?

Thank you for your time and attention!