Probabilistic Forecast for 21st Century Climate Based on an Ensemble of Simulations using a Business-As-Usual Scenario

> Co-authors: Jeffery Scott, Andrei Sokolov, Chris Forest, Stephanie Dutkiewicz, Peter Stone

DOE Climate and Earth System Modeling Meeting Uncertainty Quantification and Metrics September 22, 2011

Earth System Model Description (MIT IGSM 2.3)

Objective: Can we use historical data to constrain uncertain Earth System Model parameters to generate probabilistic 21st Century simulations?

New in this study: incorporating 3D ocean circulation and biogeochemistry model into the Earth System Model

Research Questions:

- Does including a explicit 3D ocean affect the constraining of model parameters?
- How does including ocean feedbacks (circulation changes, changes in carbon uptake) affect results?
- How is heat and carbon taken up by the ocean?

IGSM 2.3 Ensemble Calibration Runs (20th Century) Parameter Range

- Climate Sensitivity: 0.5 to 10.0 K
- Aerosol Forcing: -1.5 to 0.5 W/m²
- Ocean Heat Uptake: 4 different ocean states (next slide)
- 4 initial conditions

How do we vary ocean heat uptake?

- Previous work: used simple mixed layer anomaly-diffusion ocean model that can represent full range of uncertainty in heat uptake efficiency (via bulk diffusivity parameter)
- Primary physical process for uptake in 3D model is NOT diapycnal (vertical) diffusivity K_z ; however, varying K_z modifies ocean density and circulation, with resulting different ocean heat uptake properties
- Used four discrete values of κ_z in this study (does not cover uncertain parameter space of heat uptake efficiency)
- Separate pdfs for Climate Sensitivity, Aerosol Forcing generated for each κ_z

Constraining Input PDFs using Observations

Complicated story here... (Forest et al. manuscript in prep.)

We find: using observed ocean data problematic (overconstrained system? quality of deep ocean data?); ergo, only surface and upper air used in this study

Green: weakest ocean heat uptake efficiency

Cyan: strongest ocean heat uptake efficiency

Green: weakest ocean heat uptake efficiency

Cyan: strongest ocean heat uptake efficiency

Conclusions:

 Aerosol forcing strongly constrains 20th century behavior; sensitivity "adjusts" to match obs. record

• Median SAT temperature increase over 21st century ranges from 4.3–6.2 K, depending on ocean heat uptake efficiency

• Decrease in the Atlantic meridional overturning circulation seems weekly dependent on the input pdfs

Current work:

- More work needs to be done in understanding and representing ocean heat uptake efficiency in models
- Increased ocean model resolution, improved parameterizations (using DOE Evergreen cluster)
- Expanded observational data set