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Introduction 
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 Most current IAMs are structured for deterministic analyses 
 

 
 

 
 
 
 
But… 
 The climate change policy problem is inherently stochastic.  For example: 

 uncertainty in rate of clean capital technological improvement 
 uncertainty in climate system response to temperature change 

 We can learn about these uncertainties over time and revise decisions 
 We lack good stochastic climate policy (IAM) models due to computational 

limitations 
 

Source: DICE-99 Model 
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Overview: Sequential decision making under 
uncertainty (1 of 2) 
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Decision: μ  = GHG (or carbon) emission control rate 
Uncertainty: High/Med/Low = “clean” energy technology improvement rate 
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State Variable:  
“State of the World” 1 

State 2 State 3 State 4 

State Variable: “holds” information about the past needed to make a new decision 
 

Learn Learn Learn 
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* 
Overview: Sequential decision making under 
uncertainty (2 of 2) 
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Objective of the Stochastic Problem 
choose μ(t) to maximize Bellman Value (Total Reward) in each time period: 

 
Vt

*(St) = max(Ct(St, μt) + E[Vt+1(St+1)|St, μt]) 
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Motivation: DICE stochastic dynamic program 
results and “curse of dimensionality” 
The “curse of dimensionality” 
 limited decisions and stages (1 decision made at 100/100/150 years) 
 coarse state and action resolutions 
 long run times 

 3-stage DICE SDP took ~12 days to solve on a new 64-bit desktop PC 
(2010) 
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Climate policy decisions need to be made at 
shorter intervals and at finer resolutions. 

A much simpler model than the one we need 
already takes far too long to run! 



6 

Stochastic Dynamic Programming (SDP) v.  
Approximate Dynamic Programming (ADP) 
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Two Components to ADP: Sampling and Value Function Approximation 
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New DICE ADP Model (1 of 2) 
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 Working Paper here: http://esd.mit.edu/WPS/2011/esd-wp-2011-12.pdf 
 Implementation: ADP for 7-period stochastic DICE (50-year steps) 

 objective: maximize (Ct(St, μt) + E[Vt+1(St+1)|St, μt])   “Bellman Value” 
 

 single decision: μ(t) 
 single uncertainty (with and without path-dependency): abatement cost 
 state variable: K(t)—capital stock level, TE(t)—current temperature 

 Solves in ~1-3 mins! 
 New Model Validation 
 
 
 
 
 
 

Current Utility Expected Future Utility 

http://esd.mit.edu/WPS/2011/esd-wp-2011-12.pdf
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New DICE ADP Model (2 of 2) 
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Results of Numerical Experiments with DICE ADP Model 
 Uncertainty (REF) v. path-dependent uncertainty (PD) in abatement costs 

 
 

 
 
 
 
 
 
 
 
 
 



9 

Conclusions: ADP Advantages and Challenges 
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Main Advantages 
 Overcomes the “curse of dimensionality” (ability to model several decisions, 

types and numbers of uncertainties, and time-periods in a fraction of time 
for a comparable SDP) 

 Explicitly represents uncertainty with learning/adaptation 
 Method of forward sampling (through uncertainties and decisions) lends to 

more easily representing sequential path-dependent decisions over other 
comparable approaches. 

Main Challenges 
 Falls under the general class of heuristic methods for global optimization 
 Value function approximation methods are sensitive to complexity and type 

of decision problem 
 Final solution can be sensitive to initial value function approximation.  More 

research needs to be done studying the tradeoff between “explore v. 
exploit” methods. 
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Upcoming Related Work 
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 ADP formulation of DICE extensions  
(Webster & Santen-MIT, Popp-Syracuse/NBER, and Fisher-Vanden-PSU) 
 ENTICE/ENTICE-BR4,5 modifies DICE to include endogenous 

technological change and investments in clean energy R&D 
 We will be modeling these additional R&D investment decisions, and  
 including uncertainties about breakthrough technological change activity 

& climate sensitivity 
 

 MIT Integrated Global System Modeling Framework (MIT IGSM) ADP 
(Jennifer Morris, MIT ESD PhD Candidate, Dissertation Topic) 

4 Popp, D. (2004). “ENTICE: Endogenous Technological Change in the DICE Model of Global Warming.” Journal of Environmental Economics and 
Management 48(1): 742-768.  
5 Popp, D. (2006). “ENTICE-BR: Backstop Technology in the ENTICE Model of Climate Change.” Energy Economics 28 (2): 188-222.  



11 

Thank You 
 
Acknowledgements 
U.S. Department of Energy Grant No. DE-SC0003906 
U.S. National Science Foundation Grant No. 0825915 
Karen Fisher-Vanden – Penn State University  
David Popp – Syracuse University/NBER 
 

11 



12 

12  
 
 

Webster Research Group 
Sample Doctoral Students’ Research Projects 



• Integrated Assessment Models (IAMs) 
couple human and climate systems and 
are valuable decision support tools  

• However, most IAM analyses are 
deterministic 

• How can we capture technological 
uncertainty and ability to revise 
decisions over time in an IAM? 

• Curse of Dimensionality limits 
application of Dynamic Programming 

• Approximate Dynamic Programming to 
the rescue!!! 

• ADP IAM can provide important insight 
into near-term mitigation strategies and 
climate policy design 

Research Question: Under a long-term climate stabilization 
target, how do uncertain technology costs, and the ability to 
learn and adapt decisions over time, affect near-term 
emission mitigation decisions?  - Jennifer Morris, MIT ESD 

   MIT Integrated Global System Modeling Framework (IGSM) 



Environmental and R&D policy portfolio optimization under technology change 
uncertainty:  the case of the U.S. electricity sector 
Nidhi R. Santen, ESD Ph.D. Candidate 

Research Question: 

“What is the optimal balance between near-term regulatory policy and clean electricity 
technology R&D expenditures, given the uncertainty in returns to R&D?” 
 

Objectives: 

• Develop an integrated policy and long-range generation capacity planning modeling 
framework to evaluate the impact of uncertain electricity technology improvements on 
optimal policy planning. 

• Evaluate the trade-offs between “development-focused” and “adoption-focused” climate 
and technology policies, considering uncertainty (& breakthroughs) in R&D returns. 
 

Approach: 

• Couple a policy-induced technology change model with a national-level electricity generation 
capacity planning model.  Use patent citation data to empirically calibrate relationships 
between R&D and generation technology costs. 

• Use stochastic optimization techniques to model a range of sequential environmental and 
R&D policy decisions under uncertain (endogenous) R&D returns, and study optimal near-
term policies.  Study associated electricity generation capacity and carbon-dioxide emission 
evolutions. 

– Use approximate dynamic programming (ADP) to capture the large number of decisions 
and uncertainties at each stage, and the long time-horizon of the policy and generation 
capacity planning processes (while keeping the problem tractable). 
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Operating Constraints in Stochastic 
Electricity Planning 

 Operational 
Flexibility Key for 
Renewables and 
Emissions 
Assessment 

 New methods for 
ops + planning: 
 Efficient Long-term 

Unit Commitment 
 Multi-Fidelity 

Approximate 
Dynamic 
Programming 

15 Bryan Palmintier One Page Intro 2011-09-21 

By Bryan Palmintier 


	Methods for Modeling Decisions under Uncertainty for Integrated Assessment Models
	Introduction
	Overview: Sequential decision making under uncertainty (1 of 2)
	Overview: Sequential decision making under uncertainty (2 of 2)
	Motivation: DICE stochastic dynamic program results and “curse of dimensionality”
	Stochastic Dynamic Programming (SDP) v. �Approximate Dynamic Programming (ADP)
	New DICE ADP Model (1 of 2)
	New DICE ADP Model (2 of 2)
	Conclusions: ADP Advantages and Challenges
	Upcoming Related Work
	Thank You��Acknowledgements�U.S. Department of Energy Grant No. DE-SC0003906�U.S. National Science Foundation Grant No. 0825915�Karen Fisher-Vanden – Penn State University �David Popp – Syracuse University/NBER�
	Slide Number 12
	Slide Number 13
	Environmental and R&D policy portfolio optimization under technology change uncertainty:  the case of the U.S. electricity sector�Nidhi R. Santen, ESD Ph.D. Candidate
	Operating Constraints in Stochastic Electricity Planning

