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Introduction

= Most current IAMs are structured for deterministic analyses

Optimal GHG Emission Control Rate Scenario Analysis:
Optimal GHG Emission Control Rate
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But...

= The climate change policy problem is inherently stochastic. For example:
o uncertainty in rate of clean capital technological improvement
o uncertainty in climate system response to temperature change

= We can learn about these uncertainties over time and revise decisions

= We lack good stochastic climate policy (IAM) models due to computational
limitations




Overview: Sequential decision making under
uncertainty (1 of 2)

Decision: p = GHG (or carbon) emission control rate

= “clean” energy technology improvement rate
State Variable: “holds” information about the past needed to make a new decision
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Current Reward

Overview: Sequential decision making under
uncertainty (2 of 2)
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Objective of the Stochastic Problem
choose p(t) to maximize Bellman Value (Total Reward) in each time period:

V{(Sy) = max(C(S, /J,t) +\ E[Vt+l(St+l)|St"ut])

u(t)

Current Expected Future
Reward Reward




Motivation: DICE stochastic dynamic program
results and “curse of dimensionality”

The “curse of dimensionality”

= limited decisions and stages (1 decision made at 100/100/150 years)
m coarse state and action resolutions

= long run times

o 3-stage DICE SDP took ~12 days to solve on a new 64-bit desktop PC
(2010)

Climate policy decisions need to be made at
shorter intervals and at finer resolutions.

A much simpler model than the one we need
already takes far too long to run!




Value Function

Stochastic Dynamic Programming (SDP) v.
Approximate Dynamic Programming (ADP)

Two Components to ADP: Sampling and Value Function Approximation

True value function from SDP Approximate value function from ADP
SDP ADP
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New DICE ADP Model (1 of 2)

= Working Paper here: http://esd.mit.edu/WPS/2011/esd-wp-2011-12.pdf
= Implementation: ADP for 7-period stochastic DICE (50-year steps)

o objective: maximize (C(S;, uy) + E[V,1(Siu)|Su 1) € “Bellman Value”
(E— | J
Current Utility Expected Future Utility

o single decision: pu(t)
o single uncertainty (with and without path-dependency): abatement cost
o state variable: K(t)—capital stock level, TE(t)—current temperature
= Solves in ~1-3 mins!
= New Model Validation
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http://esd.mit.edu/WPS/2011/esd-wp-2011-12.pdf

New DICE ADP Model (2 of 2)

Results of Numerical Experiments with DICE ADP Model

Uncertainty (REF) v. path-dependent uncertainty (PD) in abatement costs
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Conclusions: ADP Advantages and Challenges

Main Advantages

= Overcomes the “curse of dimensionality” (ability to model several decisions,
types and numbers of uncertainties, and time-periods in a fraction of time
for a comparable SDP)

= EXxplicitly represents uncertainty with learning/adaptation

= Method of forward sampling (through uncertainties and decisions) lends to
more easily representing sequential path-dependent decisions over other
comparable approaches.

Main Challenges
= Falls under the general class of heuristic methods for global optimization

= Value function approximation methods are sensitive to complexity and type
of decision problem

= Final solution can be sensitive to initial value function approximation. More
research needs to be done studying the tradeoff between “explore v.
exploit” methods.




Upcoming Related Work

= ADP formulation of DICE extensions
(Webster & Santen-MIT, Popp-Syracuse/NBER, and Fisher-Vanden-PSU)

o ENTICE/ENTICE-BR#®> modifies DICE to include endogenous
technological change and investments in clean energy R&D

o We will be modeling these additional R&D investment decisions, and

o including uncertainties about breakthrough technological change activity
& climate sensitivity

= MIT Integrated Global System Modeling Framework (MIT IGSM) ADP
(Jennifer Morris, MIT ESD PhD Candidate, Dissertation Topic)

4Popp, D. (2004). “ENTICE: Endogenous Technological Change in the DICE Model of Global Warming.” Journal of Environmental Economics and
Management 48(1): 742-768. 10

5Popp, D. (2006). “ENTICE-BR: Backstop Technology in the ENTICE Model of Climate Change.” Energy Economics 28 (2): 188-222.
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" Research Question: Under a long-term climate stabilization N
target, how do uncertain technology costs, and the ability to
learn and adapt decisions over time, affect near-term

\.emission mitigation decisions? - Jennifer Morris, MIT ESD )

* Integrated Assessment Models (IAMs)
couple human and climate systems and
are valuable decision support tools

* However, most IAM analyses are
deterministic

 How can we capture technological
uncertainty and ability to revise
decisions over time in an IAM?

e Curse of Dimensionality limits
application of Dynamic Programming

e Approximate Dynamic Programming to
the rescue!!!

e ADP IAM can provide important insight
into near-term mitigation strategies and
climate policy design
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Environmental and R&D policy portfolio optimization under technology change
uncertainty: the case of the U.S. electricity sector
Nidhi R. Santen, ESD Ph.D. Candidate

Research Question:

“What is the optimal balance between near-term regulatory policy and clean electricity
technology R&D expenditures, given the uncertainty in returns to R&D?”

Objectives:

* Develop an integrated policy and long-range generation capacity planning modeling
framework to evaluate the impact of uncertain electricity technology improvements on
optimal policy planning.

e Evaluate the trade-offs between “development-focused” and “adoption-focused” climate
and technology policies, considering uncertainty (& breakthroughs) in R&D returns.

Approach:

* Couple a policy-induced technology change model with a national-level electricity generation
capacity planning model. Use patent citation data to empirically calibrate relationships
between R&D and generation technology costs.

* Use stochastic optimization techniques to model a range of sequential environmental and
R&D policy decisions under uncertain (endogenous) R&D returns, and study optimal near-
term policies. Study associated electricity generation capacity and carbon-dioxide emission
evolutions.

— Use approximate dynamic programming (ADP) to capture the large number of decisions
and uncertainties at each stage, and the long time-horizon of the policy and generation
capacity planning processes (while keeping the problem tractable).

Photo Credits (from top): (1) http://www.usmc.mil (2) http://www.pelamiswave.com (3) www.scientificamerican.com

(4) Sandia National Labs (4) http://www.metaefficient.com (5) http://img.dailymail.co.uk (6) https://inlportal.inl.gov
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