# Consensus Among Climate Models via Synchronized Chaos

Greg Duane U. Colorado Ljupco Kocarev UCSD Frank Selten KNMI

Supported by: DOE Grant# DE-SC0005238

# SUMMARY

• Problem: IPCC-class climate models give widely divergent predictions in regard to:

- a) magnitude of long-term climate change
- b) detailed regional predictions
- c) short-term climate change

Can we do better than averaging model outputs?

• Potential Solution: Take the synchronization view of data assimilation, and allow models to form a consensus (synchronize) by assimilating data from one another.

- Sync extends the "nudging" approach to assimilation.
- Parameters can be nudged as well as states without ensembles.
- Choose the adaptable parameters to be connection coefficients linking corresponding variables in different models; adapt them using historical data.

# **Coupled Model Intercomparison Project**

Reichler, T., and J. Kim (2008): How Well do Coupled Models Simulate Today's Climate? *Bull. Amer. Meteor. Soc.*, **89**, 303-311.

#### Performance metric

Based on mean squared errors in time mean global temperatures, winds, precipitation, ....



= index value based on multi model mean fields: outperforms individual models: why ?

Error in annual mean surface air temperatures multi model mean over all CMIP3 simulations



### EXAMPLE: DIVERGENT MODEL PROJECTIONS OF REGIONAL PRECIPITATION CHANGE

increased or decreased



White areas: less than 2/3 of models agree on the sign of precipitation change

Stippled areas: more than 90% of models agree on the sign

#### SUPPOSE THE WORLD IS A LORENZ SYSTEM AND ONLY X IS OBSERVED

• two coupled chaotic systems can fall into synchronized motion along their strange attractors when linked through only one variable



● SYNCHRONIZATION → DATA ASSIMILATION

# LET A COLLECTION OF MODELS ASSIMILATE DATA FROM (SYNCHRONIZE WITH) ONE ANOTHER; ADAPT THE COUPLING COEFFICIENTS



#### Test Case: Fusing 3 Lorenz Systems With Different Parameters Average Output z from Model **Fused Models** of Models (Unfused) With Best z Eqn z<sub>M</sub><sup>avg</sup>-z<sub>T</sub> $z_{M}^{best}-z_{T}$ $z_{M}^{avg-z_{T}}$ not adapting adapting $\frac{dC_l^{ij}}{dt = 0}$ b) a) c) time time $= \sigma(y - z)$ $= \rho x - y - xz$ $= -\beta z + xy$ $dC_x^{ij}/dt = a(x_i - x_i)(x - \frac{1}{3}\sum x_k)$ $\dot{x}_i = \sigma_i(y_i - z_i) + \sum_{j \neq i} C^x_{ij}(x_j - x_i) + K_x(x - x_i)$ $dC_{y}^{ij}/dt = \dots$ $\dot{y}_i = \rho x_i - y_i - x_i z_i + \mu_i + \sum_{i \neq i} C_{ij}^y (y_j - y_i) + K_y (y - y_i)$ i=1,2,3 $dC_z^{ij}/dt = \dots$ $\dot{z}_i = -\beta_i z_i + x_i y_i + \sum_{i \neq i} C_{ij}^z (z_j - z_i) + K_z (z - z_i)$

- Model fusion is superior to any weighted averaging of outputs

#### .....OR CAN USE STANDARD MACHINE LEARNING METHODS TO ADAPT INTER-MODEL CONNECTIONS

(Berge et al. 2010)

Truth ——— Model 1 -----





Ζ

# PROJECT PLAN

- address theoretical issues using simple ODEs
  - negative connections if all models are biased in same direction
  - multiple time scales (ocean/atmosphere) in models
  - globally vs. locally optimal connection schemes

- specialize to climate application using QG models
  - determine minimal spatial density of connections
  - choose variables to couple
  - test robustness of trained "supermodel" against increases in N-S temperature gradient
- apply to suite of 3 full climate models: 2 versions of CCSM and NOAA CFS

### Supermodeling Works With Multi-time-scale Models

Lorenz '84 coupled to ocean box model:

$$\begin{aligned} x' &= -(y^2) - (z^2) - a \ x + a \ (F_0 + F_1 \ T) & f = \omega \ T - \xi \ S \\ y' &= x \ y - b \ x \ z - y + G_0 + G_1 \ (T_{av} - T) \\ z' &= b \ x \ y + x \ z - z \\ T' &= k_a \ (\gamma \ x - T) - |f| \ T - k_w \ T \\ S' &= \delta_0 + \delta_1 \ (y^2 + z^2) - |f| \ S - k_w \ S \end{aligned}$$

Xsupermodel - Xtruth

Tsupermodel - Ttruth

In "weather-prediction mode" ocean strongly nudged to truth so as to obtain an atmospheric supermodel. Ocean supermodel can be trained on longer time scales.

# What if all models are biased in same direction?

Lorenz supermodel with  $\sigma_1$ ,  $\sigma_2$ ,  $\sigma_3$ 

 $\Rightarrow$  Some connections become negative



Zsupermodel - Ztruth

Not as effective as positive connections, but better than averaging.

#### Stochastic Learning Methods Can Help Optimize Supermodel

Autocorrelations for Truth and Two Supermodels



SMIIb is formed using a deterministic learning method

SMIIc is formed using a stochastic learning method

# Extension to PDE's: What is the required spatial density of inter-model coupling?

Synchronization of two 1D Kuramoto-Sivishinsky systems:

$$u_{t} = -u_{xxxx} - \alpha_{u} u_{xxx} - u_{xx} - 2uu_{x}$$
  

$$v_{t} = -v_{xxxx} - \alpha_{v} v_{xxx} - v_{xx} - 2vv_{x} + K[u(x) - v(x)]f(x)$$

f(x) non-vanishing only at discrete points

Maximum coupling distance is length scale of coherent structures:





Can form supermodel from 3 KS's:

## What variables should be coupled?

Consider 3-layer QG model on sphere with realistic topography and a forcing chosen to reproduce the observed winter mean state.

Compare coupling in a basis of spherical harmonics to a basis of EOF's: nudging time scale



Number of components that are coupled

dark grey: spherical harmonics

light grey: EOF's

## **Immediate Plans**

• Understand role of stochasticity in choosing among highly constrained connection schemes

• Study robustness of QG supermodel against changes in forcing

• Establish inter-model coupling within DART at NCAR

#### **Proposed Adaptive Fusion of Two QG Channel Models**



solution also solves the single-channel model with the average forcing

> To find c adaptively:  $dc/dt = \int d^2 \mathbf{x} J(\psi, q' - q)(q - q_{obs}) + \int d^2 \mathbf{x} J(\psi', q - q')(q' - q_{obs})$

\_2

#### Models Synchronize With Each Other and With "Truth"



n = 30000:







#### ....As the Adaptation Procedure Estimates the Intermodel Connection Coefficient $c \rightarrow 1/2$



Possible Issue 1: What if the dynamical parameters change drastically in the 21<sup>st</sup> century as compared to the training period?



-fusion still better than averaging even when training and test systems differ by a large number of dynamical bifurcations

# Possible Issue 2: Do the results apply to climate projection (vs. weather prediction)?

-It is actually easier to achieve *non-isochronic* synchronization (a.k.a. *measure synchronization*), where the attractors of two coupled systems become the same, without any agreement between concurrent states.