Consensus Among Climate Models via Synchronized Chaos

Greg Duane U. Colorado

Ljupco Kocarev Frank Se
KNMI KNMI UCSD

Frank Selten

Supported by: DOE Grant# DE-SC0005238

SUMMARY

• Problem: IPCC-class climate models give widely divergent predictions in regard to:

- a) magnitude of long-term climate change
- b) detailed regional predictions
- c) short-term climate change

Can we do better than averaging model outputs?

• Potential Solution: Take the synchronization view of data assimilation, and allow models to form a consensus (synchronize) by assimilating data from one another.

- Sync extends the "nudging" approach to assimilation.
- Parameters can be nudged as well as states *without ensembles.*
- *-* Choose the adaptable parameters to be connection coefficients linking corresponding variables in different models; adapt them using historical data.

Coupled Model Intercomparison Project

Reichler, T., and J. Kim (2008): How Well do Coupled Models Simulate Today's Climate? Bull. Amer. Meteor. Soc., 89, 303-311.

Performance metric

Based on mean squared errors in time mean global temperatures, winds, precipitation,

= index value based on multi model mean fields: outperforms individual models: why?

Error in annual mean surface air temperatures multi model mean over all CMIP3 simulations

EXAMPLE: DIVERGENT MODEL PROJECTIONS OF REGIONAL PRECIPITATION CHANGE

increased or decreased

White areas: less than 2/3 of models agree on the sign of precipitation change

Stippled areas: more than 90% of models agree on the sign

SUPPOSE THE WORLD IS A LORENZ SYSTEM AND ONLY *X* IS OBSERVED

• two coupled chaotic systems can fall into synchronized motion along their strange attractors when linked through only one variable

 $SYNCHRONIZATION \longrightarrow$ DATA ASSIMIL

LET A COLLECTION OF MODELS ASSIMILATE DATA FROM (SYNCHRONIZE WITH) ONE ANOTHER; ADAPT THE COUPLING COEFFICIENTS

Test Case: Fusing 3 Lorenz Systems With Different Parameters Average Output z from Model Fused Models of Models (Unfused) With Best z Eqn \vdash \vdash \vdash \blacktriangleleft \blacktriangleleft N best avg.
M avg.
M $\boldsymbol{\Sigma}$ not \blacktriangleleft \blacktriangleleft adapting \blacktriangleleft adapting $dC_l^{ij}/dt = 0$ a) time time time $= \sigma(y-z)$ $= \rho x - y - xz$ $=-\beta z + xy$ $dC_x^{ij}/dt = a(x_j - x_i)(x - \frac{1}{3}\sum x_k)$ $\dot{x}_i = \sigma_i(y_i - z_i) + \sum_{j \neq i} C_{ij}^x(x_j - x_i) + K_x(x - x_i)$ dC_y ^{ij}/dt=....... $\dot{y}_i = \rho x_i - y_i - x_i z_i + \mu_i + \sum_{j \neq i} C_{ij}^y (y_j - y_i) + K_y (y - y_i)$ $i=1,2,3$ $dC_z^{ij}/dt = \ldots \ldots$ $\dot{z}_i = -\beta_i z_i + x_i y_i + \sum_{i \neq i} C_{ij}^z (z_j - z_i) + K_z (z - z_i)$

- Model fusion is superior to any weighted averaging of outputs

.....OR CAN USE STANDARD MACHINE LEARNING METHODS TO ADAPT INTER-MODEL CONNECTIONS

(Berge et al. 2010)

Truth Model 1

Z

z

PROJECT PLAN

- address theoretical issues using simple ODEs
	- negative connections if all models are biased in same direction
	- multiple time scales (ocean/atmosphere) in models
	- globally vs. locally optimal connection schemes

- specialize to climate application using QG models
	- determine minimal spatial density of connections
	- choose variables to couple

……….

- test robustness of trained "supermodel" against increases in N-S temperature gradient
- apply to suite of 3 full climate models: 2 versions of CCSM and NOAA CFS

Supermodeling Works With Multi-time-scale Models

Lorenz '84 coupled to ocean box model:

$$
x' = -(y^2) - (z^2) - a x + a (F_0 + F_1 T) \qquad f = \omega T - \xi S
$$

\n
$$
y' = x y - b x z - y + G_0 + G_1 (T_{av} - T)
$$

\n
$$
z' = b x y + x z - z
$$

\n
$$
T' = k_a (\gamma x - T) - |f| T - k_w T
$$

\n
$$
S' = \delta_0 + \delta_1 (y^2 + z^2) - |f| S - k_w S
$$

 X supermodel - X truth

 T supermodel - T truth

In "weather-prediction mode" ocean strongly nudged to truth so as to obtain an atmospheric supermodel. Ocean supermodel can be trained on longer time scales.

What if all models are biased in same direction?

Lorenz supermodel with σ truth $< \sigma_1$, σ_2 , σ_3

Some connections become negative

Zsupermodel - Ztruth

Not as effective as positive connections, but better than averaging.

Stochastic Learning Methods Can Help Optimize Supermodel

Autocorrelations for Truth and Two Supermodels

SMIIb is formed using a deterministic learning method

SMIIc is formed using a stochastic learning method

Extension to PDE's: What is the required spatial density of inter-model coupling?

Synchronization of two 1D Kuramoto-Sivishinsky systems:

$$
u_t = -u_{xxxx} - \alpha_u u_{xxx} - u_{xx} - 2uu_x
$$

$$
v_t = -v_{xxxx} - \alpha_v v_{xxx} - v_{xx} - 2vv_x + K[u(x) - v(x)]f(x)
$$

 $f(x)$ non-vanishing only at discrete points

Maximum coupling distance is length scale of coherent structures:

Can form supermodel from 3 KS's:

What variables should be coupled?

Consider 3-layer QG model on sphere with realistic topography and a forcing chosen to reproduce the observed winter mean state.

Compare coupling in a basis of spherical harmonics to a basis of EOF's: nudging time scale

Number of components that are coupled

dark grey: spherical harmonics light grey: EOF's

Immediate Plans

• Understand role of stochasticity in choosing among highly constrained connection schemes

Study robustness of QG supermodel against changes in forcing

• Establish inter-model coupling within DART at NCAR

Proposed Adaptive Fusion of Two QG Channel Models

synchronize, their common solution also solves the single-channel model with the average forcing

 To find c adaptively: dc/dt = $\int d^2x J(\psi, q' - q)(q - q_{obs}) + \int d^2x J(\psi', q - q')(q' - q_{obs})$

Models Synchronize With Each Other and With "Truth"

 $n = 30000$:

.....As the Adaptation Procedure Estimates the Intermodel Connection Coefficient $c \rightarrow 1/2$

Possible Issue 1: What if the dynamical parameters change drastically in the 21st century as compared to the training period?

-fusion still better than averaging even when training and test systems differ by a large number of dynamical bifurcations

Possible Issue 2: Do the results apply to climate projection (vs. weather prediction)?

-It is actually easier to achieve *non-isochronic* synchronization (a.k.a. *measure synchronization*), where the attractors of two coupled systems become the same, without any agreement between concurrent states.