Observations and Modeling of the Green Ocean Amazon

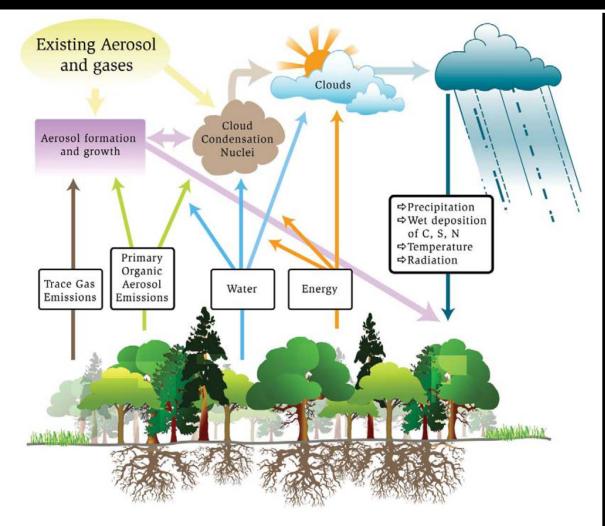
Catbon Cycle

Climate Ecosystems Atmospheric Composition

FOLIC

Afe Cyc

cle

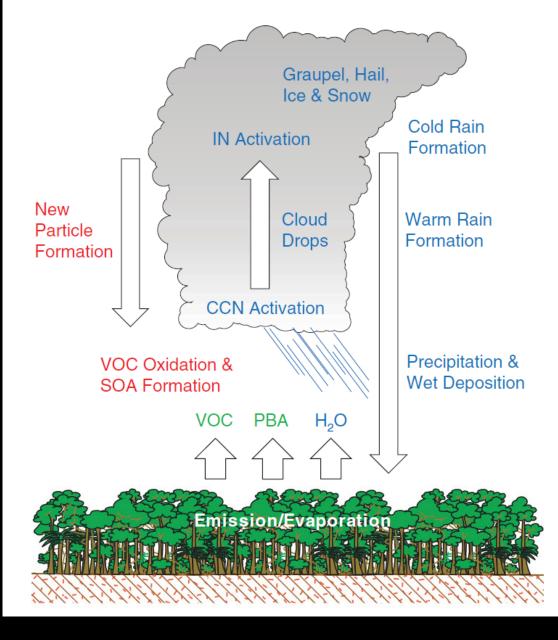

Presented by Scot Martin at Fall 2011 CESM PI Meeting

Aerosol

- WHY this experiment?
- WHERE will this experiment take place?
- WHEN will this experiment take place?
- WHAT instrumentation and facilities are part of experiment?
- HOW is the experiment organized?

- WHY this experiment?
- WHERE will this experiment take place?
- WHEN will this experiment take place?
- WHAT instrumentation and facilities are part of experiment?
- HOW is the experiment organized?

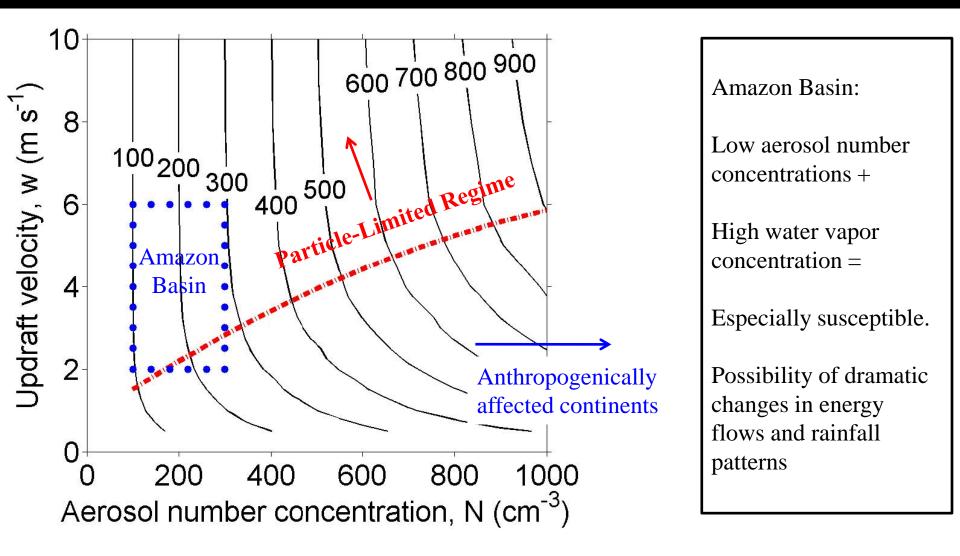
Amazon Basin has strong coupling between terrestrial ecosystem and the hydrologic cycle: The linkages among carbon cycle, aerosol life cycle, and cloud life cycle need to be understood and quantified.



Source: Barth et al., "Coupling between Land Ecosystems and the Atmospheric Hydrologic Cycle through Biogenic Aerosol Particles," *BAMS*, *86*, 1738-1742, 2005.

Susceptibility and expected reaction to stresses of global climate change as well as pollution introduced by future regional economic development are not known or quantified at present time.

Cloud Life Cycle, Aerosol Life Cycle, Aerosol-Cloud-Precipitation Interactions, Carbon Cycle are all represented in this schematic.


GoAmazon2014: What is the effect of pollution on... these cycles and the coupling among them?

U. Pöschl, S.T. Martin, B. Sinha, Q. Chen, S.S. Gunthe, J.A. Huffman, S. Borrmann, D.K. Farmer, R.M. Garland, G. Helas, J.L. Jimenez, S.M. King, A. Manzi, E. Mikhailov, T. Pauliquevis, M.D. Petters, A.J. Prenni, P. Roldin, D. Rose, J. Schneider, H. Su, S.R. Zorn, P. Artaxo, M. O. Andreae, "Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon," *Science*, 2010, 329, 1513-1516.

Cloud Droplet Number Concentration (CDNC):

Sensitivity to Pollution in Pristine Regions

Ref: Pöschl et al., "Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon," *Science*, **2010**, *329*, 1513-1516.

Scientific Questions for GoAmazon2014

Note: Non-exhaustive selected list. Further development anticipated.

Carbon Cycle - improve Community Earth System Model (CESM) for land-atmosphere processes in the Amazon Basin, including aerosol-cloud-precipitation connections

- Objective Reduce uncertainties in our knowledge of feedbacks between vegetationhydrology that underlie the Amazon forest dieback hypothesis. The uncertain range of feedbacks at present leads to large differences in ESM predictions.
- Objective Response of photosynthesis and transpiration, including BVOC emissions, to changes in the direct and diffuse components of incoming solar radiation, i.e., in the context of current and future scenarios of aerosols and clouds in the Amazon Basin.

Aerosol Life Cycle - accurate modeling of aerosol sources/sinks and aerosol optical, CCN, and IN properties, as affected by pollution of pristine tropical environments

- Objective The interactions of the urban pollution plume with biogenic volatile organic compounds in the tropics, especially the impact on the production of secondary organic aerosol, the formation of new particles, and biogenic emissions of aerosols and their precursors..
- Objective Influence of anthropogenic activities on aerosol microphysical, optical, cloud condensation nuclei (CCN), and ice nuclei (IN) properties in the tropics.

Scientific Questions for GoAmazon2014

Note: Non-exhaustive selected list. Further development anticipated.

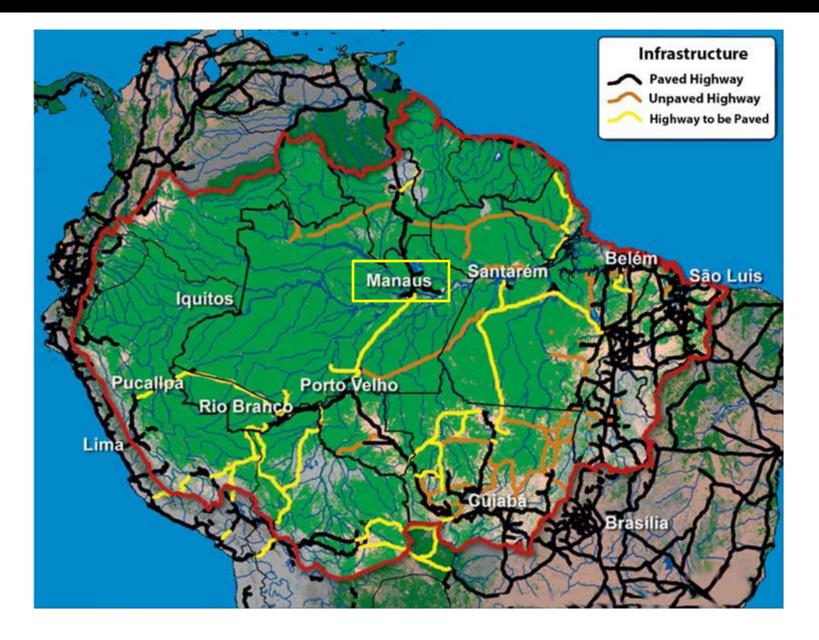
Cloud Life Cycle - development of a knowledge base to improve tropical cloud parameterizations in GCMs

- Objective The transition from shallow to deep cumulus convection during the daily cycle of the Amazon Basin, with comparison and understanding to other environments.
- Objective The role of landscape heterogeneity—the Manaus urban area as well as the 10-km-scale of river width—on the dynamics of convection and clouds (+carbon cycle)
- Objective The evolution of convective intensity from severe storms in the dry season to moderate storms in the wet season.

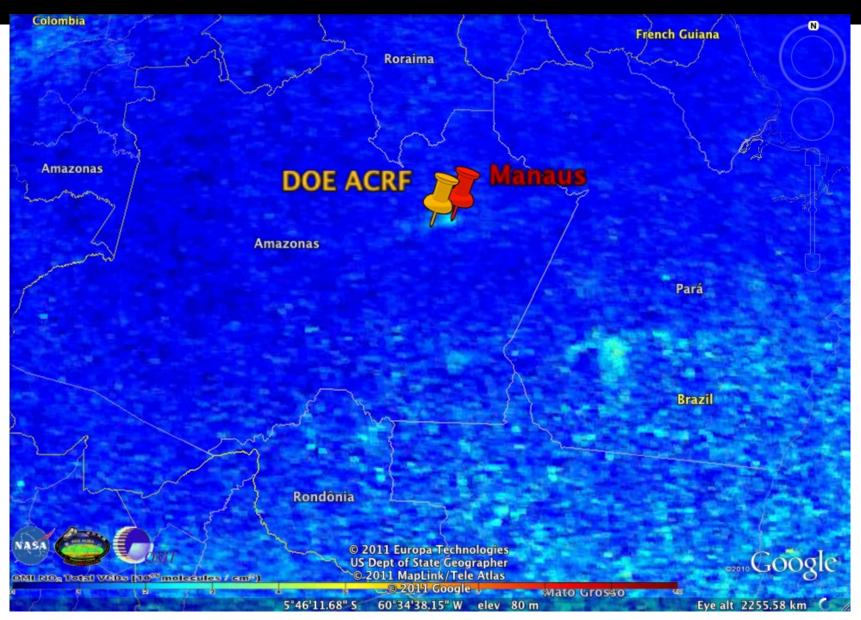
Cloud-Aerosol-Precipitation Interactions - improvement of parameterizations of aerosol-cloud interactions in climate models

- Objective Aerosol effects on deep convective clouds, precipitation, and lightning under different aerosol and synoptic regimes, including the roles of aerosols in changing regional climate and atmospheric circulation.
- Objective Data-driven improvement of parameterizations of aerosol-cloud interactions in the climate models.

Scientific Questions for GoAmazon2014 Note: Non-exhaustive selected list. Further development anticipated.


The theme uniting these objectives is the development of a datadriven knowledge base for predicting how the present-day functioning of energy, carbon, and chemical flows in the Basin might change, both due to external forcing on the Basin from global climate change and internal forcing from past and projected demographic changes in the Basin.

The ultimate goal is to estimate future changes in direct and indirect radiative forcing, energy distributions, regional climate, ecosystem functioning, and feedbacks to global climate.


In this regard, the presented objectives are representative, and further definition and broadening can be expected as the science team spins up prior to deployment.

- WHY this experiment?
- WHERE will this experiment take place?
- WHEN will this experiment take place?
- WHAT instrumentation and facilities are part of experiment?
- HOW is the experiment organized?

Site Location

NO₂ Outflow from Manaus in Aug 2010 observed by OMI

Manaus

Population for the metropolitan region of Manaus: 2002/2009

POPULAÇÃO PARA A REGIÃO METROPOLITANA DE MANAUS - 2002 / 2009

Municípios	2002	2003	2004	2005	2006	2007	2008	2009
MANAUS	1.488.805	1.527.314	1.592.555	1.644.690	1.688.524	1.646.602	1.709.010	1.738.641
CAREIRO DA VÁRZEA	17.079	16.992	16.844	16.725	16.626	23.023	24.030	24.704
IRANDUBA	35.128	36.439	38.661	40.436	42.812	32.869	33.834	33.884
ITACOATIARA	74.914	76.217	78.425	80.190	81.674	84.676	87.896	89.440
MANACAPURU	77.171	78.785	81.518	83.703	84.656	82.309	85.279	86.472
NOVO AIRÃO	8.731	8.304	7.580	7.002	<mark>6.516</mark>	14.630	15.343	15.915
PRESIDENTE FIGUEIREDO	19.562	20.569	22.273	23.636	24.781	24.360	25.474	26.282
RIO PRETO DA EVA	19.910	20.990	22.820	24.283	25.513	24.858	26.004	26.847
REGIÃO METROPOLITANA	1.741.300	1.785.610	1.860.676	1.920.665	1.971.102	1.933.327	2.006.870	2.042.185

FONTE: IBGE

Acknowledgments: Rodrigo Souza, UEA

Manaus: Vehicle Fleet 2010

Frota de Veículos -					
	Quantidade				
Motoneta	8.563				
Motocicleta	83.459				
Automóvel	252.274				
Microônibus	2.334				
Ônibus	5.807				
Reboque	1.677				
Semi-reboque	9.754				
Camioneta	18.812				
Caminhão	14.631				
Caminhão-Trator	2.019				
Caminhonete	49.981				
Ciclomotor	329				
Trator rodas	48				
Triciclo	100				
Utilitários	2.403				
Outros	109				

452.300

FUEL MIX:

-tractor, truck and bus: almost 100% diesel

-car and bikes : > 60% gasoline (*)

(*) Ethanol price is very high in Manaus and gasoline is preferred by the consumer.

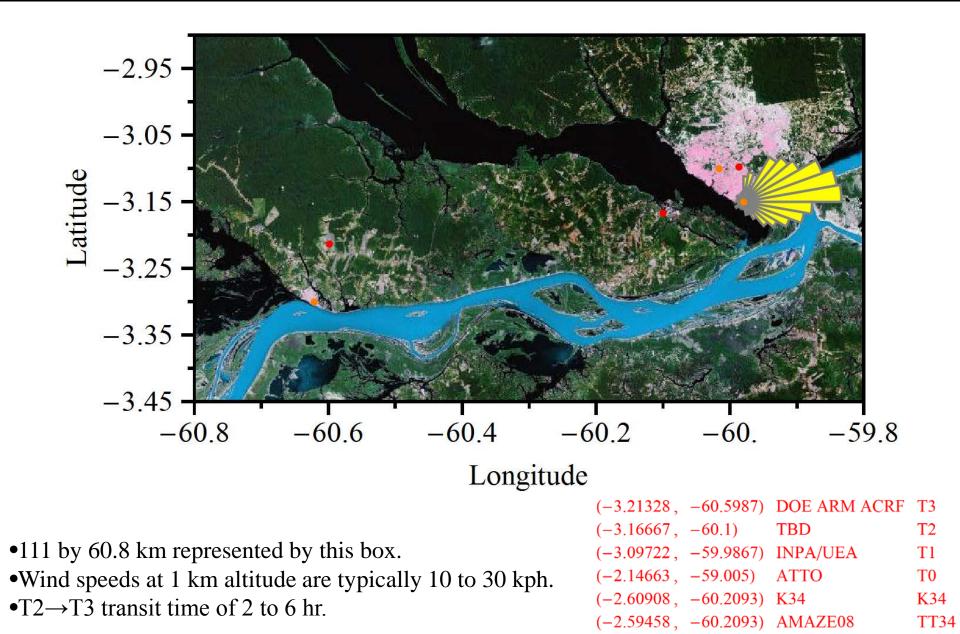
Acknowledgments: Rodrigo Souza, UEA

Manaus: Power Plant 2009: Fuel Oil

TABELA 1 - CONFIGURAÇÃO DO PARQUE GERADOR DO SISTEMA MANAUS AMAZONAS AGOSTO DE 2009

Usina		Potência do Sistema (MW)			Tipo de UG	Tipo de óleo		
		Nominal	Efetiva	Disponível				
Geração hídrica UHE Balbin		250,0	250,0	250,0	Turbina hidráulica		Hydropower	
	Aparecida	198,0	172,0	75,0	Turbina a Gás	PTE	Oils of different	
	Mauá	452,4	437,0	259,6	Turbina a Vapor, Gás e Motor	Combustível, PTE e PGE	grades PTE - óleo leve "Para Turbina	
Geração Térmica E	a Electron	120,0	102,2	0,0	Turbina a Gás	PTE	Elétrica"	
Diesel	UTE*	149,8	120,8	94,2		Óleo	PGE - óleo combustível "Para Gerador Elétrico"	
TOTAL GERAÇÃO	PRÓPRIA	1.170,6	1.081,3	678,45				
Produtor Independente	Breitener Tambaqui	83,5	60,0	60,0	Turbina a Gás	OCA-1	OCA-1 = Óleo	
	Breitener Jaraqui	83,5	60,0	56,7	Turbina a Gás	OCA-1	Combustível com Alto teor de	
	Manauara	85,4	60,0	60,0	Turbina a Gás	OCA-1	enxofre = Fuel	
	Rio Amazonas	85,4	65,0	65,0	Turbina a Gás	OCA-1	Oil with High	
	GERA	85,4	60,0	60,0	Turbina a Gás	OCA-1	Sulfur	
TOTAL DE COMPI	RAS	423,1	305,0	301,7				
TOTAL GERAL DO	DSISTEMA	1.593,7	1.386,3	980,2				

Acknowledgments: Rodrigo Souza, UEA


Downwind of Manaus

The deployment site is situated such that it experiences the extremes of:

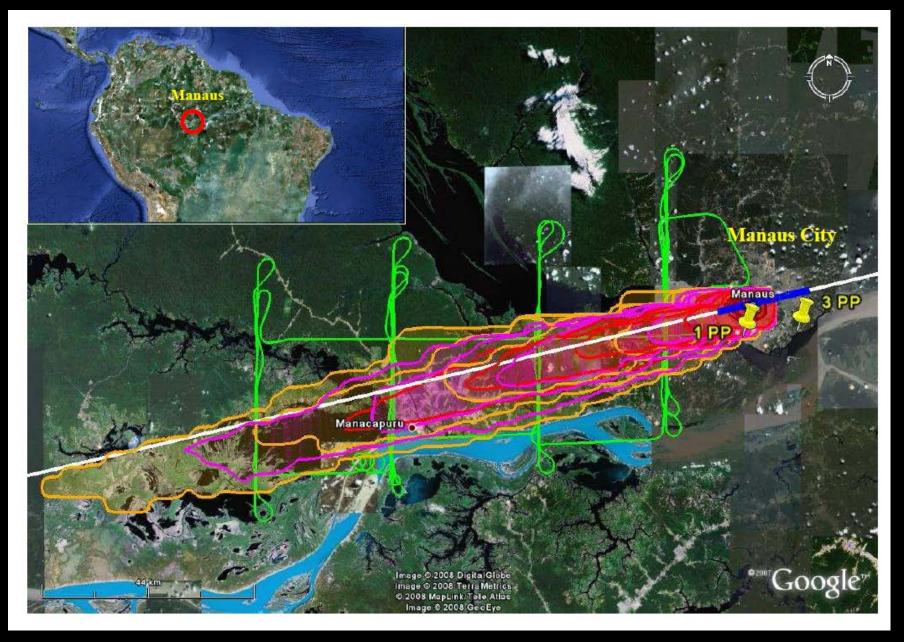
(i) a pristine atmosphere when the Manaus pollution plume meanders; and

(ii) heavy pollution and the interactions of that pollution with the natural environment when the plume regularly intersects the site.

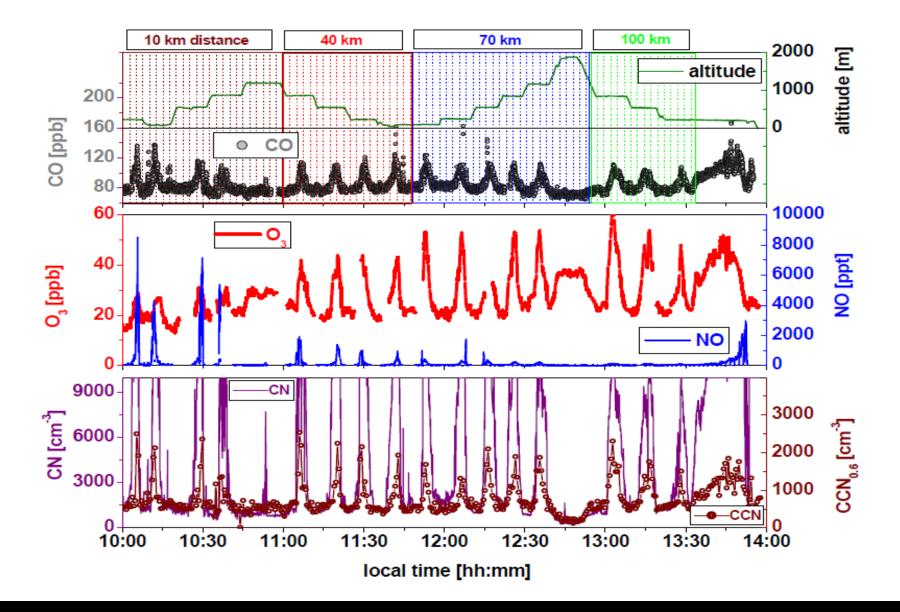
Downwind of Manaus

Large Point Source of Pollution in Manaus: *High-Sulfur Diesel for Electricity*

Outflow from Manaus first Crosses River: 2 to 10 km wide

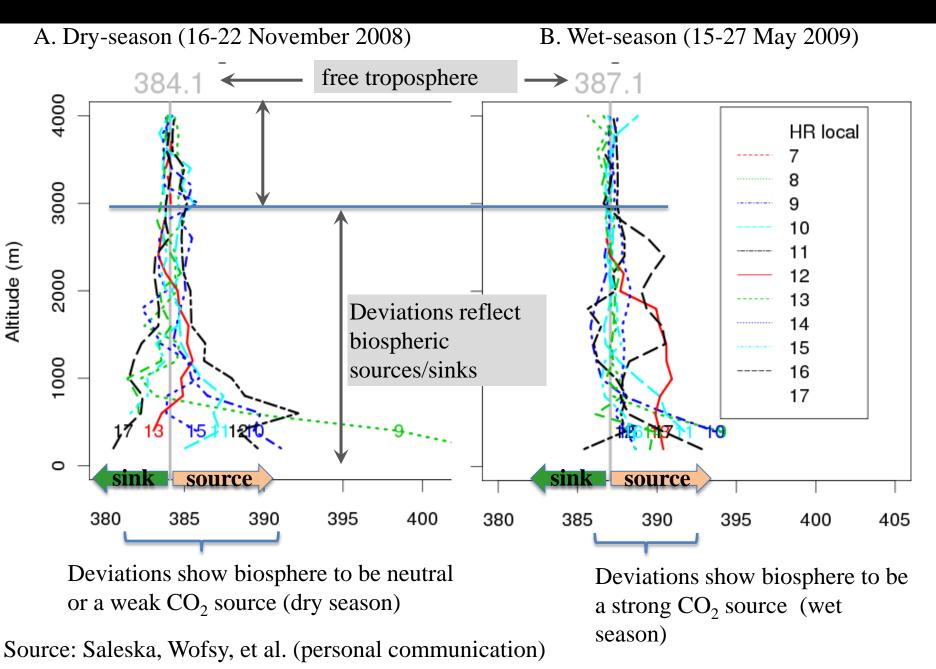


Manaus Outflow Continues Across 60 km Forest

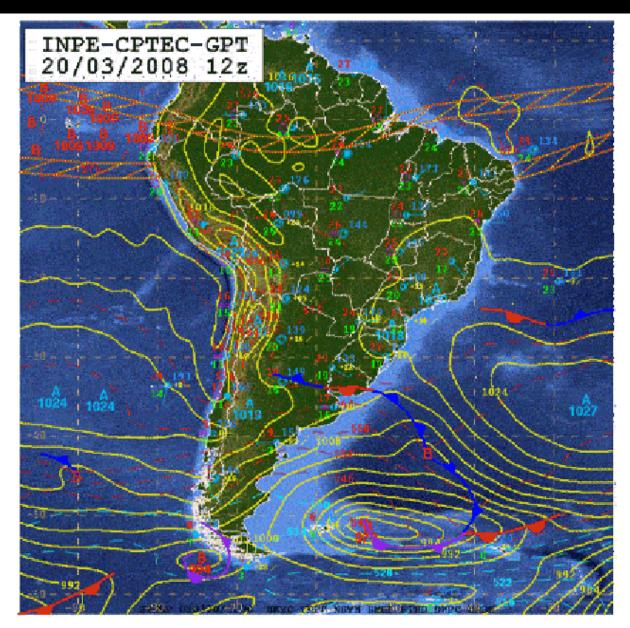


Arrival at AAA Large Pasture Site: Location of ACRF Deployment

Reference: Kuhn, U.; Ganzeveld, L.; Thielmann, A.; Dindorf, T.; Welling, M.; Sciare, J.; Roberts, G.; Meixner, F. X.; Kesselmeier, J.; Lelieveld, J.; Ciccioli, P.; Kolle, O.; Lloyd, J.; Trentmann, J.; Artaxo, P.; Andreae, M. O., "Impact of Manaus City on the Amazon Green Ocean atmosphere: Ozone production, precursor sensitivity, and aerosol load," *Atmos. Chem. Phys.* **2010**, *10*, 9251-9282.


Reference: Kuhn, U.; Ganzeveld, L.; Thielmann, A.; Dindorf, T.; Welling, M.; Sciare, J.; Roberts, G.; Meixner, F. X.; Kesselmeier, J.; Lelieveld, J.; Ciccioli, P.; Kolle, O.; Lloyd, J.; Trentmann, J.; Artaxo, P.; Andreae, M. O., "Impact of Manaus City on the Amazon Green Ocean atmosphere: Ozone production, precursor sensitivity, and aerosol load," *Atmos. Chem. Phys.* **2010**, *10*, 9251-9282.

Seasonal Variability of Rainfall in Region



Source: Rocha et al. 2009 (JGR), 2010 (LBA book)

CO₂ Profiles in Manaus Region (BARCA)

ITCZ: Northern Hemisphere and Southern Hemisphere

Source: Saulo Freitas, CPTEC, Brazil.

- WHY this experiment?
- WHERE will this experiment take place?
- WHEN will this experiment take place?
- WHAT instrumentation and facilities are part of experiment?
- HOW is the experiment organized?

Dates of GoAmazon2014

AMF Operations (T3 ground site)

- 1 January until 31 December 2014
- Primaries
 - Brazil-side: INPA/LBA Office program manager (TBD)
 - USA side: Kim Nitschke (DOE LANL)
 - Scientific License: Rodrigo Souza (UEA)

Dates of GoAmazon2014

AAF Operations (aircraft)

- 40 flight days in period of 15 February until 31 March 2014
- 40 flight days in period of 1 September until 15 October 2014
- Primaries
 - Brazil-side: Karla Longo (INPE), Luiz Machado (INPE), and Gilberto Fisch (CTA)
 - USA side: Beat Schmid (DOE PNNL)
 - Scientific License: Karla Longo (INPE)

- WHY this experiment?
- WHERE will this experiment take place?
- WHEN will this experiment take place?
- WHAT instrumentation and facilities are part of experiment?
- HOW is the experiment organized?

- WHY this experiment?
- WHERE will this experiment take place?
- WHEN will this experiment take place?
- WHAT instrumentation and facilities are part of experiment?
- HOW is the experiment organized?

- WHY this experiment?
- WHERE will this experiment take place?
- WHEN will this experiment take place?
- WHAT instrumentation and facilities are part of experiment?
- HOW is the experiment organized?

Join this Google group to receive email from PI: <u>http://groups.google.com/group/GoAmazon2014</u>

Website maintained by PI:

http://www.seas.harvard.edu/environmental-chemistry/GoAmazon2014/

Website maintained by DOE: http://campaign.arm.gov/goamazon2014/

See there a workshop report of July 2011.

Office of Biological and Environmental Researc