High-resolution Coupled Regional Climate Modeling in the Atlantic Sector: Simulating the mean state and hurricane activity

R. Saravanan, J.-S. Hsieh, C. Patricola, M. Li*, P. Chang, and R. Montuoro *Texas A&M University*

Contact: sarava@tamu.edu

**Ocean University of China*

High resolution modeling of extreme events

- **Goal: To study the impact of air-sea coupling on extremes**
	- **Coupling can** *directly* **affect the extremes (e.g. hurricanes)**
	- **Coupling can affect the mean state simulation, which can** *indirectly* **affect the spatial and temporal characteristics of extremes**
- **Methodology:**
	- **Use a regional coupled model (27km 9km resolution)**
	- **Focus on the Atlantic basin and adjoining continental areas**

AOGCM bias of summer (JJA) tropical Atlantic SST

- Eastern equatorial Atlantic
- Southeastern tropical Atlantic

SST biases in Tropical Atlantic simulations

- **Large warm bias in Eastern Equatorial Atlantic (EEA) and South Eastern Tropical Atlantic (SETA)**
	- **Is it caused by errors in the atmospheric model, the ocean model, or both?**
	- **Is it due to local errors or remote errors?**
- **Some hypotheses proposed:**
	- **Under-representation of low-level clouds (Huang et al., 2007)**
	- **Under-representation of coastal upwelling (Large & Danabasoglu, 2006)**
	- **Sub-surface ocean advection (Xu et al., 2011)**
	- **Equatorial trade wind bias associated with Amazon convection errors (Richter & Xie, 2008)**
	- **Spurious barrier layers in the ocean (Breugem et al., 2008)**

Texas A&M Coupled Regional Climate Model (CRCM)

 Domain Grid(XYZ) ∆XY ∆t **WRF** 107◦ W-25◦ E, 33◦ S-52◦ N 1537x1123x27 9km 20s ROMS 98°W-21°E, 33°S-52°N 1391x1123x30 9km 600s

Climate model tuning *Whack-a-mole!*

Uncoupled and coupled simulations

Designed based on atmospheric parameterization sensitivity to test relationship between equatorial Atlantic trade wind and SST bias

Four simulations:

- "Uncoupled wet"
- "Uncoupled dry"
- "Coupled wet"
- "Coupled dry"

Hurricanes and air-sea interaction

- **Hurricanes: a low-probability, high impact event**
	- **Intensity is more difficult to predict than track**
- **Interaction with ocean can limit hurricane intensity**
	- **air-sea interaction has bigger effect on the intensity and the track**
	- **Slow moving hurricanes can interact with**
		- *Oceanic mixed layer*
		- *Oceanic "barrier layer" (see poster by Balaguru et al.)*
		- *Oceanic eddies (e.g., Loop current eddy)*

Simulated Atlantic Hurricanes

• CRCM simulates realistic Tropical Cyclones (TCs) in the Atlantic, although the strength of the TCs is generally weaker than observed

• CRCM captures intense cooling in the wake of TCs, indicative of strong air-sea interactions

IUL-20 06:00 Outgoing Long Wave $\lceil W/m^2 \rceil$

• CRCM simulates realistic Tropical Cyclones (TCs) in the Atlantic, although the strength of the TCs is generally weaker than observed

• CRCM captures intense cooling in the wake of TCs, indicative of strong air-sea interactions

Simulated hurricane

"Perfect Model" Experiments

• *Coupled (atmosphere+ocean) Control Simulation:*

- *A single CRCM simulation May 1 to October 30*
	- *WRF initial and boundary conditions: NCEP Reanalysis*
	- *ROMS initial condition: from long spin-up run*
	- *ROMS boundary condition: from SODA reanalysis*
- *Uncoupled ensemble of atmosphere-only runs:*
	- *Select an ensemble of TCs (19) from the control simulation*
	- *Initialize WRF at the beginning of each TC from the control simulation*
	- • *Keep SST constant at its initial value*

TC track of the coupled run (8July~21 July) with SST of 21 July

TC track of the uncoupled run (8 July~21 july) restarted with SST on 6 July

TC tracks of the coupled & uncoupled runs (SST of 20 July- SST of 6 July)

Examples of Simulated TCs in CRCM and WRF-only runs

 $30₁$

28

26

24

 $\overline{120}$

 $\frac{1}{18}$

16

14

h2l

1Ū

-2

Coupled (atmosphere+ocean)

Atmosphere-only

Surface temperature difference

Latent Heat Flux vs. ΔSST

Effect of Air-Sea Coupling on TC Intensity

- Psfc ~ 6.3 mb/°C \cdot ΔSST
- TC radius $\sim 15 \text{km}/^{\circ}\text{C}$ $\sim \Delta \text{SST}$
- $\overline{V10}_{\text{max}} \sim 2.4 \text{m/s} / \text{°C} \cdot \Delta \overline{\text{SST}}$

 $<\triangle$ SST $>=0.83$ °C Max(ΔSST)=4.83°C $\langle V10_{\rm max} \rangle \sim 2.0 \rm m/s$ TC strength change $\sim 6\%$

Some conclusions

- **Warm bias in Eastern Equatorial Atlantic is likely due to local trade wind bias**
	- **Seen in the uncoupled model but amplified in the coupled model by Bjerknes feedback**
	- **Remote convection errors or barrier layer biases not a major factor**
- **"Perfect model" experiments can capture the impact of air-sea coupling onhurricane evolution**
	- **Track simulations are not that sensitive to air-sea coupling**
	- **Intensity and size are sensitive to coupling, with coupling acting as a negative feedback that limits hurricane strength and size**

Questions

- *How important is ocean-atmosphere interaction in TC development?*
- *In particular, will ocean-atmosphere interaction have an effect on TC*'*s intensity, speed and trajectory?*

Climatology of hurricanes

Texas A&M Coupled Regional Climate Model (TAMU-CRCM)

- **Regional atmospheric model coupled to regional ocean model**
- **Lateral boundary conditions from global coupled model or reanalyses**

Atmospheric component: **Weather Research & Forecasting Model (WRF)**

Developed at NCAR 27km and 9km horizontal resolution, 28 vertical levels

 NCEP-NCAR reanalysis for boundary conditions and initial conditions

Physics parameterizations:

 WSM 3-class simple ice (Microphysics), CAM Radiation, YSU PBL, Thermal Diffusion land scheme, Kain-Fritsch cumulus convection scheme

Oceanic component: **Regional Ocean Modeling System (ROMS)**

- \Box **Developed at Rutgers University/UCLA**
- \Box 1/12° (9km) Horizontal Resolution & 30 levels
- \Box **Boundary conditions derived from Levitus observational data.**
- \Box *NOTE: The ocean model is about 20 times faster than the atmospheric model, for the same horizontal resolution!*
- □ Configuration: 3rd-order upstream bias for 3D momentum, **4th-order centered for 2D momentum, harmonic horizontal mixing, recursive MPDATA 3D advection for tracers, quadratic bottom friction, Mellor/Yamada Level-2.5 closure**

JJA barrier layer thickness

Although Eastern equatorial Atlantic positive rainfall bias exists only in coupled "wet case," a spurious barrier layer is simulated in both the "wet" and "dry" cases.

Effect of air-sea coupling

The most notable effect of air-sea interaction is its impact on TC intensity. On average, WRF-only simulations over-estimate TC intensity by 6%, which is attributable to the lack of surface cooling, resulting in an increase of latent heat flux exchange.

TC tracks are also affected, albeit to a lesser degree, by air-sea interaction. The uncoupled WRF simulations can accurately track TC trajectories simulated by the coupled model up to 5 days, suggesting that even with a perfect initial condition, uncoupled atmospheric models may only make accurate TC forecasts in short-range.

TC speed is not significantly affected by air-sea feedbacks.

 $50₁$ $10 - 100$

TC tracks of the coupled & uncoupled runs

Computational Resources **EOS (eos.tamu.edu)**

- Linux (RedHat Enterprise Linux and CentOS)
- 324 Nodes, 2592 Processing Cores
- 7,920 GB Memory
- 120 TB disk: DDN S2A9900 RAID Array
- Total Cores Used: 1,024 (976 for WRF, 48 for ROMS)
- Coupling frequency: 1 hour, Output frequency: 6 hours
- Wall-clock computing time: 72 hours
- Model integration time: 158 days (May 1^{st} to Oct 5^{th})
- Size of Model output: ∼ 3 TB

Cloud – insolation – land temperature feedbacks

Example of land-atmosphere feedbacks

ī

 $\overline{2}$ $\overline{4}$ $\overline{5}$ 6 $\overline{\tau}$ $\overline{8}$ $\overline{9}$ 10 12 14 16 18 20 3

Depth of 20°C isotherm – JJA

JJA rainfall bias

• "dry case" simulates a southward displaced ITCZ that is worsened by coupling. • wet bias covers warm eastern equatorial SST bias in coupled, but not uncoupled "wet case."

Depth of 20°C isotherm – JJA

JJA rainfall bias

• "dry case" simulates a southward displaced ITCZ that is worsened by coupling. • wet bias covers warm eastern equatorial SST bias in coupled, but not uncoupled "wet case."

Precipitation biases in regional model

Tracks and Intensity of All Tropical Storms

Iso-surface of perturbation pressure (color: surface temperature, arrows: winds)

Conclusions

□ Coupled regional climate model (CRCM) is a viable **approach for high-resolution coupled simulations in the Atlantic region**

- *Less expensive than global high-resolution modeling*

- *Ability to focus phenomena in one region without being affected by simulation errors in other regions*

 \Box Potential applications - *Dynamical downscaling in a coupled system for temperature and rainfall statistics* - *Climate change and hurricane statistics*

Air-Sea Feedback Effect on TC Track and Speed

OLR on 6 July of the coupled run

OLR on 6 July of the uncoupled run restarted with SST on 30 Jun.

Outgoing Longwave Radiation

Coupled (atmosphere+ocean)

Atmosphere-only

350

300

 -250

 -200

 150

100