Improved Data Sets and Metrics for Climate Model Evaluation

Sally McFarlane

Laura Riihimaki, Duli Chand, Krista Gaustad, Sherman Beus, Da Meng

Pacific Northwest National Laboratory

With collaboration from Shaocheng Xie, Renata McCoy (LLNL) and Brian Medeiros, Rich Neale (NCAR)

September 2011

Pacific Nor

Proudly Operated by Battelle Since 1965

Goal: Develop data sets for use in hydrological cycle testbed of CSSEF

1. Prepare ARM observations for calibrating climate model parameterizations

2. Derive global precipitation statistics from satellite observations for climate model validation

1. ARM Uncertainty Assignment Procedure

Input: ARM obs., e.g. surface met data

Output: Version of CMBE dataset with uncertainty estimates

1. Screen Bad Data

Exclude data that fails quality control tests including DQRs! 2. Assign Uncertainties

Uncertainties based on instrument specifications, operational conditions, spatial

variability

3. Fill Missing Data

Use statistical methods to fill missing data and estimate uncertainty due to missing data

ARM Input Data Sets

Input:

e.g., surface meteorological observations

Output:

nnagate

Data Quality Reports

Input: ARM o' e.g. s m

1. Screen Bad Data

Automate system of excluding bad data based on ARM data quality reports (DQRs), and other qc checks.

D970325.6	Richard Hart	03/25/1997	SGP/SMOS/E13 - T/RH Probe Malfunction	19970226 15:30 - 19970226 21:30	Suspect
D970325.7	Richard Hart	03/25/1997	SGP/SMOS/E13 - T/RH Probe Malfunction	19970227 02:30 - 19970227 16:30	Suspect
D971215.1	Richard Hart	12/15/1997	SGP/SMOS/E13 - Questionable E13 SMOS humidity data APR - NOV 95	19950414 20:38 - 19951101 22:30	Suspect
D991109.11	Richard Hart	11/09/1999	SG/SMOS/E13 - E13 SMOS down for tower replacement	19990414 21:00 - 19990503 20:55	Missing
D991109.20	Richard Hart	11/09/1999	SGP/SMOS/E13 - E13 SMOS lowered to surface to install counterweights	19990924 13:00 - 19990924 13:20	Suspect
D010713.27	Michael Ritsche	07/13/2001	SGP/SMOS/E13 - E13 SMOS Wind speed data incorrect	20010128 17:58 - 20010128 22:01	Incorrect
D010713.28	Michael Ritsche	07/13/2001	SGP/SMOS/E13 - E13 SMOS Daily wind speed data suspect	20010128 00:00 - 20010129 00:01	Suspect
D011217.1	Robin Perez	12/17/2001	SGP/SMOS - Truncated first records in selected sneakernet data files	19981117 00:00 - 19981207 23:59	Incorrect
D020125.10	Michael Ritsche	01/25/2002	SGP/SMOS/E13 - E13 SMOS SNOW DEPTH DATA INCORRECT	20010823 18:35 - 20011101 00:01	Incorrect

Measurement Uncertainty Assignment

2. Assign Uncertainties

A

Example: Temperature uncertainties based on manufacturer specifications associated with wind speed.

Point Measurement Issues

2. Assign uncertainties

Use neighboring observations to assess spatial uncertainty of single point data. Produce gridded dataset.

Dealing with Missing Data

3. Fill in Missing Data

Examining the use of Principal Component Analysis to fill missing data and estimate uncertainty due to missing data

1 Day Temperature Data, 5% missing values

ARM Integrated Software Development Environment

Input: ARM obs., e.g. surface

met

Output:

Conversion to CF standard names and qc format added to processing capability in Integrated Software Development Environment (ISDE)

You are not logged in.

Login

Reset

4 4

Cancel

Done

2. Development of Precipitation Metrics

- Primary goal of CSSEF is to improve representation of hydrological cycle in CESM
- To calibrate and validate atmosphere component of hydrological cycle requires metrics that move beyond monthly means
- CSSEF Atmosphere team identified key metrics:
 - Probability distribution of precipitation (percentile values of pdf)
 - Harmonics of diurnal cycle
 - Partitioning of total precipitation into stratiform/convective components
- Brian Medeiros (NCAR) has developed initial scripts to calculate quantities from model output – BNL and PNNL teams now working to apply to ARM and satellite data
 - Coordination with ESGF for testbed development

Harmonics of the diurnal cycle

Composite model diurnal cycle calculated by using first two harmonics of FFT. Composite diurnal cycles from region's grid points shown in gray.

Brian Medeiros & Rich Neale, NCAR

Probability Distribution Functions

Precipitation rate probability distribution functions from 0.25° TRMM grid boxes containing ARM sites.

Stratiform/convective rain distribution

Summary and Future Work

- Prepare ARM observations for calibration testbed by:
 - Developing automated method for including ARM DQRs
 - Assigning and propagating uncertainties
 - Developing tools for outputting ARM data in CF standard format
 - Developing methods to fill in missing data
 - Examining spatial variability
 - Adding more variables (LWP, PWV, radiation, cloud fraction)

Develop statistical summaries of satellite data for validating climate models with new metrics:

- Harmonics of the diurnal cycle
- Probability distribution functions
- Stratiform/convective precipitation distinction

Proudly Operated by Battelle Since 1965