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To Review: WHY DO WE NEED EARTH SYSTEM MODELS?

WE DO NOT HAVE
ANOTHER EARTH
WITHOUT HUMAN
INFLUENCE TO
CALIBRATE THE
CONFLICT BETWEEN
ENVIRONMENT AND
DEVELOPMENT

Earth system components,
Including human activity,
are strongly interactive.

Local and regional changes

affect the globe and vice-

versa




Dynamics of complex
among
natural and human systems

TO FORECAST CLIMATE
CHANGE AND DEVELOP Objective assessment of
SOUND RESPONSES, WE
NEED TO:
COUPLE THE HUMAN &
NATURAL COMPONENTS OF
THE EARTH SYSTEM. Quantitative evaluation of
SUCH INTEGRATED
ASSESSMENTS HAVE MANY
ADDITIONAL POTENTIAL
BENEFITS.

Understanding connections

MIT JOINT PROGRAM ON THE
SCIENCE & POLICY OF GLOBAL CHANGE
http://web.mit.edu/global change




MIT IGSM: An earth system model with the flexibility to
include more or less spatial detail as the research
question dictates
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Highlight of Recent Improvements

Include capability to use full 3-D atmosphere

Methods to estimate conditional likelihoods of
future outcomes with greater resolution.

Improved urban air chemistry
High resolution ocean modeling and ocean effects
Greater technological detail in modeling the

economy
Dynamically link
— economy and terrestrial vegetation

— air pollution processes, human activity and the
economy

- Hydrology, water resource management and
the economy




IGSM 2.3

volcanic
forcing

HUMAN ACTIVITY (EPPA)

national and/or regional economic
development, emissions, land use
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Uncertainty Quantification

Unconstrained Emissions Stabilization at 660 ppm CO,eq

Low
Climate
Response

Median
Climate
Response

High
Climate
Response

0 1 4 5 10

Changes in surface air temperature (in deg C), 1980-1999 to 2080-2099; Low and High
response reflect approximately 90% uncertainty bounds.
More detail See Monier, et al. Poster—Also see, Schlosser et .al. Uncertainty
Quantification Session




Cohen, J. B., R. G. Prinn, and C. Wang (2011), The impact of detailed urban-scale processing on
the composition, distribution, and radiative forcing of anthropogenic aerosols, GRL 38




Oceans threatened by warming

» Ocean surface probably had warmed by about 0.5°C over last 200 years
* How warm will it be in the future?

Simulated Change in ocean surface temperature (2100-2000)

“Business as usual’” emissions scenario using IGSM:
by 2100: atmospheric pCO2 is 1300ppmv
global surface air temperatures up 5°C

Dutkiewicz, Scott, Follows, 2011

Stephanie Dutkiewicz




... Changes in mixing and circulation

* Increased stratification, reduced overturning circulation
 Decreased supply of nutrient to surface sunlight layers
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...and acidification

» Ocean has absorbed about 1/3 anthropogenic CO,
» Higher carbon leads to increased in acidity (lower pH)

i

“business as sph
usual”’
projection

100 200 300

Stephanie Dutkiewicz

Surface pH
alkaline>7

neutral=7
acidic<7

Dutkiewicz et al, 2005




Representation of multiple liquid fuels and
“peak” oil.

Oil sands and heavy oils,
coal to liquids (CTL),
shale oil, biofuels are
more to much more
carbon intensive then
crude.

Resources are abundant
to super-abundant.

Even if process CO,
emissions are captured
and stored the fuels
themselves are no better
than gasoline or diesel.
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U.S. Gas Supply Cost Curve

From: MIT Future of Natural Gas Study

« Advances in technology
have significantly
expanded the economic
resource base for gas.

Waiting in the wings—
methane hydrates which
are super abundant.

Gas is less carbon
intensive and cleaner than
oil or coal but gas is a
bridge to a lower carbon
future, not the answer.

Breakdown of Mean U.S. Supply Curve by Gas Type
Breakeven Gas Price*
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Fleet 100%
turnover
slows 80% -
adoption of
vehicle
options
such as
PHEV, EVs;
adoption
also
depends 0%
on battery
cost
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No mitigation
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Land Use

Population pressure climate and
ozone increases demand for
cropland and pasture.

Biomass enters after 2040.

Natural and managed forests shrink
by more than 1 billion hectares.

1997 2020 2045 2070 2095

12 : .
Biomass energy starts earlier

and expands more.

O, mitigation from Energy + REDD+

Pricing carbon in land results in
immediate push to reforest and
® FORS return to natural grassland.
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Why does reforestation
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Climate Effects

Managing of land use
makes it nearly possible to
stay under the 2 C from
preindustrial Copenhagen
goal—adding 0.6° C for pre-
2000—with all IFs.

Temperature change from 2000

Land use carbon avoids 1.0
C of warming through 2100.
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Effects of Land Cover Change on Surface-Air Temperature (°C)

2050-1990 Trace-Gas Forcing and 2050-1990 Land Cover Change
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Hallgren et al. presentation by Schlosser later today




Uncertainties in epidemiology and economics are
substantial but range of estimates of concentrations
from different models are as large or larger.

Monte Carlo analysis of PM2.5 health impacts and related costs:
relative uncertainties in different global PM2.5 estimates, compared

with uncertainty in health and economic variables

1 Black vertical lines:
calculated cost for
different PM2.5
estimates/models,
holding health/
economic functions
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Water in IGSM

IGSM — Earth System

Climate (GCM)

Water Resources System (WRS)
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From Global Scale to regions and Water basiins

EARTH SYSTEM
coupled ocean, atmosphere, and land
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Example: Change in Months with Drought Stress for CLM-WRS driven
by Mean of GCMS for SRES Al1B

b o ,,\1
Mean of Differences in Number of Drought-Months
Relative to 20th Century Baseline for the 99 U.S. Subbasins

[ Regional Watershed Boundaries (2-digit HUCs)
Mean of differences in number of drought-months
(Out of a total of 360 months, or over 30 years) Drought Index: SPI1-12
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