Integrated Modeling of Hurricane Impacts on Power Systems in a Changing Climate

Seth Guikema, Johns Hopkins University Jennifer Irish, Texas A&M University Steven Quiring, Texas A&M University

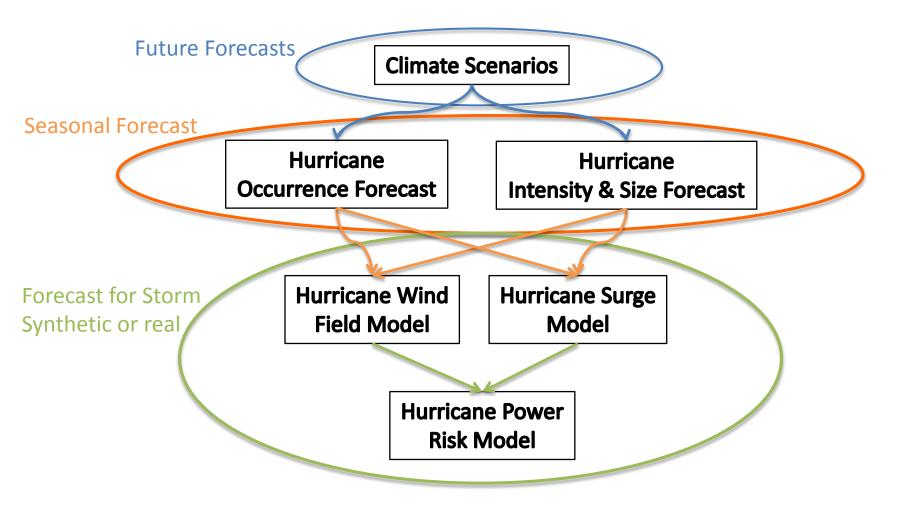
Climate – Hurricanes – Power Systems

<u>Overarching Goal</u>: Estimate changes in longterm risk to power systems from hurricanes in a changing climate

Main Components:

- 1. Seasonal hurricane modeling and forecasting
- 2. Hurricane surge modeling
- 3. Hurricane power outage modeling
- 4. Long-term risk estimation

Project Structure



Prior Seasonal Hurricane Forecasting

General Characteristic:

- -Variety of statistical methods, varying degrees of rigor
- –Use small number of pre-selected variables
- Focus on model fit -> predictive abilities of models not particularly good upon reexamination

Typical Papers:

Paper	Model(s) Used	Covariates Used	
Elsner et al. (2007)	Poisson GLM, ARIMA	SST	
Elsner et al. (2008)	Quantile regression	None	
Sabbatelli & Mann (2008)	Poisson GLM	SOI, SST, NAO	
Saunders & Lee (2008)	OLS	SST, Wind Shear	
Klotzbach & Gray(2009)	Stepwise Regression	SST, SLP, Wind Shear	

Seasonal Count Forecasting: A New Approach

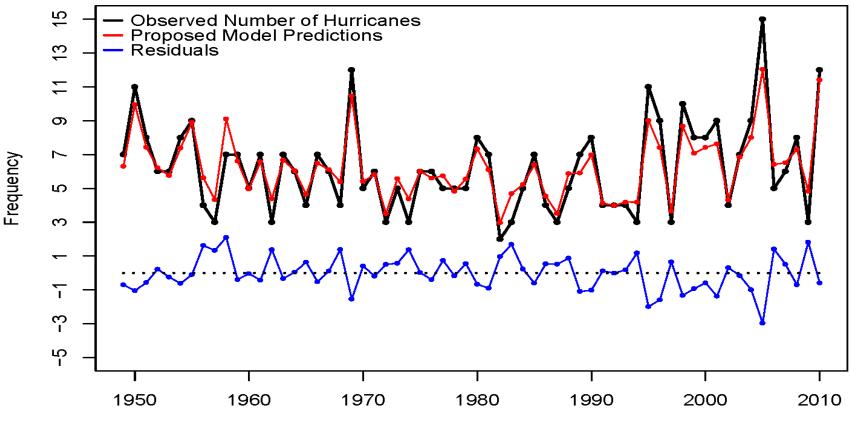
- Used broad range of climate variables rather than pre-screening based on expert knowledge or correlation
- More flexible, non-linear data miner (Random Forests) to maximize predictive accuracy
- Trained with 1948-2009, 30-fold 20% random holdout cross validation
- Compared with existing models from the literature

Approach (1984-2008)	Mean Absolute Error	Correlation of Prediction with Actual Count
Klotzbach & Gray June	1.5	0.78
Klotzbach & Gray August	1.3	0.82
Our Model	0.8	0.97

Example Comparison (Klotzbach & Gray model: hold-one out validation)

Forecasting Validation Results

Out-Of-Sample Prediction Plot



Years

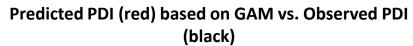
Modeling TC Intensity

-Purpose: develop models to explain interannual variations in mean Atlantic TC intensity, as measured by Power Dissipation Index (PDI), percentage of intense hurricanes, Vmax, and per storm PDI and to identify important environmental and storm-related variables

-Generalized Additive Models (GAMs) were developed using 9 different variables including: relative SST (RST), Nino3.4 SST (ENSO), Genesis Potential Index (GPI), Maximum Potential Velocity (MPV)

Intensity	Predictors	R ²	RMSE	RMSE	MAE	MAE	AICW	250
measure			abs.	[σ]	abs.	[%]		\int
Vmax	RST, ENSO	0.46	3.90	0.72	3.13	6.31	0.26	
	ENSO, GPI	0.39	4.13	0.77	3.34	6.75	0.58	
Number	ENSO, MPV	0.88	1.56	0.34	1.25	10.91	0.92	
Percent	SHR, ENSO	0.55	6.39	0.66	5.29	44.41	0.75	
ssaPDI	ENSO, MPV	0.40	2.70	0.77	2.29	32.86	0.44	
PDI	ENSO, MPV	0.72	32.84	0.53	25.37	29.17	0.90	
	cal results predictors					•	asures	0 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 Year
	e RMSE, RI	•				• •	% of	-PDI -Modeled PDI

the mean, AIC Weight (AICW).



Modeling TC Size: Methods

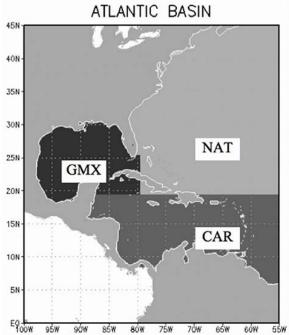
-Purpose: develop models to explain interannual variations in mean Atlantic TC size, as measured by radius of maximum winds (RMAX) and radial extent of 34 knot winds (17 m s⁻¹; R34), and to identify important environmental and storm-related variables

-TC size data for the Atlantic basin were derived from Extended Best Track Data (1988-2008)

-Stepwise multiple linear regression models were developed for the entire Atlantic and each sub-basin ATLANTIC BASIN

Table 1. Variables Considered for Their Potential Influence onTropical Cyclone (TC) Size

Abbreviation	Description		
VMAX	maximum surface tangential velocity (kt)		
TCLAT	TC latitude (°N)		
TCSPD	TC forward speed (kt)		
SST	sea surface temperature (°C)		
MSLP	mean sea level pressure (mbar)		
RHUM	600 mbar relative humidity (%)		
VOR	850 mbar vertical vorticity ($\times 10^{-5} \text{ s}^{-1}$)		
VSHR	850–200 mbar vertical shear (kt)		
N34	Niño 3.4 SST anomaly (°C)		



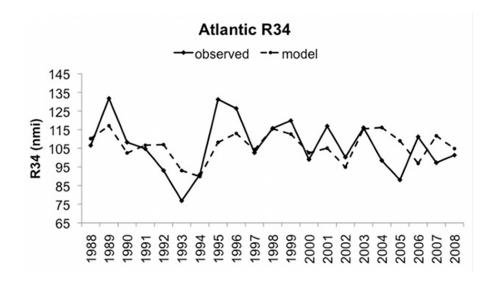
Quiring, S. M., Schumacher, A. B., Labosier, C., and L. Zhu (2011) Variations in mean annual tropical cyclone size in the Atlantic. *Journal of Geophysical Research–Atmospheres*, 116, D09114, doi:10.1029/2010JD015011.

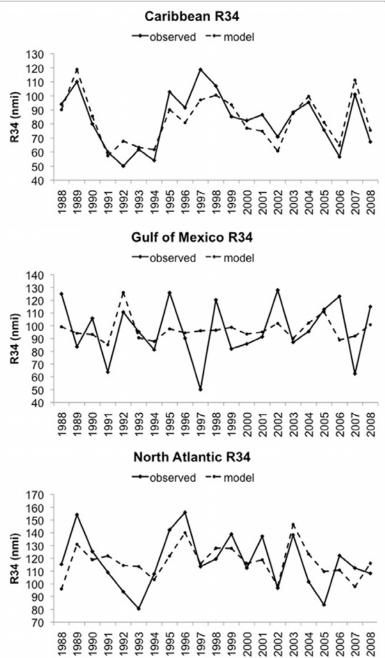
Modeling TC Size: Results

-Explained up to 75% of the variance in TC size, but relationships vary among the sub-basins and therefore it is inappropriate to develop a single model

-Maximum tangential wind (VMAX) is the most important variable for explaining variations in mean annual TC size

-Other factors such as sea surface temperature, sea level pressure, and Niño 3.4 also influenced mean annual TC size





Surge Response Functions General Form

General form for maximum surge response:

$$\zeta_{\max}(x) = \phi(x, x_o, c_p, R_p, \theta, v_f) + \varepsilon$$

$$\varepsilon^{2} = \varepsilon_{tide}^{2} + \varepsilon_{surge\,simulation}^{2} + \varepsilon_{waves}^{2} + \varepsilon_{winds}^{2} + \dots$$

where:

 ϕ is a continuous surge response function

x is location of interest

 x_o is landfall location

 c_p is hurricane central pressure near landfall

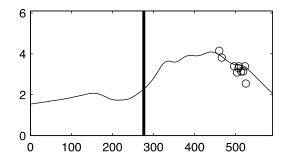
 R_p is hurricane pressure radius near landfall

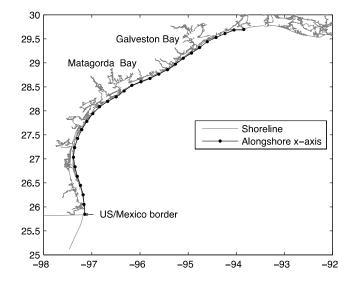
 θ is hurricane track angle with respect to the shoreline

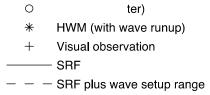
 v_f is hurricane forward speed near landfall

 ε is uncertainty in the surge response

Surge Response Functions: Validation

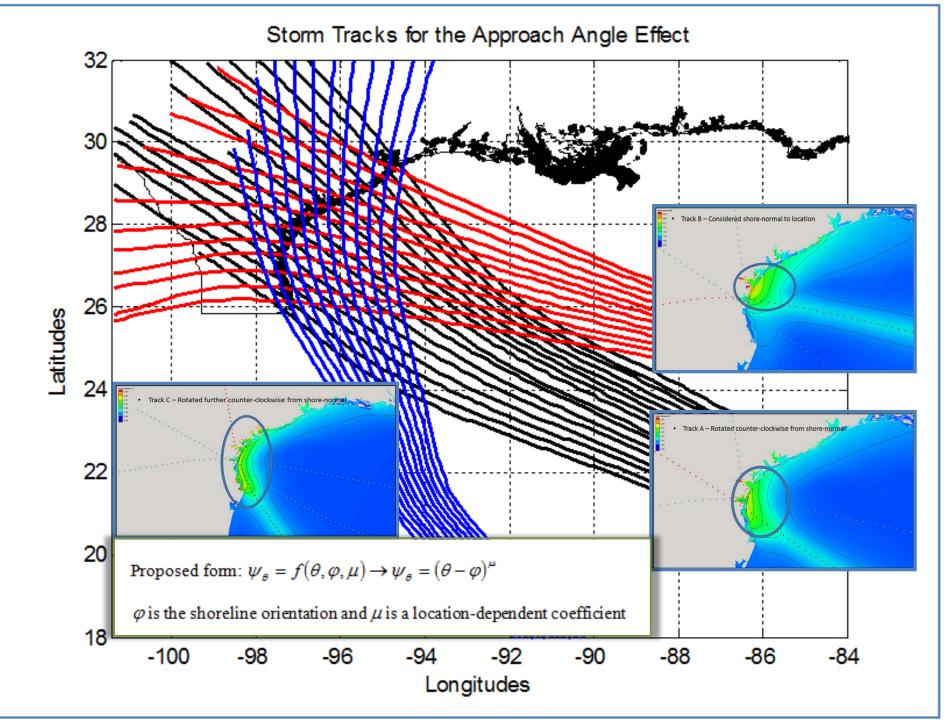






• Time to produce: 5 seconds in Fortran on one 3.2-GHz Xeon processor

From Irish et al., 2011, Geophys. Res. Lett.



Power Outage Forecasting During Hurricanes

Prior Work

Outages

Liu et al. (2005): a first model Liu et al. (2008): accounting for spatial correlation Han et al. (2009a, 2009b): improved accuracy, usability Guikema & Quiring (*under review*): improved accuracy

Customer Meters Out

Nateghi et al. (under review): first customer-out model

<u>Outage Duration</u> Liu et al. (2007): a first model Nateghi et al. (2011): improved predictive accuracy

Challenge: All previous work was specific to a utility company service area and used private utility data.

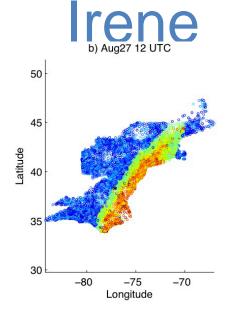
Spatial Generalization

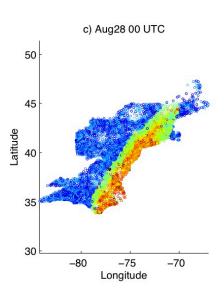
General Approach

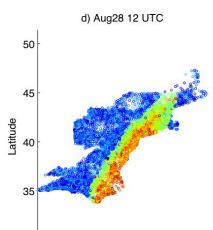
- 1. Work within utility service area, eliminate private data, cross-validate w/in area
- 2. Cross-validate to other nearby states with strong outage data
- 3. Apply full coast, compare to actual storm outages

Example Predictions: Hurricane









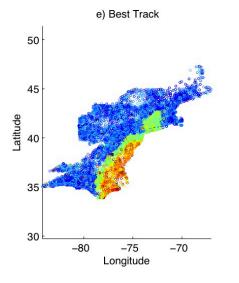
-75

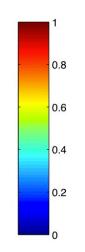
Longitude

-70

30

-80





How Did We Do?

Model	Predicted Fraction Out	Actual Fraction Out	Error
Training state 30-fold cross-validation	0.46	0.46	< 0.001
Katrina, Mississippi	0.51	0.49	0.02
Ivan, Georgia	0.41	0.13	0.30
Ivan, Mississippi	0.39	0.41	0.02
Dennis, Georgia	0.39	0.24	0.15
Hanna, Georgia	0.06	0.06	< 0.001
Jeanne, Georgia	0.03	0.04	0.02
Katrina, Georgia	0.02	0.01	0.01
Isidore, Georgia	0.02	0.003	0.017
Cindy, Georgia	0.01	0.01	< 0.001
Frances, Georgia	0.01	0.30	0.29

Gulf region validation testing

Initial Assessment

-Prediction accuracy generally very good in Gulf cross-validation. 3 outliers.

-Prediction reasonable for Irene except for Rhode Island, NYC, NC

Prediction Accuracy for Hurricane Irene

State/Service Area	Model Estimate	Peak Percentage Without Power
Connecticut	48%	44%*
Delaware/Delmarva Pen.	57%	$42\%^{**}$
District of Columbia	22%	13%*
Maine	21%	15%*
Maryland	30%	36%*
Massachusetts	26%	19%*
New Hampshire	22%	20%*
New Jersey	37%	24%*
New York	40%	12%*
North Carolina	53%	30%**
Pennsylvania	30%	13%*
Rhode Island	23%	65%*
Vermont	21%	12%*
Virginia	44%	29%*
Baltimore Metro	23%	37%**
Richmond Metro	56%	76%**

Next Step: Long-Term Risk Estimation

- Simulate synthetic storm histories for different climate scenarios
- Estimate track, wind field, surge for each storm
- Estimate power outage risk for each storm
- Comparison of long-term outage risk under different climate scenarios