Incorporating Hydrology into an Integrated Model of Human Earth Systems

Mohamad Hejazi, Jae Edmonds, Evan Davies*, Page Kyle, Vaibhav Chaturvedi, Leon Clarke, Pralit Patel, Marshall Wise Joint Global Change Research Institute

> September 21, 2011 Washington, DC

Motivation

Water is not fully integrated into any of the present generation of IAMs. Though all of the major IAM programs are working on the problem.

Yet,

- Climate change
 hydrology (the amount, timing, and reliability of fresh water)
- Changes in land use and land cover hydrology

Motivation

- Changes in the number of humans, their income levels, and their energy and food demands
 human water demands
- What are the implications of explicitly considering water in IAMs?
- Do we have sufficient water to realize a climate policy world?

Water System

Model & Results
WATER
SUPPLY

Model Validation

Continue... Model Validation

Climatic Future Projections (2100 vs 2000)

Proudly Operated by Battelle Since 1965

Climatic Future Projections (2100 vs 2000)

1.8 1.6

1.4

0.8

0.4 0.2

Climatic Future Projections (2100 vs 2000)

Model	Long name	IPCC number
CGCM2	Canadian Centre for Climate (Modelling and Analysis) (Canada)	7
CSIRO mk 2	Commonwealth Scientific and Industrial Research Organisation (Australia)	10
DOE PCM	Parallel Climate Model (NCAR - USA)	30
12 HadCM3	Hadley Centre Coupled Model	23

Water use in three parts:

- 1. Domestic
- 2. Industrial
- 3. Agricultural

Differentiate between withdrawal and consumption

Model & Results WATER DEMAND

Domestic Water Withdrawals (2100 vs. 2005)

Energy Water Demand in the future (No Policy vs. Climate Policy)

Hydro

Biomass CCS

Coal IGCC CCS

CSP

Oil

Wind

Geothermal

Biomass

🕷 Gas CCS

Coal IGCC

PV

Nuclear

Oil CCS

Gas

Coal

> Consumption Pacific Northwest NATIONAL LABORATORY

> > Proudly Operated by Battelle Since 1965

Withdrawal

Energy Water Demand in the future (No Policy vs. Climate Policy)

Withdrawal

Withdrawal

Biophysical Water Consumption

Total biophysical water consumption to almost double by 2050, after which the increase will be marginal

Energy crops' water consumption also increases, especially in the later half of the century

Biophysical Water Consumption

Biophysical water consumption-REGIONS

Most of the water demand is in the developing nations of the world

More than 70% of water for agriculture is consumed by developing regions, which increases to above 75% in 2095

Agricultural Water Demand

Proudly Operated by Battelle Since 1965

19

Effect of Climate Policy: Total Water Demands

Some Preliminary Observations from GCAM Water Systems Research

- Agriculture is the largest user of water (70% withdrawals; 85% consumption) Bio-energy crops can potentially become important source of water demand in the future
- Developing countries demands for water can be expected to grow over time, particularly in the first half of the century.
- Energy systems need water—large source of withdrawals, much smaller consumer.
- Cooling water demands for power generation (the largest energy user of water) can be expected to grow in the future, particularly in the developing world.
- New cooling technologies could dramatically reduce fresh water withdrawals, but increase fresh water consumption.
- NEXT: Allocate water among the competing water users