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Motivation:
Process understanding suggests large uncertainty
In coupled model carbon cycle-climate feedback

Land components of climate-carbon cycle feedback
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Nitrogen cycle influence on atm CO,
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Approach

Prioritize new process representations

Implement in CLM
Develop new multi-sca

e diagnostics

Evaluate CLM as new
coupled

Extend application of d
CMIP5 models

DIrocCesses are

lagnostic tools to



Project outline

Tropical Forest (ORNL)

— Integration of phosphorus with existing C-N coupling in CLM
— Evaluation against experimental results

Temperate Forest (LANL)

— Improvement of ecosystem demography model (ED): nitrogen
allocation and hydrology

— Integration of ED within CLM: PFT cohorts

Arctic ecosystems (LBNL)
— Characterize soil C stocks and permafrost state
— Evaluate candidate belowground models

Integration (UCI, ORNL, all)

— Develop new coupled-model diagnostic tools

— Evaluate CMIP5 model results

— Exercise and evaluate CESM with new CLM processes



Efforts on Phosphorus cycle

e Building Hedley P database from literature

* Developing spatially explicit global maps of
different forms of P to provide initialization
data for the global application of terrestrial C-
N-P models

e Incorporating P cycle into CLM-CN model

Effort led by Xiaojuan Yang and Mac Post, ORNL



Hedley P database

Hedley sequential fractionation method- a useful tool to
examine different forms of P in soils (Labile Pi, secondary
mineral Pi, apatite P, occluded P, organic P)

178 soil measurements from literature

Categorized by USDA soil order, useful for understanding of
phosphorus transformations as a function of pedogenesis

Useful for investigating C:N:P stoichimetry in soil organic
matter by providing organic C,N,P measurements



 Supports the Walker and Syers(1976)’ conceptual
model for P transformation during pedogenesis:
» Decrease of total P
» Continual increase and eventual dominance of
occluded P fraction

» First increase and then decrease of organic P
fraction
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Fraquancy

Fraquancy

Hedley P database

C:N:Po stoichimetry in soil organic matter

All soils

M:PO ratio
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e Carbon and nitrogen in soil organic
matter are closely linked in all soils

* The decoupling of P from Cand N
in highly weathered soils

»Larger variation of N:Po
» Higher mean values of N:Po

* Biological and biochemical
mineralization of organic P

eAnother indicator of P limitation in
highly weathered tropical soils



A data based approach for the initialization of
various P pools for global models
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Distribution of different forms of P in soils
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The comparison of estimated total P with field
measurement of total P for each soil order
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Evaluation of CLM against tropical
litter manipulation experiment

Long-term manipulative experiment altering litter
inputs in a mature lowland semi-evergreen tropical
forest in Panama.

6-year study: aboveground litter removed from one
set of plots and added to adjacent plots.

Found enhanced leaf production on litter addition
plots, suggesting alleviation of nutrient limitation

Highlighted the importance of organic P in supplying
tropical forest growth requirements

|dentified priming effect of litter addition on soil
respiration

[Sayer et al., 2011, Nature Climate Change]
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Carbon and Nitrogen Pools and Fluxes
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CLM4-EBIS:
Separation of Surface and Below-ground
Carbon and Nitrogen Pools and Fluxes
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Ongoing Efforts: CLM4 Phosphorus Pools and Fluxes
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Temperate Forest:

 Improvements in ED
 Coupling CLM + ED

Effort led by Chonggang Xu (LANL), Nate McDowell (LANL) and Rosie Fisher (NCAR)



ED model: Scale and light competition

Tree mortality based on
carbon starvation

sunlit

shaded

scale



Mechanistic nitrogen allocation model for ED
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s Allocation model test against CO2 enrichment
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Allocation model testsagalnst growing temperature reduction
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Plant-Soil hydrology for ED

Improved:
Water demand=f( photosynthesis, air
humidity, wind speed)

Original:
Transpiration=a Potential transpiration

Water uptake= minimum
(water demand, water

supply)
a is an empirical
parameter
depending on soil
moisture Water supply=f(minimum leaf water

potential, soil water potential, sap
wood area, root, sap wood and leaf
water conductivity)



Tree mortality in ED

Improved: 1. reduced tree mortality under stress

by reduce/stop leaf, root and wood turn-over
Photosynthesis from storage; 2. Exponential function of mortality
vs storage.

Original:

Leaf, root and Photosynthesis

wood turn-over
Wit Leaf, root and
- wood turn-over £
Carbon h without stress S
storage £ e
o) >
= Carbon Current
Current storage storage/Target
storage/Target storage
torage
Z
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Ecosystem Demography Model (ED)
Moorcroft, Hurtt and Pacala. (2001)

Broadleaf Tree

. Needleleaf Tree




Ecosystem Demography Model (ED)

III

”Size-and-age structured approximation of a gap mode

PFT-based tile structure. Age-based tile structure.

e.g. CLM, TRIFFID, LPJ, SDGVM ED




Implementation of competition for space in ED
(required to simulate long term coexistance)

e ‘Perfect Plasticity Approximation’ (PPA)
— Tree canopies are are ‘perfectly plastic’ and fill in all the gaps.
— Tree canopy splits into distinct layers.

e Canopy trees : 100% light on top leaf surface
e Under-story trees : All have the same light environment

Purves et al., PLOS One 2007. Fisher et al. New Phytologist 2010.



Radiation and photosynthesis in ED-CLM

CLM uses a ‘two-stream’ approximation to estimate absorption,
reflectance and transmittance for ‘big leaf’ (one layer) canopies.

ED requires that we have a vertical light profile to simulate vertical
competition

Using the two-stream approximation is thus overly complex, and it
cannot be used for the multi-PFT canopy in the ED-PPA model

Thus, we propose to use the Norman et al. (1979) explicit radiation
scheme

This scheme calculates transmittance, reflectance and absorption
directly at each layer for direct and diffuse (& NIR and visible) light.

An iterative solution is required to absorb all the radiation which
bounces up (and down) off the soil and leaf surfaces.



Norman Radiation scheme as implemented in ED-CLM. vAg

Equal direct and diffuse radiation on canopy surface for all PFT’s

A A A A A A

Reflectance, absorption and transmittance calculated for multiple leaf layers for each PFT.

e — e — — — — — —

Spatially average the direct and diffuse radiation transmitted onto the understory layer.

Light transmitted onto soil/snow reflected back up through canopy (iterative solution)




Next steps for CLM-ED

Multi-layer Nitrogen limitation (if there isn’t enough N,
which PFT and /or leaf layers are affected?)

Land-use change (pasture/crops) representation
Coupling to fire model.

Expand PFT range using GLOPNET/TRY databases.
Benchmarking with expanded iLAMB database.



Active Layer and Permafrost SOC
Stocks In Arctic Soils: Measurements,
Modeling, and Uncertainty

Umakant Mishra,
Charles D. Koven,
William J. Riley

LBNL




Goals Methods

e Characterize high- * Applied GIS-based
resolution maps of soil C analysis with 472 pedon
stocks and permafrost observations to generate
state soil C maps

— Test ability of current  Compare default and new
LSM’s to replicate CLM4 belowground C

observations

cycle model predictions
— ldentify uncertainty,

dominant dri ; — Stocks and dominant
ominant drivers o drivers of heterogeneity
heterogeneity, and

vulnerability of SOM — Investigating uncertainty
and scaling methods



GIS Model Methodology
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Alaska Active Layer Depth and SOC
Stocks from GIS Pedon analysis

Dominant predictors:
Dominant predictors: Tl
L atitude Specific catchment area
Precipitation Precipitation
Barren Temperature
Bedrock type Scrub

Herbaceous

Barren

Bedrock type




Comparison of GIS Soil C mapping and CLM4-
Vertical Soil C predictions for Active Layer C stocks

Leverage point:
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*Overall CLM soil C still underestimated
*Maxima in NE Alaska captured
*Maxima in SW Alaska not captured—
likely due to lack of peatland processes



Coupled model evaluation

 Develop hew metrics

* Apply to CMIP5 database (including default
CESM1)

 Evaluate CESM with new CLM as development
progresses.



Temperature Dependence of Heterotrophic Respiration
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A New Metric for Evaluating Variability of CO, with ENSO

The relationship between El Nino-Southern Oscillation (ENSO)
and observed CO»> anomalies at Mauna Loa may be exploited to
evaluate ocean and terrestrial model responses.

Mauna Loa CDE Anomaly Growth Rate and Ocean Nino Index (ONI)
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CESM vs. Observations

Relation Between {302 Anomaly Growth Rate and ONI

1.5

| = All Observations, =0.191
|| === No Pinatubo, 3=0.249
[| === CESM Control, f=0.137

CD: Anomaly Growth Rate (ppmly)

=3 -2 -1 0 1 2 3
Ocean Nino Index (ONI)




CMIP5 ESM Model Comparison

Atmospheric CO, Concentration
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Initial evaluation of the CO, trajectories of the Earth System
Models (ESMs) is being performed as results appear on the Earth

System Grid (ESG).



Future (2095-2099) Carbon Dioxide Mixing Ratio (ppm)
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CO2 (PPMV)

Assessment of bias in global mean CO,
concentration
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What's wrong with this picture?
» Observed CO, concentration is biased
* Ice core / instrument transition?
* Fossil fuel emissions are biased
* Emissions forcing too high during WWI11?

* Land use / land cover change data are
biased.

* Forest harvest too high? Regrowth too
small?

» Model is biased

* Internal climate variability?

 Low land and/or ocean sensitivity to rising
CO,?

* Response to harvest too strong?

» Regrowth response too weak?

Leverage point:
ORNL TES SFA
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Next steps:
Year 2

— Complete new process integration in CLM4

— Evaluate new process representation against plot-level
observations/experiments

— Continue development of new global metrics
— Evaluate CMIP5 models against new global metrics
— Commence coupled model integration

Year 3
— Continue development of new global metrics
— Finish coupled model integration
— Evaluate new CESM against new global metrics
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