Development of Frameworks for Robust Regional Climate Modeling

> Ruby Leung, PNNL Todd Ringler, LANL Bill Collins, LBNL Moet Ashfaq, ORNL Mark Taylor, SNL

DOE Climate and Earth System Modeling PI Meeting September 19 - 22, 2011 Grand Hyatt Washington

Motivation

- Predicting the regional hydrologic cycle at time scales from seasons to centuries is important as water supports ecosystems and a wide range of human activities
- Large uncertainties exist in model predictions of the regional hydrologic cycle

Objective

To reduce uncertainty in regional climate simulations through systematic evaluation and comparison of different modeling approaches to identify and characterize the sources of uncertainty

Overarching hypothesis

- Different dynamical approaches for modeling climate at regional scales can lead to uncertainties that can be quantified through a hierarchical evaluation framework
 - How important is representing scale interactions?
 - Is coupling of atmosphere/ocean important at regional scales?
 - Is climate feedback sensitive to different approaches and how?

Global high resolution model

Nested regional climate model

A hierarchical evaluation framework

- Evaluate simulations progressing from simple to complex and from idealized to real world
 - Idealized no physics simulations
 - Shallow water test case
 - Idealized full physics simulations
 - Aqua-planet simulation
 - Channel flow simulation
 - Real world single component simulations (N/S America)
 - Real world atmosphere simulations
 - Real world ocean simulations
 - Real world coupled simulations
 - Real world coupled atmosphere-ocean simulations

Global vs regional

- Simulations will be performed with all models sharing the same physics suite:
 - GS-LR:
 - Global Simulations at Low Resolution (T85 or 1°)
 - GS-HR: Virtual reality / Truth
 - Global Simulations at High Resolution (T340 or 0.25°) -
 - GS-VR:
 - Global Simulations using Variable Resolution (1°/0.25°)
 - RS-HR:
 - Regional Simulations at High Resolution (0.25°) driven by GS-LR

ution

ynamical approach

Participating climate models

- Community Climate System Model (CCSM)
 - Atmospheric component
 - CAM-spectral (Eulerian) LBNL, ORNL
 - CAM-HOMME (spectral finite element) SNL
 - MPAS-A (variable resolution finite volume) LANL
 - Ocean component
 - POP (finite difference) LANL
 - MPAS-O (variable resolution finite volume) LANL
- Nested regional climate models
 - Weather Research and Forecasting (WRF) Model PNNL
 - Atmospheric component: WRF driven by CAM-spectral
 - Ocean component: ROMS driven by POP
 - RegCM3 ORNL
 - Atmosphere only (*different physics) driven by CAM-spectral

Aqua-Planet Experiment (APE)

- CAM-spectral: T42, T85, T170, T340
- ► CAM-MPAS: 240km, 120km, 60km, 30km, 240km \rightarrow 30km
- CAM-HOMME: 2°, 1°, 0.5°, 0.25°
- WRF: 1°, 0.25° (1°, 0.2°, 0.04°)

CAM-spectral APE: Impact of horizontal resolution on the simulation and projection of extreme precipitation

Results:

- Precipitation extremes do not converge with climatemodel horizontal resolutions, primarily due to the parameterization of prognostic stable precipitation.
- Updraft appears to contribute to the resolution dependency of extreme precipitation and to be the driving physical factor for the extreme events

Anomalies of extreme precipitation (black), ω (blue) and temperature (red) as functions of horizontal resolution

8

Fractional changes of extreme precipitation (>95th percentile) under global warming

(c) ∆R95pTOT (sstgra/control-1)

Results:

Horizontal model resolution plays important roles in extreme precipitation projections, strongly affecting the global warming signals in low-mid latitude regions – have to account for the effects of horizontal resolution to develop more robust projections of precipitation extremes.

RERKELEY

AB

CAM-HOMME APE

- Completed CAM4 simulations for use in variable resolution dycore studies
 - 5 year simulations at 2.0, 1.0, 0.5 and 0.25° resolutions
- CAM aquaplanet_cam4 produces a climate that is symmetric about the equator and shows a strong signal under mesh refinement, similar to that seen in CAM3.1 (Williamson, Tellus 2007)

Cloud fraction shows expected strong resolution sensitivity.

- 2 red
 - green
- 0.5 blue
- 0.25 purple

CAM-HOMME APE

11

- Zonal means are well converged when averaged over 1 year, except surface pressure (PS)
 - PS variability above 50N (or below 50S) is as large as the changes with respect to resolution, thus significantly longer simulations are needed if PS is to be included in a resolution study

20 year average (red) and s.d. (purple) of zonal mean cloud fraction and PS $_{CLDTOT \pm 2\sigma}$

CAM-MPAS (Model for Prediction Across Scales) APE

- MPAS is a global-to-regional climate modeling approach that permits an arbitrary number of user- specified regions of mesh refinement
- The LANL/NCAR team is evaluating this approach in the context of the shallow-water system, 3D atmosphere hydrostatic/nonhydrostatic systems and 3D ocean hydrostatic system

Snapshot of water vapor (kg/kg) at 450 hPa. Figure centered on high resolution region.

12

 $240 \text{km} \rightarrow 30 \text{km} \sim 1/10 \text{ number of grid points}$ of a global, quasi-uniform mesh of 30 km

CAM-MPAS APE

WRF APE experimental design

- The CAM4 physics package is used in both CAM and WRF simulations
- Even with the same physics, differences between CAM and WRF dynamical cores and how physics are implemented matter – CAM T340 cannot be treated as the "truth" for evaluating WRF

WRF is configured as TCM and run at 1° with a nested domain at 0.25° for comparison with the TCM at 0.25°

Pacific Northwest

Propagating features and phase speed

Raw precipitation averaged between 10S and 10N in mm/day – the black lines mark the propagation speed of about 23 m/s

The precipitation signal is dominated by 20-day Kelvin waves that maintain their amplitude and phase as they propagate through the boundaries of the regional domain

Precipitation spectra

Non-convective precipitation

- More eddies of scale < 1000 km are resolved by HRM and HRTCM
- At higher resolution, convective precipitation is reduced but compensated by the resolved precipitation at finer scales

CAM-spectral real world simulations: DJF Sea Level Pressure – Northern Hemisphere

National Laboratory

Summary

- A hierarchical evaluation framework is used to quantify the effects of dynamical approaches and resolution on climate simulations at regional scales
- Aqua-planet simulations are being performed using three different CAM dynamical cores and a nested regional model (WRF)
- Analyses of APEs have focused on the hydrological cycle in the tropics – some indications that:
 - The variable resolution and nesting approaches can reproduce important features of the global high resolution "truth"
 - Resolution (between 1° to 0.25°) has larger effects on the simulation than dynamical approaches
 - Even larger effects are from 0.25° to cloud permitting scales
- Some efforts on real world simulations have begun, and will be a focus of the next phase