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QUESTION:
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high correlations for interannual (R 5 0.72 for 2–7-yr
bandpassed) and decadal-scale (R 5 0.61 for 8-yr low-
passed) versions of the records.

The Palmyra coral d18OSW record is dominated by
decadal-scale variability and a relatively large freshen-
ing trend over the late twentieth century (Fig. 4c). A
visual comparison of the three coral records plotted in
Fig. 4 reveals that the d18OSW trend is responsible for the
large trend in coral d18O, with warming playing a sec-
ondary role. The marked differences between the coral
Sr/Ca-derived SST and the d18OSW-based salinity proxy
records are striking, implying that low frequency SST
and salinity variations are governed by different dy-
namics. The remainder of this paper investigates the
large-scale climate controls on Palmyra SST and salinity
on interannual, decadal, and secular time scales.

a. Interannual to decadal-scale tropical Pacific
climate variability

1) CORAL Sr/Ca-DERIVED SST VARIABILITY

On interannual (2–7 yr) time scales, the SST proxy
record captures ENSO variability in the central tropical
Pacific, as reflected by significant correlations with the
central tropical Pacific Niño-3.4 SST index [SST anom-
alies averaged over 58N–58S, 1208–1708W (Kaplan et al.
1998)] (R 5 0.71, 1886–1998, Neff 5 32, CI . 95%). High
correlations with SST anomalies in the Niño-3 region
[58N–58S, 908–1508W(Kaplan et al. 1998)] (R 5 0.65,
1886–1998, Neff 5 33, CI . 95%), see Fig. 5a, as well
as high correlations with the ENSO Modoki index of
Ashok et al. (2007) (R 5 0.67, 1886–1998, Neff 5 34,

CI . 95%), see Fig. 5b, reflect the sensitivity of the
Palmyra coral Sr/Ca record to both eastern and central
Pacific ‘‘flavors’’ of ENSO variability, respectively.
These significant correlations reflect the fact that warm
SST anomalies occur in the central tropical Pacific during
both canonical El Niño events as well as El Niño Modoki
events, and vice versa during La Niña cool events.

On decadal time scales, the SST proxy record is highly
correlated to low frequency variability associated with
the CPW, as evidenced by significant correlations be-
tween the 5-yr running-average versions of the SST
proxy record and the ENSO Modoki index (R 5 0.53,
1888–1995, Neff 5 17, CI . 95%), see Fig. 5c. The SST
proxy record is significantly correlated with the 5-yr-
averaged NPGO index (Di Lorenzo et al. 2008) (R 5
20.85, 1952–95, Neff 5 10, CI . 95%), see Fig. 5d,
reflecting strong dynamical linkages between central
tropical Pacific SST and the decadal-scale NPGO, as
uncovered by Di Lorenzo et al. (2010). Over the same
period, the correlation between the SST proxy record
and the ENSO Modoki index is similarly high (R 5 0.76,
1952–95, Neff 5 8, CI . 95%). Statistically significant
correlations between the coral Sr/Ca-derived SST proxy

FIG. 4. Palmyra coral monthly resolved d18O, Sr/Ca-derived SST,
and d18OSW records from 1886 to 1998. (a) Palmyra coral d18O
record (Cobb et al. 2001), (b) Sr/Ca-derived SST (black) plotted
with ERSST (gray; Smith et al. 2008), and (c) d18OSW-based salinity
record.

FIG. 5. Interannual and decadal-scale coral Sr/Ca-derived SST
variability at Palmyra plotted with tropical Pacific instrumental
climate indices: (a) interannual (2–7-yr bandpassed) Sr/Ca-derived
SST anomalies (black) and Niño-3 SST anomalies (gray), (b) in-
terannual (2–7-yr bandpasssed) Sr/Ca-derived SST anomalies
(black) and the 23ENSO Modoki index (gray), and (c) decadal-
scale Sr/Ca-derived SST (black) and 23ENSO Modoki index
(gray) plotted as 5-yr running averages. (b) Decadal-scale Sr/Ca-
derived SST (black) and –NPGO index (gray) plotted as 5-yr
running averages. All correlations are statistically significant at
a 95% confidence level using a Student’s t test and adjusting for
serial autocorrelation.
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variability at Palmyra plotted with tropical Pacific instrumental
climate indices: (a) interannual (2–7-yr bandpassed) Sr/Ca-derived
SST anomalies (black) and Niño-3 SST anomalies (gray), (b) in-
terannual (2–7-yr bandpasssed) Sr/Ca-derived SST anomalies
(black) and the 23ENSO Modoki index (gray), and (c) decadal-
scale Sr/Ca-derived SST (black) and 23ENSO Modoki index
(gray) plotted as 5-yr running averages. (b) Decadal-scale Sr/Ca-
derived SST (black) and –NPGO index (gray) plotted as 5-yr
running averages. All correlations are statistically significant at
a 95% confidence level using a Student’s t test and adjusting for
serial autocorrelation.
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high correlations for interannual (R 5 0.72 for 2–7-yr
bandpassed) and decadal-scale (R 5 0.61 for 8-yr low-
passed) versions of the records.

The Palmyra coral d18OSW record is dominated by
decadal-scale variability and a relatively large freshen-
ing trend over the late twentieth century (Fig. 4c). A
visual comparison of the three coral records plotted in
Fig. 4 reveals that the d18OSW trend is responsible for the
large trend in coral d18O, with warming playing a sec-
ondary role. The marked differences between the coral
Sr/Ca-derived SST and the d18OSW-based salinity proxy
records are striking, implying that low frequency SST
and salinity variations are governed by different dy-
namics. The remainder of this paper investigates the
large-scale climate controls on Palmyra SST and salinity
on interannual, decadal, and secular time scales.

a. Interannual to decadal-scale tropical Pacific
climate variability

1) CORAL Sr/Ca-DERIVED SST VARIABILITY

On interannual (2–7 yr) time scales, the SST proxy
record captures ENSO variability in the central tropical
Pacific, as reflected by significant correlations with the
central tropical Pacific Niño-3.4 SST index [SST anom-
alies averaged over 58N–58S, 1208–1708W (Kaplan et al.
1998)] (R 5 0.71, 1886–1998, Neff 5 32, CI . 95%). High
correlations with SST anomalies in the Niño-3 region
[58N–58S, 908–1508W(Kaplan et al. 1998)] (R 5 0.65,
1886–1998, Neff 5 33, CI . 95%), see Fig. 5a, as well
as high correlations with the ENSO Modoki index of
Ashok et al. (2007) (R 5 0.67, 1886–1998, Neff 5 34,

CI . 95%), see Fig. 5b, reflect the sensitivity of the
Palmyra coral Sr/Ca record to both eastern and central
Pacific ‘‘flavors’’ of ENSO variability, respectively.
These significant correlations reflect the fact that warm
SST anomalies occur in the central tropical Pacific during
both canonical El Niño events as well as El Niño Modoki
events, and vice versa during La Niña cool events.

On decadal time scales, the SST proxy record is highly
correlated to low frequency variability associated with
the CPW, as evidenced by significant correlations be-
tween the 5-yr running-average versions of the SST
proxy record and the ENSO Modoki index (R 5 0.53,
1888–1995, Neff 5 17, CI . 95%), see Fig. 5c. The SST
proxy record is significantly correlated with the 5-yr-
averaged NPGO index (Di Lorenzo et al. 2008) (R 5
20.85, 1952–95, Neff 5 10, CI . 95%), see Fig. 5d,
reflecting strong dynamical linkages between central
tropical Pacific SST and the decadal-scale NPGO, as
uncovered by Di Lorenzo et al. (2010). Over the same
period, the correlation between the SST proxy record
and the ENSO Modoki index is similarly high (R 5 0.76,
1952–95, Neff 5 8, CI . 95%). Statistically significant
correlations between the coral Sr/Ca-derived SST proxy

FIG. 4. Palmyra coral monthly resolved d18O, Sr/Ca-derived SST,
and d18OSW records from 1886 to 1998. (a) Palmyra coral d18O
record (Cobb et al. 2001), (b) Sr/Ca-derived SST (black) plotted
with ERSST (gray; Smith et al. 2008), and (c) d18OSW-based salinity
record.

FIG. 5. Interannual and decadal-scale coral Sr/Ca-derived SST
variability at Palmyra plotted with tropical Pacific instrumental
climate indices: (a) interannual (2–7-yr bandpassed) Sr/Ca-derived
SST anomalies (black) and Niño-3 SST anomalies (gray), (b) in-
terannual (2–7-yr bandpasssed) Sr/Ca-derived SST anomalies
(black) and the 23ENSO Modoki index (gray), and (c) decadal-
scale Sr/Ca-derived SST (black) and 23ENSO Modoki index
(gray) plotted as 5-yr running averages. (b) Decadal-scale Sr/Ca-
derived SST (black) and –NPGO index (gray) plotted as 5-yr
running averages. All correlations are statistically significant at
a 95% confidence level using a Student’s t test and adjusting for
serial autocorrelation.
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high correlations for interannual (R 5 0.72 for 2–7-yr
bandpassed) and decadal-scale (R 5 0.61 for 8-yr low-
passed) versions of the records.

The Palmyra coral d18OSW record is dominated by
decadal-scale variability and a relatively large freshen-
ing trend over the late twentieth century (Fig. 4c). A
visual comparison of the three coral records plotted in
Fig. 4 reveals that the d18OSW trend is responsible for the
large trend in coral d18O, with warming playing a sec-
ondary role. The marked differences between the coral
Sr/Ca-derived SST and the d18OSW-based salinity proxy
records are striking, implying that low frequency SST
and salinity variations are governed by different dy-
namics. The remainder of this paper investigates the
large-scale climate controls on Palmyra SST and salinity
on interannual, decadal, and secular time scales.

a. Interannual to decadal-scale tropical Pacific
climate variability

1) CORAL Sr/Ca-DERIVED SST VARIABILITY

On interannual (2–7 yr) time scales, the SST proxy
record captures ENSO variability in the central tropical
Pacific, as reflected by significant correlations with the
central tropical Pacific Niño-3.4 SST index [SST anom-
alies averaged over 58N–58S, 1208–1708W (Kaplan et al.
1998)] (R 5 0.71, 1886–1998, Neff 5 32, CI . 95%). High
correlations with SST anomalies in the Niño-3 region
[58N–58S, 908–1508W(Kaplan et al. 1998)] (R 5 0.65,
1886–1998, Neff 5 33, CI . 95%), see Fig. 5a, as well
as high correlations with the ENSO Modoki index of
Ashok et al. (2007) (R 5 0.67, 1886–1998, Neff 5 34,

CI . 95%), see Fig. 5b, reflect the sensitivity of the
Palmyra coral Sr/Ca record to both eastern and central
Pacific ‘‘flavors’’ of ENSO variability, respectively.
These significant correlations reflect the fact that warm
SST anomalies occur in the central tropical Pacific during
both canonical El Niño events as well as El Niño Modoki
events, and vice versa during La Niña cool events.

On decadal time scales, the SST proxy record is highly
correlated to low frequency variability associated with
the CPW, as evidenced by significant correlations be-
tween the 5-yr running-average versions of the SST
proxy record and the ENSO Modoki index (R 5 0.53,
1888–1995, Neff 5 17, CI . 95%), see Fig. 5c. The SST
proxy record is significantly correlated with the 5-yr-
averaged NPGO index (Di Lorenzo et al. 2008) (R 5
20.85, 1952–95, Neff 5 10, CI . 95%), see Fig. 5d,
reflecting strong dynamical linkages between central
tropical Pacific SST and the decadal-scale NPGO, as
uncovered by Di Lorenzo et al. (2010). Over the same
period, the correlation between the SST proxy record
and the ENSO Modoki index is similarly high (R 5 0.76,
1952–95, Neff 5 8, CI . 95%). Statistically significant
correlations between the coral Sr/Ca-derived SST proxy

FIG. 4. Palmyra coral monthly resolved d18O, Sr/Ca-derived SST,
and d18OSW records from 1886 to 1998. (a) Palmyra coral d18O
record (Cobb et al. 2001), (b) Sr/Ca-derived SST (black) plotted
with ERSST (gray; Smith et al. 2008), and (c) d18OSW-based salinity
record.

FIG. 5. Interannual and decadal-scale coral Sr/Ca-derived SST
variability at Palmyra plotted with tropical Pacific instrumental
climate indices: (a) interannual (2–7-yr bandpassed) Sr/Ca-derived
SST anomalies (black) and Niño-3 SST anomalies (gray), (b) in-
terannual (2–7-yr bandpasssed) Sr/Ca-derived SST anomalies
(black) and the 23ENSO Modoki index (gray), and (c) decadal-
scale Sr/Ca-derived SST (black) and 23ENSO Modoki index
(gray) plotted as 5-yr running averages. (b) Decadal-scale Sr/Ca-
derived SST (black) and –NPGO index (gray) plotted as 5-yr
running averages. All correlations are statistically significant at
a 95% confidence level using a Student’s t test and adjusting for
serial autocorrelation.

1 JULY 2011 N U R H A T I E T A L . 3299

SST Proxy (Sr/Ca)

high correlations for interannual (R 5 0.72 for 2–7-yr
bandpassed) and decadal-scale (R 5 0.61 for 8-yr low-
passed) versions of the records.
The Palmyra coral d18OSW record is dominated by

decadal-scale variability and a relatively large freshen-
ing trend over the late twentieth century (Fig. 4c). A
visual comparison of the three coral records plotted in
Fig. 4 reveals that the d18OSW trend is responsible for the
large trend in coral d18O, with warming playing a sec-
ondary role. The marked differences between the coral
Sr/Ca-derived SST and the d18OSW-based salinity proxy
records are striking, implying that low frequency SST
and salinity variations are governed by different dy-
namics. The remainder of this paper investigates the
large-scale climate controls on Palmyra SST and salinity
on interannual, decadal, and secular time scales.

a. Interannual to decadal-scale tropical Pacific
climate variability

1) CORAL Sr/Ca-DERIVED SST VARIABILITY

On interannual (2–7 yr) time scales, the SST proxy
record captures ENSO variability in the central tropical
Pacific, as reflected by significant correlations with the
central tropical Pacific Niño-3.4 SST index [SST anom-
alies averaged over 58N–58S, 1208–1708W (Kaplan et al.
1998)] (R5 0.71, 1886–1998,Neff5 32, CI. 95%). High
correlations with SST anomalies in the Niño-3 region
[58N–58S, 908–1508W(Kaplan et al. 1998)] (R 5 0.65,
1886–1998, Neff 5 33, CI . 95%), see Fig. 5a, as well
as high correlations with the ENSO Modoki index of
Ashok et al. (2007) (R 5 0.67, 1886–1998, Neff 5 34,

CI . 95%), see Fig. 5b, reflect the sensitivity of the
Palmyra coral Sr/Ca record to both eastern and central
Pacific ‘‘flavors’’ of ENSO variability, respectively.
These significant correlations reflect the fact that warm
SST anomalies occur in the central tropical Pacific during
both canonical El Niño events as well as El Niño Modoki
events, and vice versa during La Niña cool events.
On decadal time scales, the SST proxy record is highly

correlated to low frequency variability associated with
the CPW, as evidenced by significant correlations be-
tween the 5-yr running-average versions of the SST
proxy record and the ENSO Modoki index (R 5 0.53,
1888–1995, Neff 5 17, CI . 95%), see Fig. 5c. The SST
proxy record is significantly correlated with the 5-yr-
averaged NPGO index (Di Lorenzo et al. 2008) (R 5
20.85, 1952–95, Neff 5 10, CI . 95%), see Fig. 5d,
reflecting strong dynamical linkages between central
tropical Pacific SST and the decadal-scale NPGO, as
uncovered by Di Lorenzo et al. (2010). Over the same
period, the correlation between the SST proxy record
and the ENSOModoki index is similarly high (R5 0.76,
1952–95, Neff 5 8, CI . 95%). Statistically significant
correlations between the coral Sr/Ca-derived SST proxy

FIG. 4. Palmyra coral monthly resolved d18O, Sr/Ca-derived SST,
and d18OSW records from 1886 to 1998. (a) Palmyra coral d18O
record (Cobb et al. 2001), (b) Sr/Ca-derived SST (black) plotted
with ERSST (gray; Smith et al. 2008), and (c) d18OSW-based salinity
record.

FIG. 5. Interannual and decadal-scale coral Sr/Ca-derived SST
variability at Palmyra plotted with tropical Pacific instrumental
climate indices: (a) interannual (2–7-yr bandpassed) Sr/Ca-derived
SST anomalies (black) and Niño-3 SST anomalies (gray), (b) in-
terannual (2–7-yr bandpasssed) Sr/Ca-derived SST anomalies
(black) and the 23ENSO Modoki index (gray), and (c) decadal-
scale Sr/Ca-derived SST (black) and 23ENSO Modoki index
(gray) plotted as 5-yr running averages. (b) Decadal-scale Sr/Ca-
derived SST (black) and –NPGO index (gray) plotted as 5-yr
running averages. All correlations are statistically significant at
a 95% confidence level using a Student’s t test and adjusting for
serial autocorrelation.
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high correlations for interannual (R 5 0.72 for 2–7-yr
bandpassed) and decadal-scale (R 5 0.61 for 8-yr low-
passed) versions of the records.

The Palmyra coral d18OSW record is dominated by
decadal-scale variability and a relatively large freshen-
ing trend over the late twentieth century (Fig. 4c). A
visual comparison of the three coral records plotted in
Fig. 4 reveals that the d18OSW trend is responsible for the
large trend in coral d18O, with warming playing a sec-
ondary role. The marked differences between the coral
Sr/Ca-derived SST and the d18OSW-based salinity proxy
records are striking, implying that low frequency SST
and salinity variations are governed by different dy-
namics. The remainder of this paper investigates the
large-scale climate controls on Palmyra SST and salinity
on interannual, decadal, and secular time scales.

a. Interannual to decadal-scale tropical Pacific
climate variability

1) CORAL Sr/Ca-DERIVED SST VARIABILITY

On interannual (2–7 yr) time scales, the SST proxy
record captures ENSO variability in the central tropical
Pacific, as reflected by significant correlations with the
central tropical Pacific Niño-3.4 SST index [SST anom-
alies averaged over 58N–58S, 1208–1708W (Kaplan et al.
1998)] (R 5 0.71, 1886–1998, Neff 5 32, CI . 95%). High
correlations with SST anomalies in the Niño-3 region
[58N–58S, 908–1508W(Kaplan et al. 1998)] (R 5 0.65,
1886–1998, Neff 5 33, CI . 95%), see Fig. 5a, as well
as high correlations with the ENSO Modoki index of
Ashok et al. (2007) (R 5 0.67, 1886–1998, Neff 5 34,

CI . 95%), see Fig. 5b, reflect the sensitivity of the
Palmyra coral Sr/Ca record to both eastern and central
Pacific ‘‘flavors’’ of ENSO variability, respectively.
These significant correlations reflect the fact that warm
SST anomalies occur in the central tropical Pacific during
both canonical El Niño events as well as El Niño Modoki
events, and vice versa during La Niña cool events.

On decadal time scales, the SST proxy record is highly
correlated to low frequency variability associated with
the CPW, as evidenced by significant correlations be-
tween the 5-yr running-average versions of the SST
proxy record and the ENSO Modoki index (R 5 0.53,
1888–1995, Neff 5 17, CI . 95%), see Fig. 5c. The SST
proxy record is significantly correlated with the 5-yr-
averaged NPGO index (Di Lorenzo et al. 2008) (R 5
20.85, 1952–95, Neff 5 10, CI . 95%), see Fig. 5d,
reflecting strong dynamical linkages between central
tropical Pacific SST and the decadal-scale NPGO, as
uncovered by Di Lorenzo et al. (2010). Over the same
period, the correlation between the SST proxy record
and the ENSO Modoki index is similarly high (R 5 0.76,
1952–95, Neff 5 8, CI . 95%). Statistically significant
correlations between the coral Sr/Ca-derived SST proxy

FIG. 4. Palmyra coral monthly resolved d18O, Sr/Ca-derived SST,
and d18OSW records from 1886 to 1998. (a) Palmyra coral d18O
record (Cobb et al. 2001), (b) Sr/Ca-derived SST (black) plotted
with ERSST (gray; Smith et al. 2008), and (c) d18OSW-based salinity
record.

FIG. 5. Interannual and decadal-scale coral Sr/Ca-derived SST
variability at Palmyra plotted with tropical Pacific instrumental
climate indices: (a) interannual (2–7-yr bandpassed) Sr/Ca-derived
SST anomalies (black) and Niño-3 SST anomalies (gray), (b) in-
terannual (2–7-yr bandpasssed) Sr/Ca-derived SST anomalies
(black) and the 23ENSO Modoki index (gray), and (c) decadal-
scale Sr/Ca-derived SST (black) and 23ENSO Modoki index
(gray) plotted as 5-yr running averages. (b) Decadal-scale Sr/Ca-
derived SST (black) and –NPGO index (gray) plotted as 5-yr
running averages. All correlations are statistically significant at
a 95% confidence level using a Student’s t test and adjusting for
serial autocorrelation.
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high correlations for interannual (R 5 0.72 for 2–7-yr
bandpassed) and decadal-scale (R 5 0.61 for 8-yr low-
passed) versions of the records.
The Palmyra coral d18OSW record is dominated by

decadal-scale variability and a relatively large freshen-
ing trend over the late twentieth century (Fig. 4c). A
visual comparison of the three coral records plotted in
Fig. 4 reveals that the d18OSW trend is responsible for the
large trend in coral d18O, with warming playing a sec-
ondary role. The marked differences between the coral
Sr/Ca-derived SST and the d18OSW-based salinity proxy
records are striking, implying that low frequency SST
and salinity variations are governed by different dy-
namics. The remainder of this paper investigates the
large-scale climate controls on Palmyra SST and salinity
on interannual, decadal, and secular time scales.

a. Interannual to decadal-scale tropical Pacific
climate variability

1) CORAL Sr/Ca-DERIVED SST VARIABILITY

On interannual (2–7 yr) time scales, the SST proxy
record captures ENSO variability in the central tropical
Pacific, as reflected by significant correlations with the
central tropical Pacific Niño-3.4 SST index [SST anom-
alies averaged over 58N–58S, 1208–1708W (Kaplan et al.
1998)] (R5 0.71, 1886–1998,Neff5 32, CI. 95%). High
correlations with SST anomalies in the Niño-3 region
[58N–58S, 908–1508W(Kaplan et al. 1998)] (R 5 0.65,
1886–1998, Neff 5 33, CI . 95%), see Fig. 5a, as well
as high correlations with the ENSO Modoki index of
Ashok et al. (2007) (R 5 0.67, 1886–1998, Neff 5 34,

CI . 95%), see Fig. 5b, reflect the sensitivity of the
Palmyra coral Sr/Ca record to both eastern and central
Pacific ‘‘flavors’’ of ENSO variability, respectively.
These significant correlations reflect the fact that warm
SST anomalies occur in the central tropical Pacific during
both canonical El Niño events as well as El Niño Modoki
events, and vice versa during La Niña cool events.
On decadal time scales, the SST proxy record is highly

correlated to low frequency variability associated with
the CPW, as evidenced by significant correlations be-
tween the 5-yr running-average versions of the SST
proxy record and the ENSO Modoki index (R 5 0.53,
1888–1995, Neff 5 17, CI . 95%), see Fig. 5c. The SST
proxy record is significantly correlated with the 5-yr-
averaged NPGO index (Di Lorenzo et al. 2008) (R 5
20.85, 1952–95, Neff 5 10, CI . 95%), see Fig. 5d,
reflecting strong dynamical linkages between central
tropical Pacific SST and the decadal-scale NPGO, as
uncovered by Di Lorenzo et al. (2010). Over the same
period, the correlation between the SST proxy record
and the ENSOModoki index is similarly high (R5 0.76,
1952–95, Neff 5 8, CI . 95%). Statistically significant
correlations between the coral Sr/Ca-derived SST proxy

FIG. 4. Palmyra coral monthly resolved d18O, Sr/Ca-derived SST,
and d18OSW records from 1886 to 1998. (a) Palmyra coral d18O
record (Cobb et al. 2001), (b) Sr/Ca-derived SST (black) plotted
with ERSST (gray; Smith et al. 2008), and (c) d18OSW-based salinity
record.

FIG. 5. Interannual and decadal-scale coral Sr/Ca-derived SST
variability at Palmyra plotted with tropical Pacific instrumental
climate indices: (a) interannual (2–7-yr bandpassed) Sr/Ca-derived
SST anomalies (black) and Niño-3 SST anomalies (gray), (b) in-
terannual (2–7-yr bandpasssed) Sr/Ca-derived SST anomalies
(black) and the 23ENSO Modoki index (gray), and (c) decadal-
scale Sr/Ca-derived SST (black) and 23ENSO Modoki index
(gray) plotted as 5-yr running averages. (b) Decadal-scale Sr/Ca-
derived SST (black) and –NPGO index (gray) plotted as 5-yr
running averages. All correlations are statistically significant at
a 95% confidence level using a Student’s t test and adjusting for
serial autocorrelation.
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increasing  as a result of climate change?

QUESTION:



Is the variance of the CPW/NPO/NPGO 

increasing  as a result of climate change?

QUESTION:

APPROACH:
❖ paleo proxy reconstruction of CPW   (Nurhati et al., 2011) 

high correlations for interannual (R 5 0.72 for 2–7-yr
bandpassed) and decadal-scale (R 5 0.61 for 8-yr low-
passed) versions of the records.
The Palmyra coral d18OSW record is dominated by

decadal-scale variability and a relatively large freshen-
ing trend over the late twentieth century (Fig. 4c). A
visual comparison of the three coral records plotted in
Fig. 4 reveals that the d18OSW trend is responsible for the
large trend in coral d18O, with warming playing a sec-
ondary role. The marked differences between the coral
Sr/Ca-derived SST and the d18OSW-based salinity proxy
records are striking, implying that low frequency SST
and salinity variations are governed by different dy-
namics. The remainder of this paper investigates the
large-scale climate controls on Palmyra SST and salinity
on interannual, decadal, and secular time scales.

a. Interannual to decadal-scale tropical Pacific
climate variability

1) CORAL Sr/Ca-DERIVED SST VARIABILITY

On interannual (2–7 yr) time scales, the SST proxy
record captures ENSO variability in the central tropical
Pacific, as reflected by significant correlations with the
central tropical Pacific Niño-3.4 SST index [SST anom-
alies averaged over 58N–58S, 1208–1708W (Kaplan et al.
1998)] (R5 0.71, 1886–1998,Neff5 32, CI. 95%). High
correlations with SST anomalies in the Niño-3 region
[58N–58S, 908–1508W(Kaplan et al. 1998)] (R 5 0.65,
1886–1998, Neff 5 33, CI . 95%), see Fig. 5a, as well
as high correlations with the ENSO Modoki index of
Ashok et al. (2007) (R 5 0.67, 1886–1998, Neff 5 34,

CI . 95%), see Fig. 5b, reflect the sensitivity of the
Palmyra coral Sr/Ca record to both eastern and central
Pacific ‘‘flavors’’ of ENSO variability, respectively.
These significant correlations reflect the fact that warm
SST anomalies occur in the central tropical Pacific during
both canonical El Niño events as well as El Niño Modoki
events, and vice versa during La Niña cool events.
On decadal time scales, the SST proxy record is highly

correlated to low frequency variability associated with
the CPW, as evidenced by significant correlations be-
tween the 5-yr running-average versions of the SST
proxy record and the ENSO Modoki index (R 5 0.53,
1888–1995, Neff 5 17, CI . 95%), see Fig. 5c. The SST
proxy record is significantly correlated with the 5-yr-
averaged NPGO index (Di Lorenzo et al. 2008) (R 5
20.85, 1952–95, Neff 5 10, CI . 95%), see Fig. 5d,
reflecting strong dynamical linkages between central
tropical Pacific SST and the decadal-scale NPGO, as
uncovered by Di Lorenzo et al. (2010). Over the same
period, the correlation between the SST proxy record
and the ENSOModoki index is similarly high (R5 0.76,
1952–95, Neff 5 8, CI . 95%). Statistically significant
correlations between the coral Sr/Ca-derived SST proxy

FIG. 4. Palmyra coral monthly resolved d18O, Sr/Ca-derived SST,
and d18OSW records from 1886 to 1998. (a) Palmyra coral d18O
record (Cobb et al. 2001), (b) Sr/Ca-derived SST (black) plotted
with ERSST (gray; Smith et al. 2008), and (c) d18OSW-based salinity
record.

FIG. 5. Interannual and decadal-scale coral Sr/Ca-derived SST
variability at Palmyra plotted with tropical Pacific instrumental
climate indices: (a) interannual (2–7-yr bandpassed) Sr/Ca-derived
SST anomalies (black) and Niño-3 SST anomalies (gray), (b) in-
terannual (2–7-yr bandpasssed) Sr/Ca-derived SST anomalies
(black) and the 23ENSO Modoki index (gray), and (c) decadal-
scale Sr/Ca-derived SST (black) and 23ENSO Modoki index
(gray) plotted as 5-yr running averages. (b) Decadal-scale Sr/Ca-
derived SST (black) and –NPGO index (gray) plotted as 5-yr
running averages. All correlations are statistically significant at
a 95% confidence level using a Student’s t test and adjusting for
serial autocorrelation.
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APPROACH:
❖ paleo proxy reconstruction of CPW   (Nurhati et al., 2011)

❖ linear modeling multivariate red noise  (Newman et al., 2011)  

Is the variance of the CPW/NPO/NPGO 

increasing  as a result of climate change?

QUESTION:

high correlations for interannual (R 5 0.72 for 2–7-yr
bandpassed) and decadal-scale (R 5 0.61 for 8-yr low-
passed) versions of the records.
The Palmyra coral d18OSW record is dominated by

decadal-scale variability and a relatively large freshen-
ing trend over the late twentieth century (Fig. 4c). A
visual comparison of the three coral records plotted in
Fig. 4 reveals that the d18OSW trend is responsible for the
large trend in coral d18O, with warming playing a sec-
ondary role. The marked differences between the coral
Sr/Ca-derived SST and the d18OSW-based salinity proxy
records are striking, implying that low frequency SST
and salinity variations are governed by different dy-
namics. The remainder of this paper investigates the
large-scale climate controls on Palmyra SST and salinity
on interannual, decadal, and secular time scales.

a. Interannual to decadal-scale tropical Pacific
climate variability

1) CORAL Sr/Ca-DERIVED SST VARIABILITY

On interannual (2–7 yr) time scales, the SST proxy
record captures ENSO variability in the central tropical
Pacific, as reflected by significant correlations with the
central tropical Pacific Niño-3.4 SST index [SST anom-
alies averaged over 58N–58S, 1208–1708W (Kaplan et al.
1998)] (R5 0.71, 1886–1998,Neff5 32, CI. 95%). High
correlations with SST anomalies in the Niño-3 region
[58N–58S, 908–1508W(Kaplan et al. 1998)] (R 5 0.65,
1886–1998, Neff 5 33, CI . 95%), see Fig. 5a, as well
as high correlations with the ENSO Modoki index of
Ashok et al. (2007) (R 5 0.67, 1886–1998, Neff 5 34,

CI . 95%), see Fig. 5b, reflect the sensitivity of the
Palmyra coral Sr/Ca record to both eastern and central
Pacific ‘‘flavors’’ of ENSO variability, respectively.
These significant correlations reflect the fact that warm
SST anomalies occur in the central tropical Pacific during
both canonical El Niño events as well as El Niño Modoki
events, and vice versa during La Niña cool events.
On decadal time scales, the SST proxy record is highly

correlated to low frequency variability associated with
the CPW, as evidenced by significant correlations be-
tween the 5-yr running-average versions of the SST
proxy record and the ENSO Modoki index (R 5 0.53,
1888–1995, Neff 5 17, CI . 95%), see Fig. 5c. The SST
proxy record is significantly correlated with the 5-yr-
averaged NPGO index (Di Lorenzo et al. 2008) (R 5
20.85, 1952–95, Neff 5 10, CI . 95%), see Fig. 5d,
reflecting strong dynamical linkages between central
tropical Pacific SST and the decadal-scale NPGO, as
uncovered by Di Lorenzo et al. (2010). Over the same
period, the correlation between the SST proxy record
and the ENSOModoki index is similarly high (R5 0.76,
1952–95, Neff 5 8, CI . 95%). Statistically significant
correlations between the coral Sr/Ca-derived SST proxy

FIG. 4. Palmyra coral monthly resolved d18O, Sr/Ca-derived SST,
and d18OSW records from 1886 to 1998. (a) Palmyra coral d18O
record (Cobb et al. 2001), (b) Sr/Ca-derived SST (black) plotted
with ERSST (gray; Smith et al. 2008), and (c) d18OSW-based salinity
record.

FIG. 5. Interannual and decadal-scale coral Sr/Ca-derived SST
variability at Palmyra plotted with tropical Pacific instrumental
climate indices: (a) interannual (2–7-yr bandpassed) Sr/Ca-derived
SST anomalies (black) and Niño-3 SST anomalies (gray), (b) in-
terannual (2–7-yr bandpasssed) Sr/Ca-derived SST anomalies
(black) and the 23ENSO Modoki index (gray), and (c) decadal-
scale Sr/Ca-derived SST (black) and 23ENSO Modoki index
(gray) plotted as 5-yr running averages. (b) Decadal-scale Sr/Ca-
derived SST (black) and –NPGO index (gray) plotted as 5-yr
running averages. All correlations are statistically significant at
a 95% confidence level using a Student’s t test and adjusting for
serial autocorrelation.
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APPROACH:

Is the variance of the CPW/NPO/NPGO 

increasing  as a result of climate change?

QUESTION:

so far these findings suggest that the increase in 

CPW/NPO/NPGO variance is not statistically significant

❖ paleo proxy reconstruction of CPW   (Nurhati et al., 2011)

❖ linear modeling multivariate red noise  (Newman et al., 2011)  
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high correlations for interannual (R 5 0.72 for 2–7-yr
bandpassed) and decadal-scale (R 5 0.61 for 8-yr low-
passed) versions of the records.
The Palmyra coral d18OSW record is dominated by

decadal-scale variability and a relatively large freshen-
ing trend over the late twentieth century (Fig. 4c). A
visual comparison of the three coral records plotted in
Fig. 4 reveals that the d18OSW trend is responsible for the
large trend in coral d18O, with warming playing a sec-
ondary role. The marked differences between the coral
Sr/Ca-derived SST and the d18OSW-based salinity proxy
records are striking, implying that low frequency SST
and salinity variations are governed by different dy-
namics. The remainder of this paper investigates the
large-scale climate controls on Palmyra SST and salinity
on interannual, decadal, and secular time scales.

a. Interannual to decadal-scale tropical Pacific
climate variability

1) CORAL Sr/Ca-DERIVED SST VARIABILITY

On interannual (2–7 yr) time scales, the SST proxy
record captures ENSO variability in the central tropical
Pacific, as reflected by significant correlations with the
central tropical Pacific Niño-3.4 SST index [SST anom-
alies averaged over 58N–58S, 1208–1708W (Kaplan et al.
1998)] (R5 0.71, 1886–1998,Neff5 32, CI. 95%). High
correlations with SST anomalies in the Niño-3 region
[58N–58S, 908–1508W(Kaplan et al. 1998)] (R 5 0.65,
1886–1998, Neff 5 33, CI . 95%), see Fig. 5a, as well
as high correlations with the ENSO Modoki index of
Ashok et al. (2007) (R 5 0.67, 1886–1998, Neff 5 34,

CI . 95%), see Fig. 5b, reflect the sensitivity of the
Palmyra coral Sr/Ca record to both eastern and central
Pacific ‘‘flavors’’ of ENSO variability, respectively.
These significant correlations reflect the fact that warm
SST anomalies occur in the central tropical Pacific during
both canonical El Niño events as well as El Niño Modoki
events, and vice versa during La Niña cool events.
On decadal time scales, the SST proxy record is highly

correlated to low frequency variability associated with
the CPW, as evidenced by significant correlations be-
tween the 5-yr running-average versions of the SST
proxy record and the ENSO Modoki index (R 5 0.53,
1888–1995, Neff 5 17, CI . 95%), see Fig. 5c. The SST
proxy record is significantly correlated with the 5-yr-
averaged NPGO index (Di Lorenzo et al. 2008) (R 5
20.85, 1952–95, Neff 5 10, CI . 95%), see Fig. 5d,
reflecting strong dynamical linkages between central
tropical Pacific SST and the decadal-scale NPGO, as
uncovered by Di Lorenzo et al. (2010). Over the same
period, the correlation between the SST proxy record
and the ENSOModoki index is similarly high (R5 0.76,
1952–95, Neff 5 8, CI . 95%). Statistically significant
correlations between the coral Sr/Ca-derived SST proxy

FIG. 4. Palmyra coral monthly resolved d18O, Sr/Ca-derived SST,
and d18OSW records from 1886 to 1998. (a) Palmyra coral d18O
record (Cobb et al. 2001), (b) Sr/Ca-derived SST (black) plotted
with ERSST (gray; Smith et al. 2008), and (c) d18OSW-based salinity
record.

FIG. 5. Interannual and decadal-scale coral Sr/Ca-derived SST
variability at Palmyra plotted with tropical Pacific instrumental
climate indices: (a) interannual (2–7-yr bandpassed) Sr/Ca-derived
SST anomalies (black) and Niño-3 SST anomalies (gray), (b) in-
terannual (2–7-yr bandpasssed) Sr/Ca-derived SST anomalies
(black) and the 23ENSO Modoki index (gray), and (c) decadal-
scale Sr/Ca-derived SST (black) and 23ENSO Modoki index
(gray) plotted as 5-yr running averages. (b) Decadal-scale Sr/Ca-
derived SST (black) and –NPGO index (gray) plotted as 5-yr
running averages. All correlations are statistically significant at
a 95% confidence level using a Student’s t test and adjusting for
serial autocorrelation.
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correlations between the coral Sr/Ca-derived SST proxy

FIG. 4. Palmyra coral monthly resolved d18O, Sr/Ca-derived SST,
and d18OSW records from 1886 to 1998. (a) Palmyra coral d18O
record (Cobb et al. 2001), (b) Sr/Ca-derived SST (black) plotted
with ERSST (gray; Smith et al. 2008), and (c) d18OSW-based salinity
record.

FIG. 5. Interannual and decadal-scale coral Sr/Ca-derived SST
variability at Palmyra plotted with tropical Pacific instrumental
climate indices: (a) interannual (2–7-yr bandpassed) Sr/Ca-derived
SST anomalies (black) and Niño-3 SST anomalies (gray), (b) in-
terannual (2–7-yr bandpasssed) Sr/Ca-derived SST anomalies
(black) and the 23ENSO Modoki index (gray), and (c) decadal-
scale Sr/Ca-derived SST (black) and 23ENSO Modoki index
(gray) plotted as 5-yr running averages. (b) Decadal-scale Sr/Ca-
derived SST (black) and –NPGO index (gray) plotted as 5-yr
running averages. All correlations are statistically significant at
a 95% confidence level using a Student’s t test and adjusting for
serial autocorrelation.
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FIG. 6.  (a) The observed cEC-1NPAC-SST index and the cEC-1NPAC-SST-rec index (gray line) from the AR-1 model (see text).  Correlation between cEC-1NPAC-SST 
and cEC-1NPAC-SST-rec is shown and is significant at the 99% significance level (double asterisk).   (b) Correlations between the cEC-1NPAC-SST index and 
cEC-1NPAC-SST-rec for the observations,  the ensemble-mean, and all 24 models for their 20C3M runs.  Only correlations exceeding the 95% significance level are 
plotted.
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FIG. 7.  (a) The observed cEC-2NPAC-SST index and the cEC-2NPAC-SST-rec index (gray line) from the AR-1 model (see text).  Correlation between cEC-2NPAC-SST 
and cEC-2NPAC-SST-rec is shown and is significant at the 99% significance level (double asterisk).   (b) Correlations between the cEC-2NPAC-SST index and 
cEC-2NPAC-SST-rec for the observations,  the ensemble-mean, and all 24 models for their 20C3M runs.  Only correlations exceeding the 95% significance level are 
plotted.
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3. Capture/Not Capture the extra-tropical forcing of ENSO

4. Not Capture the frequency of the oceanic modes

5. Not Capture the CPW extra-tropical teleconnection and forcing

✓
✓

✓
✓

✓ ✓

✓
⊗

⊗
⊗

✓⊗



AL
Aleutian Low
atmosphere
(winter)

CPW
Central Tropical Pacific 

Warming
(onset)

TROPICS

   SFM
Vimont et al. 2003 

Anderson et al., 2003

ENSO
Eastern Pacific 

Canonical ENSO
(mature)

Atmospheric Bridge

MID-LATITUDES

NPGO
North Pacific Gyre Oscillation

ocean
(winter)

NPO
North Pacific Oscillation

atmosphere
(winter)

PDO
Pacific Decadal Oscillation

ocean
(winter)

CPW
Central Pacific Warming

non-Canonical ENSO
(mature)



AL
Aleutian Low

   SFM

ENSO
Canonical ENSO

(mature)

Atmospheric Bridge

NPGO
North Pacific Gyre Oscillation

PDO
Pacific Decadal Oscillation

CPW
non-Canonical ENSO

(mature) CPW
Central Tropical Pacific 

Warming
(onset)

NPO
North Pacific Oscillation

✓
✓

✓
✓

✓ ✓

✓
✓

✓
1. Capture the spatial expression of the modes

2. Capture the dynamics of the oceanic response to atmospheric forcing 

3. Capture/Not Capture the extra-tropical forcing of ENSO  

4. Capture/Not Capture the ENSO forcing to the extra-tropics

5. Not Capture the frequency of the oceanic modes

6. Not Capture the ENSO & CPW low-frequency forcing to extra-tropics

How do AR4 models capture Pacific decadal dynamics in the past climate ?

⊗

Furtado, Di Lorenzo, Schneider and Bond 

Journal of Climate, 2011

Furtado, Di Lorenzo, Anderson and Schneider 

Dynamics, in revision



AL
Aleutian Low

   SFM

ENSO
Canonical ENSO

(mature)

Atmospheric Bridge

NPGO
North Pacific Gyre Oscillation

PDO
Pacific Decadal Oscillation

CPW
non-Canonical ENSO

(mature) CPW
Central Tropical Pacific 

Warming
(onset)

NPO
North Pacific Oscillation

✓
✓

✓
✓

✓ ✓

✓
✓

✓
1. Capture the spatial expression of the modes

2. Capture the dynamics of the oceanic response to atmospheric forcing 

3. Capture/Not Capture meridional mode or SFM dynamics 

4. Capture/Not Capture the ENSO forcing to the extra-tropics

5. Not Capture the frequency of the oceanic modes

6. Not Capture the ENSO & CPW low-frequency forcing to extra-tropics

How do AR4 models capture Pacific decadal dynamics in the past climate ?

⊗⊗
⊗ ⊗

Furtado, Di Lorenzo, Schneider and Bond 

Journal of Climate, 2011

Furtado, Di Lorenzo, Anderson and Schneider 

Climate Dynamics, in revision


