

Regional Projections of Climate on Decadal Time Scales: High resolution global predictions and regionally resolved source response studies

Joseph Tribbia Gokhan Danabasoglu, Peter Lauritzen, and James Hurrell NCAR

> Minghua Zhang SUNY, Stony Brook

Mark Taylor Sandia National Laboratories

Main Foci of the Project

Study the optimal way to obtain regional climate information on decadal timescales : Comparing three approaches

- 1) Uniform high resolution
- 2) Local mesh refinement
- 3) Two-way nesting of NRCM

All within the context of experimental decadal prediction

Nuances and Responsibilities

- Understand modeled decadal variability
- Pose the problem in terms of source and response targets
- Leverage efforts to assess the validity of Regional Climate Modeling

• NCAR team responsible for climate variability, source-response and initialization

•Sandia responsible (with NCAR) for high resolution and LMR

•Stony Brook responsible for two-way coupling and NRCM within CAM

Ambitious program depends on 3 year time line Highly leveraged(CCA, CSSEF, SciDAC) Year 1 setting up infrastructure

- Study decadal variability and source-response
- •High resolution (1/4°) atmosphere tuning
- •Local Mesh refinement
- •NRCM executed within CAM

Two Sources of Decadal Variability

UCAR-DOE Cooperative Agreement DOE/SC/BER Climate Change Prediction Program

TS leads by a

TS leads by

Atlantic Meridional Overturning Circulation leads Surface Temperature fluctuations

Jim Hurrel and Gokhan Danalbasoglu

2 Year lead

TS leads by 1

TS leads by

r(AMOC, JAS TS)

-0.24 -0.2 -0.16 -0.12 -0.08 -0.04 0 0.04 0.08 0.12 0.16 0.2 0.24 Created: Fri Feb 11 15:30:33 MST 2011 Program: /home/asphilli/Jan10/Hurrell/CCSM4-AMOC/amoc.correl.var.nc

Leading EOFS of AMOC Variability

Related to the fact that AMOC Northward Heat Transport leads AMV

Gokhan Danabaoglu

Global TS variations Correlated with decadal Nino3.4

Tribbia and Hsu

PSL

Likely change to CAM5 physics for high resolution

Advantage of CAM5 for clouds: Little resolution dependence

Tropical Cyclone at 1/4° In CAM5

Julio Bacmeister and Julie Caron

UCAR-DOE Cooperative Agreement DOE/SC/BER Climate Change Prediction Program

Local Mesh Refinement

Uniform Low (1°) Resolution

Mike Levy and Marl Taylor

High resolution(1/4°) Response and source regions

"WEAKLY" COUPLED ENKF DATA ASSIMILATION

- Force each ocean ensemble member with a different member from an atmospheric ensemble reanalysis:
- •Run an 80-member ensemble of CAM assimilation with 6-hourly coupler output files from each member,
- •Run a 46-member ensemble of POP assimilation forced with output from 46 of the CAM assimilation runs.

This technique is already operational (starting from 1 January 1998) and preliminary analyses indicates much increased ensemble spread.

Two way Nesting of NRCM and Conclusions

- He and Zhang have poster on Two Way nesting
- Mike Levy's poster on LMR in HOMME (yesterday)
- Well started to complete proposed work in the 3 year timeline- all work shown in preparation, draft or to be published stage

The End

Questions?

HBLT

PREC

TS on PSL

TS on PREC

HBLT on PSL

HBLT on PREC

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

HBLT on TS