The response of the Atmospheric Ekman Layer and Ekman Pumping to Sea Surface Temperature Fronts

Niklas Schneider^{1,2}, Bo Qiu², Thomas Kilpatrick², Yoshi N. Sasaki¹, Axel Lauer¹ ¹International Pacific Research Center, ²Dept. of Oceanography, University of Hawaii, Honolulu, HI, USA

Atm Ekman pumping mm/s, 2000-2007

Impact of sharp SST fronts

Ekman layer

surface stress impacted by stability (Wallace et al. 1989) and by surface thermal wind (Feliks et al. 2004, Cronin and Kessler 2009)

Thermal boundary layer

Air-sea heat flux imprint SST front on near surface temperature and pressure gradients (Lindzen and Nigam 1987, Minobe et al. 2008)

Spin-down

Ekman pumping displaces background stratification and adjusts surface pressure (Holton 1965)

- ECMWF operation analysis
- daily, January-March 2008
- TL799L91 resolution of model (20km). gridded to 1/3°x1/3°

Seasonal averages of wind stress curl and divergence

 $P_{10}^{-1} \tau = D \nabla \ln P_{10} + D E \nabla \ln T_{2m}$ $P_{10} = P_7 + P_{10-7}$ $\nabla \times \tau = C_{P7} + C_{P10-7} + C_{T2m} = 0$

'Spin down', Holton 1965, Pedlosky 1967

Spin-down

 $C_{P7}+C_{2m}/10^{-6}ms^{-2}$

Components of Ekman pumping

80°W 60°W 40°W

Components of wind stress divergence

80°W 60°W 40°W

Conclusions

- In the vicinity of strong SST front the atmospheric Ekman layer is strongly affected by changes of mixing and near surface pressure gradients.
- Near SST fronts, the response of the Ekman layer results from nonlinear coupling of the momentum balance, the surface heat budget, and the near surface vorticity budgets.
- Spin-down imprints changes to stability on the near surface pressure gradients.
- Ocean fronts may impact the tropospheric circulation and storm track via *frictional* effects in the Ekman layer and Ekman pumping.

PAU

Ekman Pumping

- **Classical** (Charney and Eliassen 1949)
- driven by pressure gradient of free troposphere
- small Ekman number of geostrophic winds
- constant Ekman depth

$$w_{Ek} = \sqrt{\frac{A}{2f}} (\rho f)^{-1} \nabla^2 P$$

∇ P₁₀ _____ 1000mb

Thermal boundary layer heat budget

steady balance of horizontal advection, air-sea heat exchange and entrainment from above

