Mean state and global characteristics of the T85 spectral Community Atmosphere Model

Presented by Kate Evans, ORNL

Collaborators: R.K. Archibald, M. Ashfaq, D.C. Bader, G. Bisht, R.E. Flanery, J.J. Hack, S. Mahajan, M.E. Maltrud, J.L. McClean, D.K. McKenna, M.A. Taylor, J. Truesdale, M. Vertenstein, P.H. Worley

With invaluable assistance from the CESM model working groups!

Thanks for support from DOE BER through: "Ultra High Resolution Global Climate Simulation to Explore and Quantify Predictive Skill for Climate Means, Variability and Extremes," PI Jim Hack Project website: http://highres-dev.ornl.gov/

Attributes of CAM-EUL dynamical core within the CESM using CAM4 physics:

- Well known & understood dycore from which to develop and analyze
- Can now isolate differences between physics packages and dycores
- With subcycled dynamics, CAM-EUL is the most efficient dycore for small processor counts
- Isotropic representation of the grid, polar filters not needed
- Does not provide explicit local conservation

Experimental Protocol: T85 analysis

- Create an CAM4 physics AMIP simulation to compare with FV, SE dycores
- Create a 50 year preindustrial coupled control
 - Start from yr 863 ~1° CCSM4 FV land
 - Start from yr 863 gx1v6 ~1° ocean and ice fields
- Create ensemble of 30 year coupled present day simulations covering 1975-2005
 - Start from year 1970 ocean, ice, land initial states
 - Project partners are evaluating simulations
- Archive robust output fields to evaluate T85 control, present day, and hi-res simulations

T85 produces global energy balance similar to other CESM dycores

- With tri-grid, land model is identical to CCSM4 FV, but there is interpolation
- FV1, T85 and ne30 are much closer to each other than observations (i.e. many attributes and biases and are similar)

Global Annually Averaged Variables of Interest for AMIP runs

Variable	ne30	T85	FV1	OBS
FSNT	238.9	237.2	239.1	240.6*(TOA)
FLNT	237.6	236.4	238.1	239.6*(TOA)
TS (land)	281.8	281.6	281.2	281.1
CLDTOT	47.3	48.4	47.0	66.8 [@]
LWCF	25.8	27.0	25.7	26.5*
SWCF	-48.5	-50.1	-48.2	-47.1*

* CERES-EBAF, **NCEP, [@]ISCCP

TS=Surface Temperature, TOA= Top of Atmosphere

Highlights of T85 CCSM4 1976-2005 simulations: A benchmark for higher resolution

- For almost all relevant measures, T85 is similar to FV, compared to observations
- Better representations of several important dynamical fields, e.g. polar winter fields
- Problems with precipitation persist, e.g. over monsoon regions in the tropics
 - Strong biases over the Tropical Pacific, Indian Oceans
 - Double ITCZ persists

Coupled present day simulation: Northern Hemisphere Winter (DJF) Sea Ice Concentration

Northern Hemisphere Sea Ice Concentration

for the Department of Energy

Northern Hemisphere Winter (DJF) Sea Level Pressure

Note: Southern Hemisphere biases from reanalyses in SLP with T85 and FV CAM4 are about the same strength

Zonally averaged winds (DJF) versus FV

The polar winter stratosphere jet in T85 CAM4 is weaker than FV CAM4, and a little too weak compared to NCEP. Similar story near the surface.

T85 CCSM4:

- Upper level winds closer to reanalyses, surface winds strong
- Better representation of Aleutian and Icelandic lows; weaker low pressure bias between the lows
- Slightly better representation of ice concentration over the Labrador and Nordic Seas
- SH Austral summer: ice concentration also improved with T85 CCSM4

Long Wave Cloud Forcing for CCSM4 T85 compared to CERES-EBAF, FV and T85 CCSM3

Total Precipitable Water for T85 CCSM4 and FV compared to CMAP dataset

Next Steps: Analyze T341.

