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Motivation

• Fine spatio-temporal scale estimates of climate over the next 10 to 50 years 
are needed for long-term planning in water resource and flood management. 

• At these scales current GCM climate projections have very large 
uncertainties.

• What to do?



Project Goals

1. Develop and test statistical methods of interannual-to-interdecadal 
simulation & prediction of river flows over monsoonal Asia

2. Use multi-centennial tree-ring based reconstructions of stream flow to better 
identify natural modes of climate variability across monsoonal Asia, and test 
the candidate prediction schemes retrospectively.

3. Merge empirical estimates of climate variability with GCM climate change 
projections using Monte Carlo simulation to quantify the PDF of the 
uncertainties 

4. Test simulations using hydrologic models for two major reservoir systems 
over Asia: 
4.1.Bhakra Beas reservoir in northern India, 
4.2.Yangtze River Three Gorges Dam reservoir in China



1. Empirical prediction models



Statistical decadal streamflow 
forecasts using Singular Spectrum Analysis

2.3 Prediction using SSA and EMR

The above approach to LFM identification is motivated by the predictive context, and makes use
of two contrasting methodologies. By applying both and comparing the results, we will obtain an
important measure of the robustness of results to the choice of statistical methodology. SSA and
the maximum entropy method (MEM) can be combined to perform prediction. First, the noise is
filtered out by projecting time series onto leading subset of SSA T-EOFs consisting of statistically
significant oscillatory modes, yielding set of temporal principal components (T-PCs) that do not
retain phase information. The prefiltered T-PCs are then extended into the future by using an
autoregressive model, whose coe⌅cients yield MEM spectrum of respective T-PCs. Finally, the
extended T-PCs are projected back onto T-EOFs in SSA-reconstruction to yield the forecast values
with the phase recovered. The combined SSA-MEM methodology has been successfully applied to
produce long-lead forecasts of sea-surface temperature anomalies (SSTA), averaged over the Niño-3
area, and of the Southern Oscillation Index (SOI) (Keppenne and Ghil (1992b), Keppenne and
Ghil (1992a), Ghil and Jiang (1998)).

Figure 2 (panel a) shows an example of an SSA decadal prediction of river flow in SE South America,
based on oscillatory modes with periods of 8 yr and 17 yr that Robertson et al. (2001) identified in
a 94-yr univariate river flow timeseries. The real-time forecast for “increased probability of below-
average flows until 2006” was made in 2000, when the paper was submitted for publication; Fig. 2
(panel b) shows an updated observed time series, which confirms that the forecast made in 2000
was quite successful. Autoregressive predictive models based on SSA-MEM were constructed for
each component, and cross-validated categorical hindcasts based on the 8-yr predicted component
yielded significant skill up to four years in advance for below-average flows. This is analogous to
the ENSO case, where 2–4-yr components yield useful skill of about 6 months (Ghil and Jiang
1998); in both cases, this skill interval is much shorter than the period of the underlying oscillation
(DelSole and Tippett (2009)).
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Figure 3. Anomaly correlation hindcast skills (solid line) for
each RC sum in Fig. 2, verifying against the respective RC sum
itself. Dashed line: persistence hindcast from the lead-0 RC hind-
cast. MEM is used to compute 10 LP coefficients.

5. Hindcast categorical prediction skill

Taken together, Table 1 and Fig. 3 suggest useful prob-
abilistic categorical predictions may be possible. This is
next quantified in terms of the equitable threat score (ETS,
[Schaefer, 1990]) of categorical hindcasts based on each RC
sum. To obtain a true measure of skill, we now completely
separate the training and validation parts of the flow series.
The RCs are thus obtained from the training part of the
time series alone, and we validate against the raw data from
the subsequent part of the series. The ETS measures the
number of correct categorical predictions (“hits”) in excess
of those that would verify by chance, normalized by the to-
tal number of “threats” (hits, misses and false alarms) that
would not have been foreseen by chance. The ETS is 0 for
a by-chance result, and reaches 1 when events and forecasts
of events are perfectly correlated.
We found that statistically significant ETS scores can be

obtained from the 8-yr RC pair (Fig. 4) for below-average
(1–40%-ile) seasonal-mean flows. For the parameters chosen
(see caption), these predictions are consistently skillful up
to four years in advance, while no skill was found for above-

Figure 4. Equitable threat scores (ETS) for 8-yr RC out-of-
sample hindcasts, for (a) below-normal JFM flow averages, and
(b) above-normal ones (M = 30, 5 LP coefficients). Vertical
bars indicate the 90% confidence interval of sampling variability
computed by permutating the validation series 1000 times. The
results shown are an average over (up to) 37 predictions at each
lag, with the first prediction made from a training time series
ending in 1960, and the final validation year being 1999.

Figure 5. The RCs 1–2 and 3–4 computed over 1904–99 with
M = 30, plotted 1980–99, together with their predictions (5 LP
coefficients) made from 1999. (a) Individual RC sums and predic-
tions, (b) combined sum (thick solid line) and prediction (stars),
and raw JFM flow anomalies (thin line). The thin dotted curves
in panel (b) show four predictions starting in 1995, 1996, 1997
and 1998 respectively. Units: 103 m3s−1.

normal (61–100%-ile) flows. Different choices of M and NT
yield broadly similar results. The ENSO and 17-yr compo-
nents do not yield significant ETS scores unless the entire
time series is used to determine the EOFs.

6. A prediction

Figure 5 shows a prediction made with the Corrientes
time series updated to March 1999, using RCs computed
over the 1904–99 series. Linear prediction is applied to RCs
1–2 (8 yr) and RCs 3–4 (17 yr) computed with M = 30,
and the results (panel a) summed to give the final predic-
tion (panel b). Both the 17-yr and 8-yr components exhibit
substantial amplitudes into the future (panel a). The fore-
cast commencing in 1999 (stars) predicts decreasing flows,
and thus a higher probability of drought in years 2002–2006.
This prediction is robust to changes in the starting year, as
shown by the four thin dotted curves in panel b. The sum
of the two RC pairs (panel b, heavy solid line) tracks the
raw data series, with the difference between the two curves
characteristic of ENSO time scales. The “error bar” in Fig.
5b spans ±2σ of ENSO streamflow variability that is not
included in the forecast, given by the ENSO RCs in Fig. 2.
The predicted ebb in 2003–2004 is larger than that expected
from a moderate La Niña event.

7. Summary and conclusions

Each of the 17-yr, 8-yr and ENSO oscillatory components
of the Paraná river at Corrientes (Fig. 2) is found to be
associated with modest but statistically significant changes
in the probability distribution of monthly flows (Table 1).

a) Prediction made in 2000 

Figure 2: (a) SSA-MEM prediction of Parana River flow made for the 2000–2010 decade from data available up to
and including 1999. Light dotted curves show 4 predictions initialized in 1995, 1996, 1997 and 1998, while the stars
give the mean prediction out to 2010, and the “error bar” gives ±2� of ENSO variability. (b) Observed time series

updated to 2007, with the thin vertical line indicating 1999; units are 103 m3s
�1

and the time mean is subtracted.

In the case of EMR, integration is driven by a large ensemble of random realizations of the noise
and initialized from the current SSTA conditions. Kondrashov et al. (2005) found ENSO forecast
skill comparable with that of state-of-the-art dynamical and statistical models included in the multi-
model ENSO forecast ensemble at IRI (http://iri.columbia.edu/climate/ENSO/currentinfo/SST table.html).
Predictability can be quantified using model-generated ensembles, in terms of the degree to which
a forecast distribution di�ers from the climatological distribution, such as through the relative en-
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Figure 3. Anomaly correlation hindcast skills (solid line) for
each RC sum in Fig. 2, verifying against the respective RC sum
itself. Dashed line: persistence hindcast from the lead-0 RC hind-
cast. MEM is used to compute 10 LP coefficients.

5. Hindcast categorical prediction skill

Taken together, Table 1 and Fig. 3 suggest useful prob-
abilistic categorical predictions may be possible. This is
next quantified in terms of the equitable threat score (ETS,
[Schaefer, 1990]) of categorical hindcasts based on each RC
sum. To obtain a true measure of skill, we now completely
separate the training and validation parts of the flow series.
The RCs are thus obtained from the training part of the
time series alone, and we validate against the raw data from
the subsequent part of the series. The ETS measures the
number of correct categorical predictions (“hits”) in excess
of those that would verify by chance, normalized by the to-
tal number of “threats” (hits, misses and false alarms) that
would not have been foreseen by chance. The ETS is 0 for
a by-chance result, and reaches 1 when events and forecasts
of events are perfectly correlated.
We found that statistically significant ETS scores can be

obtained from the 8-yr RC pair (Fig. 4) for below-average
(1–40%-ile) seasonal-mean flows. For the parameters chosen
(see caption), these predictions are consistently skillful up
to four years in advance, while no skill was found for above-

Figure 4. Equitable threat scores (ETS) for 8-yr RC out-of-
sample hindcasts, for (a) below-normal JFM flow averages, and
(b) above-normal ones (M = 30, 5 LP coefficients). Vertical
bars indicate the 90% confidence interval of sampling variability
computed by permutating the validation series 1000 times. The
results shown are an average over (up to) 37 predictions at each
lag, with the first prediction made from a training time series
ending in 1960, and the final validation year being 1999.

Figure 5. The RCs 1–2 and 3–4 computed over 1904–99 with
M = 30, plotted 1980–99, together with their predictions (5 LP
coefficients) made from 1999. (a) Individual RC sums and predic-
tions, (b) combined sum (thick solid line) and prediction (stars),
and raw JFM flow anomalies (thin line). The thin dotted curves
in panel (b) show four predictions starting in 1995, 1996, 1997
and 1998 respectively. Units: 103 m3s−1.

normal (61–100%-ile) flows. Different choices of M and NT
yield broadly similar results. The ENSO and 17-yr compo-
nents do not yield significant ETS scores unless the entire
time series is used to determine the EOFs.

6. A prediction

Figure 5 shows a prediction made with the Corrientes
time series updated to March 1999, using RCs computed
over the 1904–99 series. Linear prediction is applied to RCs
1–2 (8 yr) and RCs 3–4 (17 yr) computed with M = 30,
and the results (panel a) summed to give the final predic-
tion (panel b). Both the 17-yr and 8-yr components exhibit
substantial amplitudes into the future (panel a). The fore-
cast commencing in 1999 (stars) predicts decreasing flows,
and thus a higher probability of drought in years 2002–2006.
This prediction is robust to changes in the starting year, as
shown by the four thin dotted curves in panel b. The sum
of the two RC pairs (panel b, heavy solid line) tracks the
raw data series, with the difference between the two curves
characteristic of ENSO time scales. The “error bar” in Fig.
5b spans ±2σ of ENSO streamflow variability that is not
included in the forecast, given by the ENSO RCs in Fig. 2.
The predicted ebb in 2003–2004 is larger than that expected
from a moderate La Niña event.

7. Summary and conclusions

Each of the 17-yr, 8-yr and ENSO oscillatory components
of the Paraná river at Corrientes (Fig. 2) is found to be
associated with modest but statistically significant changes
in the probability distribution of monthly flows (Table 1).

Robertson et al. (2001, GRL)

2.3 Prediction using SSA and EMR

The above approach to LFM identification is motivated by the predictive context, and makes use
of two contrasting methodologies. By applying both and comparing the results, we will obtain an
important measure of the robustness of results to the choice of statistical methodology. SSA and
the maximum entropy method (MEM) can be combined to perform prediction. First, the noise is
filtered out by projecting time series onto leading subset of SSA T-EOFs consisting of statistically
significant oscillatory modes, yielding set of temporal principal components (T-PCs) that do not
retain phase information. The prefiltered T-PCs are then extended into the future by using an
autoregressive model, whose coe⌅cients yield MEM spectrum of respective T-PCs. Finally, the
extended T-PCs are projected back onto T-EOFs in SSA-reconstruction to yield the forecast values
with the phase recovered. The combined SSA-MEM methodology has been successfully applied to
produce long-lead forecasts of sea-surface temperature anomalies (SSTA), averaged over the Niño-3
area, and of the Southern Oscillation Index (SOI) (Keppenne and Ghil (1992b), Keppenne and
Ghil (1992a), Ghil and Jiang (1998)).

Figure 2 (panel a) shows an example of an SSA decadal prediction of river flow in SE South America,
based on oscillatory modes with periods of 8 yr and 17 yr that Robertson et al. (2001) identified in
a 94-yr univariate river flow timeseries. The real-time forecast for “increased probability of below-
average flows until 2006” was made in 2000, when the paper was submitted for publication; Fig. 2
(panel b) shows an updated observed time series, which confirms that the forecast made in 2000
was quite successful. Autoregressive predictive models based on SSA-MEM were constructed for
each component, and cross-validated categorical hindcasts based on the 8-yr predicted component
yielded significant skill up to four years in advance for below-average flows. This is analogous to
the ENSO case, where 2–4-yr components yield useful skill of about 6 months (Ghil and Jiang
1998); in both cases, this skill interval is much shorter than the period of the underlying oscillation
(DelSole and Tippett (2009)).
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Figure 3. Anomaly correlation hindcast skills (solid line) for
each RC sum in Fig. 2, verifying against the respective RC sum
itself. Dashed line: persistence hindcast from the lead-0 RC hind-
cast. MEM is used to compute 10 LP coefficients.

5. Hindcast categorical prediction skill

Taken together, Table 1 and Fig. 3 suggest useful prob-
abilistic categorical predictions may be possible. This is
next quantified in terms of the equitable threat score (ETS,
[Schaefer, 1990]) of categorical hindcasts based on each RC
sum. To obtain a true measure of skill, we now completely
separate the training and validation parts of the flow series.
The RCs are thus obtained from the training part of the
time series alone, and we validate against the raw data from
the subsequent part of the series. The ETS measures the
number of correct categorical predictions (“hits”) in excess
of those that would verify by chance, normalized by the to-
tal number of “threats” (hits, misses and false alarms) that
would not have been foreseen by chance. The ETS is 0 for
a by-chance result, and reaches 1 when events and forecasts
of events are perfectly correlated.
We found that statistically significant ETS scores can be

obtained from the 8-yr RC pair (Fig. 4) for below-average
(1–40%-ile) seasonal-mean flows. For the parameters chosen
(see caption), these predictions are consistently skillful up
to four years in advance, while no skill was found for above-

Figure 4. Equitable threat scores (ETS) for 8-yr RC out-of-
sample hindcasts, for (a) below-normal JFM flow averages, and
(b) above-normal ones (M = 30, 5 LP coefficients). Vertical
bars indicate the 90% confidence interval of sampling variability
computed by permutating the validation series 1000 times. The
results shown are an average over (up to) 37 predictions at each
lag, with the first prediction made from a training time series
ending in 1960, and the final validation year being 1999.

Figure 5. The RCs 1–2 and 3–4 computed over 1904–99 with
M = 30, plotted 1980–99, together with their predictions (5 LP
coefficients) made from 1999. (a) Individual RC sums and predic-
tions, (b) combined sum (thick solid line) and prediction (stars),
and raw JFM flow anomalies (thin line). The thin dotted curves
in panel (b) show four predictions starting in 1995, 1996, 1997
and 1998 respectively. Units: 103 m3s−1.

normal (61–100%-ile) flows. Different choices of M and NT
yield broadly similar results. The ENSO and 17-yr compo-
nents do not yield significant ETS scores unless the entire
time series is used to determine the EOFs.

6. A prediction

Figure 5 shows a prediction made with the Corrientes
time series updated to March 1999, using RCs computed
over the 1904–99 series. Linear prediction is applied to RCs
1–2 (8 yr) and RCs 3–4 (17 yr) computed with M = 30,
and the results (panel a) summed to give the final predic-
tion (panel b). Both the 17-yr and 8-yr components exhibit
substantial amplitudes into the future (panel a). The fore-
cast commencing in 1999 (stars) predicts decreasing flows,
and thus a higher probability of drought in years 2002–2006.
This prediction is robust to changes in the starting year, as
shown by the four thin dotted curves in panel b. The sum
of the two RC pairs (panel b, heavy solid line) tracks the
raw data series, with the difference between the two curves
characteristic of ENSO time scales. The “error bar” in Fig.
5b spans ±2σ of ENSO streamflow variability that is not
included in the forecast, given by the ENSO RCs in Fig. 2.
The predicted ebb in 2003–2004 is larger than that expected
from a moderate La Niña event.

7. Summary and conclusions

Each of the 17-yr, 8-yr and ENSO oscillatory components
of the Paraná river at Corrientes (Fig. 2) is found to be
associated with modest but statistically significant changes
in the probability distribution of monthly flows (Table 1).

a) Prediction made in 2000 

Figure 2: (a) SSA-MEM prediction of Parana River flow made for the 2000–2010 decade from data available up to
and including 1999. Light dotted curves show 4 predictions initialized in 1995, 1996, 1997 and 1998, while the stars
give the mean prediction out to 2010, and the “error bar” gives ±2� of ENSO variability. (b) Observed time series

updated to 2007, with the thin vertical line indicating 1999; units are 103 m3s
�1

and the time mean is subtracted.

In the case of EMR, integration is driven by a large ensemble of random realizations of the noise
and initialized from the current SSTA conditions. Kondrashov et al. (2005) found ENSO forecast
skill comparable with that of state-of-the-art dynamical and statistical models included in the multi-
model ENSO forecast ensemble at IRI (http://iri.columbia.edu/climate/ENSO/currentinfo/SST table.html).
Predictability can be quantified using model-generated ensembles, in terms of the degree to which
a forecast distribution di�ers from the climatological distribution, such as through the relative en-
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Stochastic inverse models (EMR) with past noise 
forecasting (PNF)

For Δ ¼ 5months and using selection criterion S1—applied to
RCK of PC1, with K ¼ 2, α ¼ 0.5 and β ¼ 0.05 in Eq. 5—the PNF
(2,5) method selects snippets ζti that allow us to reach the goal set
in the preceding section: improve the forecast obtained by taking
the mean of the EMR model by refining the subsets St" . Fig. 3A
illustrates this improvement in predicting the Niño-3 index by
comparing the mean of the EMR model prediction (red curve)
with the predictor given by (7) (blue curve). These predictions are
issued each month t" using only data prior to that month, for Q ¼
114 values of t"q, running from October 1998 to March 2008.

We note in Fig. 3A that the PNF method is able to capture
episodes of strong anomalies in the evolution of the Niño-3
index—especially the large El Niño in 2003 and the large La Niña
in 2008—much better than themeanEMRmethod does.While the
PNF performance is not uniformly better, it is at no time substan-
tially worse that the mean EMR either. The PNF improvement is
most striking during the energetic phases of constructive interfer-
ence between the LFV modes, QQ and QB (2, 26).

Fig. 3 B and C shows that the PNF method yields significantly
better skill in Niño-3 prediction beyond 6 mo, compared with the
standard EMR method of Kondrashov et al. (16). The optimal

improvement occurs at relatively long lead times of 12–16 mo.
This improvement is due, in part, to the fact that, in our EMR–
ENSO model, the chaotic behavior is relatively weak and most
trajectories, while starting from different initial states, synchro-
nize for a fixed realization of the noise at longer lead times, as
shown in Fig. 2B. The PNF improvement is also consistent with
the characteristic decay time τ of the ENSO eigenmode asso-
ciated with its most energetic LFV mode, the QQ mode; this
decay time of τ ≈ 14 months (16) might ultimately determine
the empirical limits of long-term ENSO predictability.

Even more strikingly, Fig. 4 shows that PNF skill in predicting
the SST field itself at a 14-mo lead is uniformly better over the
entire equatorial Tropical Pacific and Indian Ocean area, where

2 4 6 8 10 12 14 16
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Niño−3 Prediction skill, 2000−2009: Correlation

Lead (month)

co
rr

EMR
PNF
PNF+reshuffle
EMR+reshuffle

2 4 6 8 10 12 14 16

0.5

1

1.5
Niño−3 Prediction skill, 2000−2009: RMS Error

Lead (month)

EMR
PNF
PNF+reshuffle
EMR+reshuffle

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
−1.5

−1

−0.5

0

0.5

1

1.5

2

Year

Niño−3, 14 month prediction, 2000−2009

Data
EMR
PNF
QQ+QB

A

B

C

Fig. 3. Niño-3 prediction skill for years 2000–2009. (A) PNF forecasts (blue
curve) validated at 14-mo lead, compared to the actual data (black), EMR
forecast (red), and the quasi-quadriennal ðQQÞ þ quasi-biennial ðQBÞ compo-
nents of SSA reconstruction (2, 26) (cyan); see text for details. (B) RMS and
(C) Corr forecast skill obtained by using the mean of a two-level EMR–ENSO
model driven by a large set St" of noise realizations (red), and driven by a
smaller subset S0t" of realizations selected by the PNF(2,5) method (blue);
the average is taken over the Q ¼ 114 forecasts issued each month from Oc-
tober 1998 to March 2008. The forecasts use only data prior to that month—
i.e., no “look-ahead”whatsoever is involved, and the skill is plotted for leads
of 1–16 mo—with the seasonal cycle removed and normalized by the varia-
bility. For each forecast, the EMR–ENSO model is initialized at the observed
state for the time t" at which the forecast is started. These results are com-
pared with a reshuffled version ξ̂t (green) of the residual noise ξt .

   0°     60° E  120° E  180° E  120° W   60° W    0°

 20° S 

 10° S 

  0°

 10° N 

 20° N 

 30° N 

 40° N 

 50° N 
 60° N 

EMR Corr

0

0.2

0.4

0.6

   0°     60° E  120° E  180° E  120° W   60° W    0°

 20° S 

 10° S 

  0°

 10° N 

 20° N 

 30° N 

 40° N 

 50° N 
 60° N 

PNF Corr

0

0.2

0.4

0.6

   0°     60° E  120° E  180° E  120° W   60° W    0°

 20° S 

 10° S 

  0°

 10° N 

 20° N 

 30° N 

 40° N 

 50° N 
 60° N 

EMR RMS

0.8

1

1.2

1.4

   0°     60° E  120° E  180° E  120° W   60° W    0°

 20° S 

 10° S 

  0°

 10° N 

 20° N 

 30° N 

 40° N 

 50° N 
 60° N 

PNF RMS

0.8

1

1.2

1.4

A

B

C

D
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an EMR model and (B and D) the PNF method. The skill is evaluated in terms
of maps of (A and B) anomaly correlation Corr and (C and D) normalized rms
errors RMS. Both EMR and PNF were trained on T0 ¼ 50 years of SST data
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nal cycle subtracted. The Niño-3.4 index is defined as the mean SST anomaly
over the rectangular box. PNF skill is uniformly better (lower RMS and
higher Corr) in the equatorial Tropical Pacific and Indian Ocean, where ENSO
is most active.
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For Δ ¼ 5months and using selection criterion S1—applied to
RCK of PC1, with K ¼ 2, α ¼ 0.5 and β ¼ 0.05 in Eq. 5—the PNF
(2,5) method selects snippets ζti that allow us to reach the goal set
in the preceding section: improve the forecast obtained by taking
the mean of the EMR model by refining the subsets St" . Fig. 3A
illustrates this improvement in predicting the Niño-3 index by
comparing the mean of the EMR model prediction (red curve)
with the predictor given by (7) (blue curve). These predictions are
issued each month t" using only data prior to that month, for Q ¼
114 values of t"q, running from October 1998 to March 2008.

We note in Fig. 3A that the PNF method is able to capture
episodes of strong anomalies in the evolution of the Niño-3
index—especially the large El Niño in 2003 and the large La Niña
in 2008—much better than themeanEMRmethod does.While the
PNF performance is not uniformly better, it is at no time substan-
tially worse that the mean EMR either. The PNF improvement is
most striking during the energetic phases of constructive interfer-
ence between the LFV modes, QQ and QB (2, 26).

Fig. 3 B and C shows that the PNF method yields significantly
better skill in Niño-3 prediction beyond 6 mo, compared with the
standard EMR method of Kondrashov et al. (16). The optimal

improvement occurs at relatively long lead times of 12–16 mo.
This improvement is due, in part, to the fact that, in our EMR–
ENSO model, the chaotic behavior is relatively weak and most
trajectories, while starting from different initial states, synchro-
nize for a fixed realization of the noise at longer lead times, as
shown in Fig. 2B. The PNF improvement is also consistent with
the characteristic decay time τ of the ENSO eigenmode asso-
ciated with its most energetic LFV mode, the QQ mode; this
decay time of τ ≈ 14 months (16) might ultimately determine
the empirical limits of long-term ENSO predictability.

Even more strikingly, Fig. 4 shows that PNF skill in predicting
the SST field itself at a 14-mo lead is uniformly better over the
entire equatorial Tropical Pacific and Indian Ocean area, where
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nents of SSA reconstruction (2, 26) (cyan); see text for details. (B) RMS and
(C) Corr forecast skill obtained by using the mean of a two-level EMR–ENSO
model driven by a large set St" of noise realizations (red), and driven by a
smaller subset S0t" of realizations selected by the PNF(2,5) method (blue);
the average is taken over the Q ¼ 114 forecasts issued each month from Oc-
tober 1998 to March 2008. The forecasts use only data prior to that month—
i.e., no “look-ahead”whatsoever is involved, and the skill is plotted for leads
of 1–16 mo—with the seasonal cycle removed and normalized by the varia-
bility. For each forecast, the EMR–ENSO model is initialized at the observed
state for the time t" at which the forecast is started. These results are com-
pared with a reshuffled version ξ̂t (green) of the residual noise ξt .
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Fig. 4. Prediction skill for 14-mo-lead forecasts of the SST field by (A and C)
an EMR model and (B and D) the PNF method. The skill is evaluated in terms
of maps of (A and B) anomaly correlation Corr and (C and D) normalized rms
errors RMS. Both EMR and PNF were trained on T0 ¼ 50 years of SST data
(1950–2000), and validated on 10 years (2000–2009) of data, with the seaso-
nal cycle subtracted. The Niño-3.4 index is defined as the mean SST anomaly
over the rectangular box. PNF skill is uniformly better (lower RMS and
higher Corr) in the equatorial Tropical Pacific and Indian Ocean, where ENSO
is most active.

Chekroun et al. PNAS Early Edition ∣ 5 of 6

A
PP

LI
ED

M
AT

HE
M
AT

IC
S

ACC SST Skill at 14-mo lead

the expected evolution of the state xðtÞ (9). Still, there is no
information on the future of the sample path t ↦ dξtðωÞ that
has been fitted from the observations over a time window
ð0;t#Þ; where ω ∈ Ω marks the sampled realization, and Ω is
the appropriate probability space for the sample paths.

For a nonlinear stochastic model that exhibits a positive Lya-
punov exponent when the noise is turned off, we are thus faced—
once the noise is turned on and besides the sensitivity to the initial
state—with the additional uncertainty in the realization of the
noise. Hence the forecasting problem becomes, at first sight,
even more difficult than in the purely deterministic case. In
the remainder of this section, we show that for certain chaotic
systems—which are of geophysical interest, as seen in the next
section—the noise can help, rather than hinder, the prediction
of the state.

We consider here a nonlinear stochastic model of the form,

dx ¼ fðx;tÞdtþ gðx;tÞdξt; [1]

the model is used to simulate a multivariate time series over a
time interval ð0;t#Þ and to predict its future evolution over the
interval (t#, t# þ T). In Eq. 1 and the sequel, the noise dξt is
not necessarily white and hereafter will be denoted by ξt. One
assumes that the deterministic functions f and g have been esti-
mated, by EMR or in some other way. Unless one knows, though,
how to approximate the sample path of the noise t ↦ ξtðωÞ for
t ∈ ðt#;t# þ TÞ—with ω the unknown but fixed realization—one
has to rely on predictions of the system’s PDF (12–14).

To exploit knowledge of past noise, as we propose to do here,
requires first an estimate of the model’s response to a “perturba-
tion” of ω. Consider an observable ψ of the system governed by
Eq. 1—i.e., a real-valued continuous function X → R, where X is
the system’s phase-space. For definiteness and clarity, let ξtðω0Þ
be a perturbation of ξt over ð0;t#Þ, with ω0 a different realization
and 0 < ϵ ≪ 1; the perturbed path of the noise is χϵt ðω0Þ ¼
ξtðωÞ þ ϵξtðω0Þ, although much more general perturbations can
be considered. Denote by Φðt;s;x0;ωÞ the solution of Eq. 1 ema-
nating from x0 at time s < t, when the system is driven by the path
t ↦ ξtðωÞ, and by Φϵðt;s;x0;ω0Þ the one driven by χϵt ðω0Þ and still
emanating from xðsÞ ¼ x0.

Consider now a perturbation χϵt ðω0Þ applied over the interval
ðs;tÞ. We define the (local) deviation δx0;ωðs;tÞ ðψ ;ω

0Þ of ψ at t, when
starting from x0 at time s and driven by the two noise paths χϵt ðω0Þ
and ξtðωÞ, respectively, from s to t:

δx0;ωðs;tÞ ðψ ;ω
0Þ≔ψðΦϵðt;s;x0;ω0ÞÞ − ψðΦðt;s;x0;ωÞÞ; [2]

ω here refers to the realization that drives the unperturbed
system. The corresponding mean response at time t is provided
by the expectation Eω0∈Ω½δ

x0;ω
ðs;tÞ ðψ ;ω

0Þ'; when no confusion is
possible, we drop the indexing over ω0 ∈ Ω. We will be mainly
interested in the expected response, averaged over ðs;tÞ and given
by E½δ̄x0;ωðs;tÞ ðψ ; ·Þ', where δ̄x0;ωðs;tÞ ðψ ; ·Þ≔ðs − tÞ−1∫ t

sδ
x0;ω
ðs;uÞðψ ; ·Þdu.

At this point, we take a brief excursion beyond the scope of the
present paper and note that, by taking an ensemble average over
x0 ∈ X and letting s → −∞, one recovers, in our stochastic con-
text, quantities that are analogous to those considered in Ruelle’s
(20) response theory for smooth, time-dependent perturbations
Fðx;tÞ of autonomous systems with chaotic behavior. In that the-
ory, the nature of the response—whether linear or nonlinear—is
independent of the respective choices of the observable ψ and the
perturbation in the (deterministic) forcing F.

There is no room to discuss here a rigorous framework in
which to assess the response of a stochastic system governed
by Eq. 1 to perturbations of the noise path t ↦ ξtðωÞ. Only nu-
merical results for the short-range response can be given in the
present paper; these will be justified rigorously elsewhere. Appli-
cations of linear-response theory to climate sensitivity have been
recently investigated in a deterministic (21) and in a stochastic

context (22), but only for the model’s PDF, while pathwise statis-
tics are discussed in ref. 19.

To which extent does the local, short-range response depend
on x0, ω, s and t? It appears that the linear or nonlinear nature
of E½δ̄x0;ωðs;tÞ ðψ ; ·Þ', over a fixed interval ðs;tÞ, is unchanged for almost
all x0 and almost all ω; as a consequence, we will drop the depen-
dence in x0 and ω. This statement holds, for instance, in the case
of the stochastic Lorenz system forced by σxdξt, with σ > 0, as
considered in ref. 19: For t − s fixed—and almost surely in x0
and ω—E½δ̄x0;ωðs;tÞ ðψ ; ·Þ' depends nonlinearly on the perturbation;
this nonlinear response sets in above a certain threshold ϵ0 of
the perturbation size, which is much smaller than the variance
of the noise.

To the contrary, other nonlinear (and chaotic) stochastic sys-
tems can exhibit—over a wide range of perturbations and still for
almost all x0 and ω—a linear response. For t − s fixed, such a re-
sponse is visualized through a slope of E½δ̄ðs;tÞðψ ; ·Þ' vs. ϵ that is
constant or changes only slightly with x0 and s. In certain cases,
a loss of this linear dependence may occur above a relatively large
perturbation size. In practice, the knowledge of E½δ̄ðs;tÞðψ ; ·Þ', and
the threshold ϵ0 past which the response becomes nonlinear, gives
a quantitative assessment of the pathwise sensitivity: The smaller
ϵ0 the more sensitive the system may be to a perturbation ϵξtðω0Þ
of the path. It follows also that a “reasonable” value of ϵ ≤ ϵ0
could serve as a good indicator of an admissible noise perturba-
tion. In the next section, we illustrate what is reasonable for an
EMR-model of ENSO.

Pathwise Linear Response of an EMR-ENSO Model
EMR models (10, 11, 16) are a subset of the stochastic systems
described by Eq. 1; they can be compactly written as

_x ¼ Axþ Bðx;xÞ þ Lðx;rlt;ξt;tÞ; 0 ≤ l ≤ L − 1. [3]
Here x represents the slowest and most energetic modes, Bðx;xÞ is
a quadratic nonlinearity, and L is a time-dependent linear opera-
tor obtained by integrating recursively from the Lth level to the
top level, l ¼ 0, the linear stochastic equations that relate the aux-
iliary stochastic forcings rlt and rlþ1

t —i.e., drlt ¼ blðx;r0t ;…;rltÞdtþ
rlþ1
t dt; A and B are estimated by a least-square procedure, and
bl are linear maps estimated recursively along the same lines.
The procedure is stopped when rL−1t ¼ ξt, called the Lth-level re-
sidual forcing, has a lag-1 vanishing autocorrelation. The stochas-
tic forcings rlt are ordered from the one with strongest memory,
r0t , to the most weakly autocorrelated one, ξt. Here and through-
out this section, ξt in Eq. 3 is to be understood thus as an approx-
imation over the sampling interval of dξt in Eq. 1. This procedure
allows one to parameterize the “fast” modes in terms of the
“slow” ones; see SI Text for further details.

Kondrashov et al. (16) have shown that a two-level EMRmod-
el—i.e., L ¼ 2 in Eq. 3—can simulate key features of the global
sea surface temperature (SST) field’s LFV and is quite competi-
tive in predicting ENSO events on the seasonal-to-interannual
scale. Let us assume that such a model has been fitted to the
SSTobservations over some interval ð0;T0Þ and measure its path-
wise sensitivity to changes in the model’s “weather”; i.e., in the
EMR procedure’s residual noise r1t ¼ ξt.

Consider now the observable ψðxÞ≔‖x‖, where ‖ · ‖ denotes
the Euclidean norm of x. Our goal is to obtain an estimate of
E½δ̄ðs;tÞðψ ; ·Þ'du in terms of ϵ; to do so, we calculate

E
!

1

ðt − sÞσ0;T0
ð‖Φ‖ÞÞ

Z
t

s
‖Φϵðu;s;x0; ·Þ −Φðu;s;x0;ωÞ‖du

"
; [4]

as a function of Eω0∈Ω½ðσ0;T0
ð‖ξ‖ÞÞ−1∫ t

s‖χ
ϵ
uðω0Þ − ξuðωÞ‖du'. Here

ðt − sÞ ≪ T0, ΦðtÞ is the reference solution driven by the refer-
ence path of the noise ξtðωÞ, σð0;T0Þð‖ξ‖Þ is the standard deviation
on ð0;T0Þ of the norm of the residual noise ξtðωÞ at the second
level, while σ0;T0

ð‖Φ‖Þ is the standard deviation of the norm ‖Φ‖
on ð0;T0Þ.
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2. Tree-ring based reconstructions of stream flow



Tree-ring reconstructions of
Upper Indus River Discharge

E. Cook



Monsoon Asia Drought Atlas (MADA)
1300–2005

1 Results from Prior NSF Support

Tree-Ring Reconstructions of Asian Monsoon Climate Dynamics: PIs E. Cook, R. DArrigo, B.
Buckley, G. Jacoby, W. Wright and K. Anchukaitis. 08/01/04–7/31/09, ATM-0402474: $5,500,000;
Extension through Jul. 31, 2010.

This project addressed key questions regarding the Asian monsoon over the past millennium, gen-
erating and utilizing a suite of tree-ring chronologies and paleoclimatic reconstructions. A tree-ring
data network was developed, consisting of hundreds of chronologies across monsoon Asia, ranging
in length from 200 to 1000 years or more (Fig. 1). These records were used to develop recon-
structions of tropical Indo-Pacific hydroclimate, sea surface temperatures (SSTs) and other key
variables. Spatial field reconstructions of past drought variability [based on the Palmer Drought
Severity Index (PDSI)] were compiled into a comprehensive drought atlas (Cook et al. (2010), Sci-
ence). Evidence was found for persistent “megadroughts” that have lasted for several decades or
more across South Asia, display intriguing linkages to the monsoon-ENSO system, and appear to be
have been associated with significant societal upheaval and cultural change in the region (Buckley
et al. (2010)). A north-south alternation (“hinge-line”) in drought variability was reconstructed
across India using tree rings from the Tibetan Plateau and Himalayas for the past four centuries
(Cook and Krusic (2010)). Tree-ring based drought and streamflow reconstructions for Indonesia
and Australasia (D’Arrigo et al. (2010, 2008b,a, 2009), D’Arrigo and Smerdon (2008), D’Arrigo
and Wilson (2008)) have revealed strong linkages with ENSO and Indian Ocean Dipole (IOD)
variability and suggest a recent increase in positive IOD events relative to the past few centuries,
consistent with Indian Ocean corals (Abram et al. (2008)). These data also show that low variance
during a period of unusually quiescent ENSO activity in the early-mid 20th century was unusual
in a long-term context.

27

563

Figure S3.  The tree-ring chronology network used for reconstructing Asian monsoon drought.564

The number of series is 327 and is irregularly distributed across the grid (Fig. S3A).  The earliest565

starting year begins in AD 150, with most clustered in the post-1500 interval (Fig. S3B).566

However, the geographic coverage of the series beginning before AD 1500 matches the overall567

spatial coverage of network reasonably well (blue squares in Fig. S3C) and thus allows for useful568

reconstructions of Dai-PDSI to be made back to AD 1300 over much of the grid.569

Figure 1: The tree-ring chronology network used to create the MADA (circles), together with PDSI grid.

Climate System Dynamics on Long Time Scales; P.I.: M. Ghil. Period: 10/01/00–09/30/07, ATM
00-82131, $1,438,850

The research over the grant’s extended seven-year duration fell under four subheadings: Intrasea-
sonal Variability, Interannual and Interdecadal Variability, Paleoclimate Studies and New Direc-
tions, and Statistical Methods and Software Products. There were 2 books, 49 research papers and
4 Ph. D. theses produced. Please see list of Ph.D. students and post-docs for this period under
MGs short CV. A major, widely used and cited software product that was supported by this grant
is the SSA-MTM Toolkit, http://www.atmos.ucla.edu/tcd/ssa/. MG was also awarded two NSF
Special Creativity Awards (1993–1995 and 1998–2000) for prior work.

1

Cook et al. (2010, Science)



3. Monte-Carlo simulation based on low-frequency 
modes



identified as a single index derived as a weighted linear

combination of the candidate proxy and index time series,

or may be a subset of those series that are most relevant for

South Florida rainfall in the chosen season. Relevance is

identified herein by looking at a suite of statistics of daily
rainfall for the season of interest. For example, these sta-

tistics may include the average rainfall, the variance of the

daily rainfall over the season, the probability of a wet day
following a wet day or a dry day following a dry day, or the

length of the longest wet or dry spell.

There exists a relationship between the hydroclimatic
patterns of South Florida and ENSO indices and other SST

patterns that persists despite differences in flood mecha-
nism, drainage area and season of occurrence. First, global

SSTs (for MJJ) from 1924 to 1998 are evaluated as pre-

dictors. The spatial pattern of correlations with the MJJ
rainfall series is displayed in Fig. 3. This figure shows that

anomalous conditions in SSTs are likely to strongly influ-

ence the rainfall. While it exhibits patterns of correlations
reflecting North Atlantic SSTs as expected, it is notable

that the strongest correlations are on the two regions with

Table 2 Posterior estimates of the regression parameter values for
Eq. 17 which estimates the mean of the Normal distribution condi-
tional on each of the predictors listed below

Parameter Mean SD 5% 50% 95%

Intercept 20.24 0.39 19.44 20.24 20.97

Tree(5) 4.96 2.53 -0.02 5.01 10.15

NAO(8) 3.86 2.56 -1.18 3.94 8.80

NAO(40) -9.77 4.36 -17.79 -9.91 -1.05

PDSI(5) 3.45 2.44 -1.35 3.41 8.28

SST PC1(3) -8.10 2.97 -13.86 -8.11 -2.36

NINO12(6) -4.37 2.25 -8.78 -4.34 0.16

AMO(60) 1.32 2.45 -3.56 1.33 6.13

The mean, SD and confidence intervals for each parameter are listed
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Fig. 4 Schematic representation of generation of daily rainfall scenarios conditional on a scenario of seasonal/annual climate indices

Stoch Environ Res Risk Assess (2009) 23:879–896 885

123
Figure 3: Schematic of multi-level approach to generate stochastic daily rainfall sequences based on LFMs derived
from tree-ring reconstructions over Florida (Kwon et al. (2009b)).

Asia on interannual-to-centennial time scales;

• Assess decadal predictability of hydrologic spatio-temporal modes;

• Develop stochastic simulation tools for creating downscaled future climate scenarios to 2050
and estimates of uncertainties, based on historical/proxy data and GCM climate change

• Develop stochastic reservoir simulation and optimization for scheduling hydropower, irrigation
and navigation releases.

3.2 Datasets

Over India, daily 1-degree gridded rainfall data is available 1901–2004 (Rajeevan et al. (2008))
and 1-degree gridded daily temperatures 1969–2005 (Srivastava et al. (2008)) through the India
Meteorological Department (IMD), together with a large amount of daily station data from the
Global Daily Climatology Network (GDCN), starting in 1901. Nearly 70 years of streamflow data
are available for the Bhakra river.

Over China, records of monthly and peak-daily streamflow records are available for Yichang hydro-
logical station (YHS, 111.28E; 30.70N), situated in the upper-middle reach of the Yangtze River,
40km downstream of the Three Gorges Dam (TGD); while the construction and filling of the dam
will disrupt the natural flows of the Yangtze, the historical YHS data will continue to serve as a
practical estimate of “historical inflows.” Xu et al. (2007) provide further details of the hydrological
time series measured at YHS, including quality control.

8

Concept of data-driven stochastic simulation

Kwon et al. (2009, SERRA)

Schematic 
representation of 

generation of daily 
rainfall scenarios 
conditional on a 

scenario of seasonal/
annual climate indices



Graphical model structure for stochastic 
downscaling of rainfall and temperature
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Figure 4: Illustration of graphical model structure for stochastic downscaling of rainfall and temperature. Observed
variables are shaded.

investigate for example the use of conditional mixtures of Gamma and exponential models, paying
particular attention to tail behavior (i.e., extremes). The daily mean rainfall amounts in Rt can
be modeled via a generalized linear model whose input is derived from GCM predictions, e.g.,
projected changes in specific humidity. The temperature variable Tt will also have autoregressive
dependence on Tt�1 as well as being influenced by the occurrence or non-occurrence of rainfall Rt

(e.g., see Furrer and Katz (2007)).

Not represented in Figure 4 is the fact that the daily temperature Tt and rainfall Rt variables
are vectors of values at multiple station locations. Accurate modeling of spatial dependence will
be essential for this project. We will investigate a range of di�erent techniques for modeling the
conditional distribution of temperature/rainfall at each location, including making the stations
conditionally independent given the state variable (but nonetheless marginally dependent); as well
as more flexible Bayesian network models such as Chow-Liu tree structures (e.g., see Kirshner et al.
(2004)); to more complex models such as spatial auto-regressive (Markov random field) models.

To fit our models to historical data, we will use standard statistical estimation techniques such
as maximum a posterior estimation (with weak uninformative priors), relying on the expectation-
maximization algorithm and/or Markov Chain Monte Carlo methods. We will assess the quality of
di�erent models via diagnostics (e.g., qq-plots, run-length distributions, tail distributions) as well
as via more formal quantitative metrics such as the BIC criterion and predictive accuracy (e.g., via
cross-validated log-likelihood).

3.7 Hydrologic modeling case studies

Two ongoing Columbia Water Center project sites, one in India, and one in China—both of which
face severe looming water crises (Immerzeel et al. (2010)), have their headwaters over the Tibetan
Plateau, and are both impacted by winter snow-melt and the Asian summer monsoon—will be used
to develop an integrated modeling and scenario analysis system that can connect stochastic simula-
tions of streamflow to adaptation decisions. Each site represents the largest multi-purpose reservoir
constructed in each country at the time of completion, and both dams have similar objectives of
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all areas higher than 2000m above sea level (masl),
on the water supply of the five major Southeast
Asian basins (Fig. 1). These basins, which pro-
vide water to more than 1.4 billion people (over
20% of the global population), vary considerably
in their characteristics (Table 1). The Yangtze has
the largest population of the five basins, whereas
the Ganges is the most densely populated. The
Indus and Brahmaputra basins have extensive
upstream areas (i.e., above 2000 m) and larger
glaciated areas than the Yangtze and Yellow river
basins (9). TheGanges, Brahmaputra andYangtze
basins are wetter than the Yellow and Indus basins
(10). The Indus, Ganges, and Yangtze basins sup-
port large-scale irrigation systems (11) with high
net irrigation water demand, but in the Indus the
difference between basin precipitation and net ir-
rigation demand is highest. We investigated three
related components of these river basins: (i) the
current importance of meltwater in overall river
basin hydrology; (ii) observed cryospheric changes;
and (iii) the effects of climate change on thewater
supply from the upstream basins and on food
security.

We used the Normalized Melt Index (NMI)
over the period 2001 to 2007 to quantify the im-
portance of meltwater from the upstream areas on
overall basin hydrology. NMI is defined as the
volumetric snow and glacier upstream discharge
divided by the downstream natural discharge. Up-
stream discharge is calculated with a calibrated
snow melt runoff model (SRM) (12, 13). Down-
stream natural discharge is calculated by sub-
tracting the natural evaporation (En) of the basins,
calculated with a hydrological model (14), from
precipitation (P) (15).En excludes additional evap-
oration from irrigated areas, because irrigation
water is derived from upstream sources. The

differenceP – En is therefore ameasure of natural
downstreamdischarge. TheNMI is amore reliable
measure than the commonly usedmeltwater frac-
tions of total river discharge, which are affected
by reservoirs, andwater extractions (13). The great
size of the basins that we analyze allows us to
use melt parameters calculated for whole basins,
rather than a different set of melt parameters for
each different glacier, because each basin contains
many glaciers of all types. Results from the NMI
analysis (Fig. 2) indicate that for the present-day
climate, meltwater plays an important role in the
Indus and Brahmaputra river basins. This is most
evident in the Indus: Discharge generated by snow
and glacial melt is 151% of the total discharge
naturally generated in the downstream areas. In the
Brahmaputra basin this amounts to 27%. The con-
tribution of snow and glacier water to the Ganges
(10%), Yangtze (8%), and Yellow (8%) rivers is
limited owing to comparatively large downstream

areas, limited upstream precipitation, smaller gla-
ciers, and/or wet monsoon-dominated downstream
climates (Table 1). In the Indus and Ganges basins,
about 40% of the meltwater originates from gla-
ciers, whereas in the other basins the glacial melt
contribution is much less.

Since the end of the last ice age, an almost
worldwide recession in glaciers has been observed
(16), a trend that also applies to most of the gla-
ciers in the Himalayas. Annual net imbalance
rates of 0.5 to 0.9 m year−1 have been observed
from time series of digital elevationmodels in the
Everest region in Nepal (17) and SPOT satellite
imagery in the western Himalayas (18), whereas
radioactivity analysis in ice cores revealed no net
accumulation of ice in a high-elevation glacier in
Tibet (19). However, there are some regional
anomalies (13). We used the DMT-1 GRACE
gravity model (20) in combination with derived
precipitation trends (10) to identify large-scale

Fig. 1. Basin boundaries and river courses of the Indus, Ganges, Brahmaputra, Yangtze, and Yellow rivers. Blue areas denote areas with elevation exceeding
2000 masl. The digital elevation model in the background shows the topography ranging from low elevations (dark green) to high elevations (brown).

Table 1. Characteristics of the five major Southeast Asian basins. Population data (2005) are based
on the GPWv3 dataset [http://sedac.ciesin.columbia.edu/gpw (9 March 2009)]; precipitation data
(average from 2001 to 2007) are based on (10); glacier areas are based on a dataset [http://glims.
colorado.edu/glacierdata (9 March 2009)] provided by the Global Land Ice Measurements from Space
(GLIMS) project (9). Irrigated areas and net irrigation water demand are based on (11). Upstream
refers to the area > 2000 m.

Parameter Indus Ganges Brahmaputra Yangtze Yellow
Total area (km2) 1,005,786 990,316 525,797 2,055,529 1,014,721
Total population (103) 209,619 477,937 62,421 586,006 152,718
Annual basin precipitation (mm) 423 1,035 1,071 1,002 413
Upstream area (%) 40 14 68 29 31
Glaciated area (%) 2.2 1.0 3.1 0.1 0.0
Annual upstream precipitation (%) 36 11 40 18 32
Annual downstream precipitation (%) 64 89 60 82 68
Irrigated area (km2) 144,900 156,300 5,989 168,400 54,190
Net irrigation water demand (mm) 908 716 480 331 525
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 Bhakra Dam,  India Three-Gorges Dam,  China



Dynamic	  Risk	  Management	  :	  Mul3purpose	  Reservoir	  System	  Opera3on
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  guided	  by	  Mul3scale	  Climate	  Informa3on:	  Beas-‐Sutlej	  Rivers,	  	  India

Decisions:	  1.	  Storage	  (as	  a	  f(/me)	  to	  allocate	  for	  monsoon	  flood	  volume	  	   	  
	   	  	  2.	  Irriga/on	  &Hydropower	  release	  schedule	  &	  canal	  flows
Challenges:	  Predic/on	  of	  a)	  spring	  fill	  cycle	  flows	  and	  /ming,	  b)	  monsoon	  flood	  flow	  
volume	  and	  dura/on,	  and	  c)	  winter	  precipita/on	  and	  melt	  period	  dynamics.	  Marked	  
interannual	  and	  decadal	  variability	  with	  superposed	  glacier	  melt	  trend.
Approach:	  	  

Stochas/c,	  Mul/site,	  month	  	  to	  
decade	  climate	  Simulator	  

condi/oned	  on	  historical,	  paleo	  
and	  GCM	  data

Irriga/on	  Demand

Reservoir	  Inflows

Mul/objec/ve	  reservoir	  
simula/on-‐op/miza/on	  

model	  	  

Updated	  Reservoir	  opera/ng	  policy

Current	  reservoir	  level	  &	  recent	  flow	  
history

0-‐14	  day	  weather	  forecasts	  &
Short	  term	  inflow	  forecasts

Real	  /me	  Reservoir	  
Opera/on	  Op/miza/on

Training	  and	  Collabora/on	  with	  Beas	  Bhakra	  Management	  
Board	  /Interface	  to	  DHI	  DSS



Summary

• Fine spatio-temporal scale estimates of climate over the next 10 to 50 years 
are needed for long-term planning in water resource and flood management. 

• Stochastic simulation in conjunction with reservoir management models 
provides a pathway to adapt to climate change by building resiliency through 
testing sensitivity to hydroclimate drivers.

• Empirical stochastic models in conjunction with proxy reconstructions of 
hydroclimate provide a means to resolve decadal-scale variations and test 
potential predictabilty 


