Global precipitation changes shaped by natural and anthropogenic forcing

Jian Liu¹, Bin Wang², Mark Cane³, So-Young Yim², and collaborators

 State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
 International Pacific Research Center and Department of Meteorology, University of Hawaii at Manoa, Honolulu, HI 96825, USA
 Lamont Departy Earth Observatory of Columbia University, Palisades, NY 10064, US

3. Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA

In response to warming:

How much will it rain?

Theory and Models vs. Observations (at least, Wentz et al)

Where will it rain?

Which is related in part to the SST pattern in the tropical Pacific.

"El Niño like" vs. "La Niña like" "Weaker Walker" vs. "Ocean Thermostat"

Some lessons from the last millennium -- primarily from a model simulation of the last millennium

Greenhouse gases vs. Solar-Volcanic

From "ERIK", an ECHO-G simulation of the last millennium 11-year running means

Global mean Temperature in the 20th Century is warmer than in the Medieval Warm Period (MWP) but the Precipitation rate is lower

Global mean precipitation rate versus global mean temperature

Solar-Volcanic Pre-industrial era (1000-1850): 0.058 mm/day per °C = 2.1% /°C

□ **GHG** + SV Industrial era (1850-1990): 0.039 mm/day per °C = **1.4%** /°C

Data are decadal mean values from the ERIK forced millennial simulation.

The global tropospheric balance is Longwave Flux Divergence ≈ Latent Heating

Since Δ LW is less for GHG warming than for Solar-volcanic warming, precipitation is less.

See Allan and Ingram 2002, Nature

In response to warming:

Where will it rain?

We look at the part related to the SST pattern in the tropical Pacific.

"El Niño like" vs. "La Niña like" "Weaker Walker" vs. "Ocean Thermostat"

> Which theory is right? Both are sound physics. Which is applicable?

The tropical Pacific in AR4 Weaker Walker D El Niño-like

Yamaguchi, K., and A. Noda, 2006: Global warming patterns over the North Pacific: ENSO versus AO. J. Meteorol. Soc. Japan, 84, 221–241.

Zebiak-Cane Model Comparison with Fossil Corals from the Central Pacific Ocean Thermostat La Niña-like

Sea Surface Temperature Anomaly 1932-1939

OBSERVED

Contour interval = $0.2^{\circ}C$

Courtesy of Richard Seager

Precipitation Anomaly 1932-1939

OBSERVED

GOGA MODEL

Contour interval = 2 mm/month

GOGA MODEL = AGCM with Global Sea Surface Temperature Specified

Courtesy of Richard Seager

SVD1 (81%)– THE SV MODE

Year

(top) The leading SVD mode of the precipitation and SST for the period 1000-1990. Also shown are the 850hPa wind anomalies regressed onto the time expansion coefficient of SST.

(bot) As above but for the second SVD mode.

Wind vectors shown are significant above 95% confidence level. The data used are the 11-year running mean after removal of the leading internal mode (EOF1).

Precipitation regressed onto

Stability (T850- T500) regressed onto

Solar-Volcanic (SV) mode

GHG response is more stable, favoring Weaker Walker mechanism

Summary

In many theories for the response to warming, warming is warming, but the type of forcing does matter.

Greenhouse gases vs. Solar-Volcanic

More precip than normal vs. Even more precip A consequence of global tropospheric energy budget

> "El Niño like" vs. "La Niña like" "Weaker Walker" vs. "Ocean Thermostat"

Favored by static stability differences, Also see Meehl et al (2003,...) on differences in spatial heating, DiNezio et al on changes in the thermocline

20th Century Temperature Trends

Updated from Cane et al Science 1997

Precipitation Anomaly 1932-1939

130°W

120°W

110'W

201 301 acrittade 2014 acrittade 201

GOGA MODEL

OBSERVED SEA SURFACE TEMPERATURE

100'W longitude 90°W

80° W

70°W

(a) ECHO-G model forced simulation

Fig. 2 The internal feedback mode. (a) The spatial structure (left) and principal component (right) of the leading EOF mode of global precipitation obtained from the ECHO-G model forced simulation. (b) The same as in (a) except from the ECHO-G model control (free) simulation. The data used are 11-year running mean time series.

Stability (T850- T500) regressed onto

Solar-Volcanic (SV) mode

Static s forced r Negativ stabiliz:

GHG response is more stable, favoring Weaker Walker mechanism

Characteristics of the SV forced mode (left) and the GHG forced mode (right) for the period 1000-1990: (a) The Nino 3.4 SST, (b) the zonal SST gradient, i.e., the SST in the eastern Pacific (10S-10N, 160W-90W) minus the SST in the western Pacific (10S-10N, 120E-160E), and (c) the low-level Walker cell (the zonal wind at 850 hPa averaged between 10S and 10N and 120E-120W).