

Sea Ice Salinity and Biogeochemistry Improving the Characterization of Clouds, Aerosols and the Cryosphere in Climate Models

Nicole Jeffery, Elizabeth Hunke, Scott Elliott, Mathew Maltrud, & Adrian Turner

DOE/BER Climate and Earth Systems Modeling Program

Imaged Sea Ice Structures

How does sea ice support algal production? It is a multiphase material with a dynamic Brine inclusions microstructure.

Heaton, Miner, Eicken, Zhu, Golden, in prep (2006)

Chukchi Sea, Alaska, June 2009

Expanding our CICE capability – What we know and what's lacking

Well understood:

- T evolution
- > S and T determine ice porosity (ϕ)
- > Ice permeability ~ ϕ^3 (Golden et al., 2007)
- Ice melting T and thermal conductivity depend on S
- Gravity Drainage and Flushing are primary mechanisms of desalination

Lacking:

- Upscaled models of Gravity Drainage and Flushing
- > A prognostic model of sea ice salinity (i.e. ϕ)
- A transport model for passive tracers
- Consistent snow, snow-ice, meltponds ...

Vertical Salinity profile in CICE

Schematic of typical S variability in Arctic Ice (Malmgren, 1927)

DOE/BER Climate and Earth Systems Modeling Program

Gravity Drainage Parameterization in...

Jeffery, Hunke, and Elliott (2011). Modeling the transport of passive tracers in sea ice. J, Geophys. Res. 116, C07020, doi:10.1029/2010JC006527

Gravity Drainage Parameterization in...

Passive Tracer Transport For BGC. Bulk to Brine

Best parameterization captures obs. Increase in gravity drainage with ice growth rate

DOE/BER Climate and Earth Systems Modeling Program

Active Tracer Transport For Salinity. Brine to Bulk

Work in Progress

- Flushing downward flow: low salinity meltwater desalinates ice during
- 2) Snow accumulation upward flow: ocean water replenishes depleted nutrients

DOE/BER Climate and Earth Systems Modeling Program

Work in Progress

- Flushing downward flow: low salinity meltwater desalinates ice during
- 2) Snow accumulation upward flow: ocean water replenishes depleted nutrients
- 3) Biogeochemistry M. Jin and C. Deal

Future Pieces of the Puzzle

- I) Radiative Transfer
- 2) Consistent representations of brine motion, snow-lce formation and meltponds
- 3) Snow with tracers
- 4) Ocean treatment of brine fluxes

