Coupling Global and Regional Model Predictions of the Interactions of Aged Aerosols and Mixed-Phase Clouds in the Arctic

Jerome Fast, Po-Lun Ma, Richard Easter, Balwinder Singh, and Phil Rasch Pacific Northwest National Laboratory, Richland, Washington

> Climate and Earth System Modeling Meeting September 18 - 22, Washington DC

Photo: NASA P3-B

Science Motivation

Shrinking Arctic Ice Cover 1979-1981 Average September 2007 from NASA

Climate Models Do Not Predict the Rapid Loss of Ice

Sources of Atmospheric Model Uncertainties:

- Estimates of emissions
- Transport of aerosols into Arctic
- Treatment of BC on and in ice/snow
- Cloud-aerosol interactions, scavenging
- Others?

Issues of resolution and parameterizations

Modeling Approach Motivation

- CAM will be run at higher spatial resolution in the future, but the *performance of the current suite of physics modules at those scales is not known*
- Rapid development and evaluation of the next generation suite for CAM requires the ability to *isolate processes* as well the ability to test parameterizations across a range of scales
- Relatively *little interaction* between the cloud-resolving / mesoscale and global scale communities
 - Models optimized for different purposes
 - Lessons learned are not necessarily shared

global models becoming global mesoscaleresolving models

Concept

Community Atmosphere Model (CAM5)

Philosophy: Single parameterization for each atmospheric process for long-term climate simulations using a coarse grid

Weather Research & Forecasting (WRF)

Philosophy: Several parameterizations for each atmospheric process for short-term simulations using range of grid spacings

Employ Aerosol Modeling Testbed

A computational framework that systematically and objectively evaluates <u>aerosol</u> and <u>cloud</u> process modules over a range of spatial scales see *Fast et al.*, BAMS [2011]

- Better quantify uncertainties by targeting specific processes
- Provide tools to facilitate science by minimizing redundant tasks
- Document performance and computational expense
- Build internationally-recognized capability that fosters collaboration

Arctic Testbed Case

Use field campaign data in conjunction to evaluate how performance of CAM5 physics varies as a function of resolution and how it differs from more detailed representations of clouds, aerosols and their interactions

ISDAC / ARCTAS / ARCPAC Campaigns

Convair (DOE), **28** flights meteorology, cloud properties, aerosol size distribution, single particle instrument, CVI inlet

B-200 (NASA), 27 flights high-resolution spectral lidar

DC-8 (NASA), 9 flights meteorology, trace gases, aerosol size and composition

P-3B (NSF), 8 flights meteorology, trace gases, aerosol size and composition

P-3B (NOAA), 8 flights (not shown) meteorology, trace gases, aerosol size and composition

Type and amount of trace gas and aerosol data not identical

Model Configuration

- CAM5: Offline version driven by ERA meteorological analyses to simulated observed synoptic systems as close as possible, MOZART trace gases and MAM aerosols
- Emissions: Developed specifically for 2008 Arctic simulations by the POLARCAT Modeling Intercomparison Project (POLMIP)

Results

How do CAM5 Physics Perform at Higher Spatial Resolution?

Clouds over Barrow

Regional, $\Delta x = 10$ km

Clouds (Liquid) over Barrow

Regional, $\Delta x = 10$ km

Clouds (Snow) over Barrow

Regional, $\Delta x = 10$ km

Clouds (Ice) over Barrow

Regional, $\Delta x = 10$ km

Regional Variations in Clouds

Vertically Integrated Cloud Water, Snow, and Ice, 00 UTC April 27

Regional, $\Delta x = 10$ km

Pacific Northwest

 Both simulations qualitatively similar, but there are many periods when regional model simulates clouds when and where CAM5 does not

Aerosols (PM_{2.5}) over Barrow

Regional, $\Delta x = 10$ km

Meteorological Evaluation

observed CAM5 – analyses regional – (predicted)

- Analyses used in CAM5 compare well with aircraft
- Regional prediction contains more spatial variability

Trace Gases and Aerosols

Black Carbon Profiles

- Most global models under-predict BC in the Arctic
- Regional simulation somewhat higher, despite boundary conditions from CAM5

Pacific Northwest

Mixed-Phase Clouds

observed CAM5 – analyses regional – (predicted)

- Simulated ice too high and liquid water too low at this time
- Temperature a few degrees to cold near just above ice pack

Testing Aerosol Parameterizations

Uncertainties in the formation of secondary organic aerosols (SOA) likely contribute to under-predictions of total particulate matter over the Arctic

Comparing Aerosol Models

 AMT methodology: identical emissions, meteorology (aerosol-radiation-cloud feedbacks turned off), chemistry, dry deposition, boundary conditions

fine PM (< 2.5 μ m), excluding dust ~1800 m AGL

- Differences due to secondary aerosols (SO₄, NO₃, NH₄, organics)
- Treatment of organics:

MAM:POA - non-volatile, SOA employs simple yieldsMADE/SORGAM:POA - non-volatile, SOA employs traditional 2-product approach
non-volatile POA & SOA, volatility basis set approachMOSAIC:PoA - non-volatile POA & SOA, volatility basis set approach

Assessing Organic Matter Components

observed MAM: IPCC AR5 emissions MAM: local emissions MOSAIC: local emissions

- Primary organic matter from 2 models similar in the city, but SOA from MAM too high
- SOA from MOSAIC too high downwind
- Scale dependence of SOA in MAM needs to be investigated further and for other locales

Impact on Aerosol Water

- Treatment of hygroscopic properties as well as predicted mass, composition, and size distribution affects aerosol water, and consequently direct radiative forcing and CCN
- In this case, differences in thermodynamic modules and secondary aerosols leads to large variations in uptake of water on aerosols

NATIONAL LABORATORY

Global and Regional Scale Differences

PM2.5 at 700 hPa, 18 UTC 19 March 2006

Pacific Northwest NATIONAL LABORATORY

Summary and Next Steps

- New modeling framework available to test and evaluate CAM5 aerosol and cloud treatments against treatments developed by the mesoscale modeling community
- Examine scale-dependency of current cloud and cloud-aerosol interaction treatments in the Arctic
 - Will the current suite of physics be suitable for the next generation climate model?
- Determine whether transport of organic aerosols to the Arctic can be improved by incorporating new knowledge on their formation / evaporation
 - How can we improve the mass of aerosols in the Arctic for the right reasons?
 - How will improving aerosol mass and composition affect both liquid and ice clouds, and consequently the regional radiation budget?

Acknowledgements: This research was supported by DOE's Earth System Modeling Program. Data obtained with from the ARM Climate Research Facility, NSF, NOAA, and NASA.

Extra Slides

Regional Radiation Variations

Top of the Atmosphere Upward Shortwave Radiation, 00 UTC April 20

interaction simulation has less cloudiness

Regional Radiation Variations

Surface Incoming Shortwave, 00 UTC April 20

